ELEN E4810: Digital Signal Processing Topic 1: Introduction

- 1. Course overview
- 2. Digital Signal Processing
- 3. Basic operations & block diagrams
- 4. Classes of sequences

1. Course overview

- Digital signal processing: Modifying signals with computers
- Web site: <u>http://www.ee.columbia.edu/~dpwe/e4810/</u>
- Book:

Mitra "Digital Signal Processing" (3rd ed., 2005)

Instructor: dpwe@ee.columbia.edu

Grading structure

- Homeworks: 20%
 - Mainly from Mitra
 - Wednesday-Wednesday schedule
 - Collaborate, don't copy
- Midterm: 20%
 - One session
- Final exam: 30%
- Project: 30%

Course project

- Goal: hands-on experience with DSP
- Practical implementation
- Work in pairs or alone
- Brief report, optional presentation
- Recommend MATLAB
- Ideas on website
- Don't copy! Cite your sources!

Example past projects

- Solo Singing Detection
- Guitar Chord Classifier
- Speech/Music Discrimination
- Room sonar
- Construction equipment monitoring
 - DTMF decoder
 - Reverb algorithms
 - Compression algorithms

5

on web site

MATLAB

- Interactive system for numerical computation
- Extensive signal processing library
- Focus on algorithm, not implementation
- Access:
 - Columbia Site License: <u>https://portal.seas.columbia.edu/matlab/</u>
 - Student Version (need Sig. Proc. toolbox)
 - Engineering Terrace 251 computer lab

2. Digital Signal Processing

- Signals: Information-bearing function
- E.g. sound: air pressure variation at a point as a function of time p(t)
- Dimensionality: Sound: 1-Dimension
 Greyscale image *i*(*x*,*y*) : 2-D
 Video: 3 x 3-D: {*r*(*x*,*y*,*t*) *g*(*x*,*y*,*t*) *b*(*x*,*y*,*t*)}

Example signals

- Noise all domains
- Spread-spectrum phone radio
- ECG biological
- Music
- Image/video compression

Signal processing

- Modify a signal to extract/enhance/ rearrange the information
- Origin in analog electronics e.g. radar
- Examples...
 - Noise reduction
 - Data compression
 - Representation for recognition/ classification...

Digital Signal Processing

- DSP = signal processing on a computer
- Two effects: discrete-time, discrete level

11

2013-09-04

DSP vs. analog SP

Conventional signal processing:

$$p(t) \longrightarrow Processor \longrightarrow q(t)$$

$$p(t) \longrightarrow \textbf{A/D} \xrightarrow{p[n]} \textbf{Processor} \xrightarrow{q[n]} \textbf{D/A} \longrightarrow q(t)$$

Digital vs. analog

- Pros
 - Noise performance quantized signal
 - Use a general computer flexibility, upgrde
 - Stability/duplicability
 - Novelty
- Cons
 - Limitations of A/D & D/A
 - Baseline complexity / power consumption

DSP example

Speech time-scale modification: extend duration without altering pitch

3. Operations on signals

Discrete time signal often obtained by sampling a continuous-time signal

- Sequence $\{x[n]\} = x_a(nT), n = \dots -1, 0, 1, 2\dots$
- T= samp. period; 1/T= samp. frequency

Sequences

• Can write a sequence by listing values: $\{x[n]\} = \{\dots, -0.2, 2.2, 1.1, 0.2, -3.7, 2.9, \dots\}$

Arrow indicates where *n*=0
Thus, *x*[-1] = -0.2, *x*[0] = 2.2, *x*[1] = 1.1,

16

2013-09-04

Left- and right-sided

- x[n] may be defined only for certain n:
 - $N_1 \le n \le N_2$: Finite length (length = ...)
 - $N_1 \le n$: Right-sided (Causal if $N_1 \ge 0$)
 - $n \le N_2$: Left-sided (Anticausal)

Operations on sequences

Addition operation:

Multiplication operation

• Multiplier
$$x[n] \xrightarrow{A} y[n]$$

 $y[n] = A \times x[n]$

More operations

Product (modulation) operation:

 E.g. Windowing: Multiplying an infinite-length sequence by a finite-length window sequence to extract a region

Time shifting

- **Time-shifting** operation: y[n] = x[n-N]where *N* is an integer
- If N > 0, it is delaying operation

• Unit delay
$$x[n] \longrightarrow z^{-1} \longrightarrow y[n]$$

 $y[n] = x[n-1]$

If N < 0, it is an advance operation</p>

Unit advance

$$x[n] \longrightarrow z \longrightarrow y[n] \quad y[n] = x[n+1]$$

Combination of basic operations

Example

$$y[n] = \alpha_1 x[n] + \alpha_2 x[n-1] + \alpha_3 x[n-2] + \alpha_4 x[n-3]$$

Up- and down-sampling

- Certain operations change the effective sampling rate of sequences by adding or removing samples
- Up-sampling = adding more samples
 = interpolation
- Down-sampling = discarding samples
 = decimation

Down-sampling

In down-sampling by an integer factor M > 1, every M-th sample of the input sequence is kept and M - 1 in-between samples are removed:

$$x_d[n] = x[nM]$$

$$x[n] \longrightarrow M \longrightarrow x_d[n]$$

Down-sampling

An example of down-sampling

Up-sampling

Up-sampling is the converse of downsampling: L-1 zero values are inserted between each pair of original values.

$$x_u[n] = \begin{cases} x[n/L] & n = 0, \pm L, 2L, \dots \\ 0 & \text{otherwise} \end{cases}$$

$$x[n] \longrightarrow \uparrow L \longrightarrow x_{\mathcal{U}}[n]$$

25

2013-09-04

Up-sampling

An example of up-sampling

not inverse of downsampling!

Complex numbers

- .. a mathematical convenience that lead to simple expressions
- A second "imaginary" dimension (j=√-1) is added to all values.
- Rectangular form: $x = x_{re} + j \cdot x_{im}$ where magnitude $|x| = \sqrt{(x_{re}^2 + x_{im}^2)}$ and phase $\theta = \tan^{-1}(x_{im}/x_{re})$
- **Polar** form: $x = |x| e^{j\theta} = |x| \cos\theta + j \cdot |x| \sin\theta$

$$(e^{j\theta} = \cos\theta + j\sin\theta)$$

Complex math

- When adding, real and imaginary parts add: (a+jb) + (c+jd) = (a+c) + j(b+d)
- When **multiplying**, magnitudes multiply and phases add: $re^{j\theta} \cdot se^{j\phi} = rse^{j(\theta+\phi)}$

Phases modulo 2π

Complex conjugate

- Flips imaginary part / negates phase: Conjugate $x^* = x_{re} - j \cdot x_{im} = |x| e^{j(-\theta)}$
- Useful in resolving to real quantities: $x + x^* = x_{re} + j \cdot x_{im} + x_{re} - j \cdot x_{im} = 2x_{re}$ $x \cdot x^* = |x| e^{j(\theta)} |x| e^{j(-\theta)} = |x|^2$ imag $x+x^*$ $=2x_{re}$ θ real x^* 29 2013-09-04 Dan Ellis

Classes of sequences

Useful to define broad categories...

Finite/infinite (extent in n)

• Real/complex: $x[n] = x_{re}[n] + j \cdot x_{im}[n]$

Classification by symmetryConjugate symmetric sequence:

Conjugate symmetric decomposition

 Any sequence can be expressed as conjugate symmetric (CS) / antisymmetric (CA) parts:

 $x[n] = x_{cs}[n] + x_{ca}[n]$

where:

 $\begin{aligned} x_{cs}[n] &= \frac{1}{2}(x[n] + x^*[-n]) &= x_{cs}^*[-n] \\ x_{ca}[n] &= \frac{1}{2}(x[n] - x^*[-n]) &= -x_{ca}^*[-n] \end{aligned}$

■ When signals are real, CS → Even $(x_{re}[n] = x_{re}[-n])$, CA → Odd

Exponential sequences

- Exponential sequences are eigenfunctions of LTI systems
- General form: $x[n] = A \cdot \alpha^n$

Complex exponentials

 $x[n] = A \cdot \alpha^n$

Complex exponentials

Complex exponential sequence can 'project down' onto real & imaginary axes to give sinusoidal sequences

1

(

• *π* >

iA

$$x[n] = \exp\{(-\frac{1}{12} + j\frac{\pi}{6})n\} \qquad e^{j\theta} = \cos\theta + j\sin\theta$$

$$\int_{0.5}^{0} \frac{x_{re}[n]}{\sqrt{10}} + \frac{1}{20} + \frac{1}{30} + \frac{1}{30$$

Periodic sequences

- A sequence x[n] satisfying x[n] = x[n + kN], is called a periodic sequence with a period N where N is a positive integer and k is any integer.
 - Smallest value of *N* satisfying $\tilde{x}[n] = \tilde{x}[n + kN]$ is called the **fundamental period**

Periodic exponentials

- Sinusoidal sequence $A\cos(\omega_o n + \phi)$ and complex exponential sequence $B\exp(j\omega_o n)$ are periodic sequences of period *N* **only if** $\omega_o N = 2\pi r$ with *N* & *r* positive integers
- Smallest value of *N* satisfying $\omega_o N = 2\pi r$ is the **fundamental period** of the sequence

 $r = 1 \rightarrow \text{one sinusoid cycle per } N \text{ samples}$ $r > 1 \rightarrow r \text{ cycles per } N \text{ samples}$

Symmetry of periodic sequences

- An *N*-point finite-length sequence $x_f[n]$ defines a periodic sequence: $x[n] = x_f[\langle n \rangle_N]$ " $n \mod N$ " $\langle n \rangle_N = n + rN$
 - s.t. $0 \le \langle n \rangle_N < N, r \in \mathbb{Z}$ Symmetry of $x_f[n]$ is not defined because $x_f[n]$ is undefined for n < 0
- Define Periodic Conjugate Symmetric: $x_{pcs}[n] = 1/2 (x[n] + x^*[\langle -n \rangle_N])$

 $= 1/2 \left(x_f[n] + x_f^*[N-n] \right) \quad 1 \le n < l$

Sampling sinusoids

Sampling a sinusoid is ambiguous:

Aliasing

• E.g. for $\cos(\omega n)$, $\omega = 2\pi r \pm \omega_0$

all (integer) *r* appear the same after sampling

- We say that a larger ω appears aliased to a lower frequency
- **Principal value** for discrete-time frequency: $0 \le \omega_0 \le \pi$

(i.e. less than 1/2 cycle per sample)

