ELEN E4810: Digital Signal Processing Topic 1: Introduction

1. Course overview
2. Digital Signal Processing
3. Basic operations \& block diagrams
4. Classes of sequences

1. Course overview

- Digital signal processing: Modifying signals with computers
- Web site:
http://www.ee.columbia.edu/~dpwe/e4810/
- Book:

Mitra "Digital Signal Processing" (3rd ed., 2005)

- Instructor: dpwe@ee.columbia.edu

Grading structure

- Homeworks: 20\%
- Mainly from Mitra
- Wednesday-Wednesday schedule
- Collaborate, don't copy
- Midterm: 20\%
- One session
- Final exam: 30\%
- Project: 30\%

Course project

- Goal: hands-on experience with DSP
- Practical implementation
- Work in pairs or alone
- Brief report, optional presentation
- Recommend MATLAB
- Ideas on website
- Don’t copy! Cite your sources!

Example past projects

on web site

- Solo Singing Detection
- Guitar Chord Classifier
- Speech/Music Discrimination
- Room sonar
- Construction equipment monitoring
- DTMF decoder
- Reverb algorithms
- Compression algorithms

MATLAB

- Interactive system for numerical computation
- Extensive signal processing library
- Focus on algorithm, not implementation
- Access:
- Columbia Site License: https://portal.seas.columbia.edu/matlab/
- Student Version (need Sig. Proc. toolbox)
- Engineering Terrace 251 computer lab

Course at a glance

2. Digital Signal Processing

- Signals: Information-bearing function
- E.g. sound: air pressure variation at a point as a function of time $p(t)$
- Dimensionality:

Sound: 1-Dimension
Greyscale image $i(x, y): 2-\mathrm{D}$
Video: 3×3-D: $\{r(x, y, t) g(x, y, t) b(x, y, t)\}$

Example signals

- Noise - all domains
- Spread-spectrum phone - radio
- ECG - biological
- Music
- Image/video - compression

Signal processing

- Modify a signal to extract/enhance/ rearrange the information
- Origin in analog electronics e.g. radar
- Examples...
- Noise reduction
- Data compression
- Representation for recognition/ classification...

Digital Signal Processing
 - DSP = signal processing on a computer
 - Two effects: discrete-time, discrete level

DSP vs. analog SP

- Conventional signal processing:

- Digital SP system:

Digital vs. analog

- Pros
- Noise performance - quantized signal
- Use a general computer - flexibility, upgrde
- Stability/duplicability
- Novelty
- Cons
- Limitations of A/D \& D/A
- Baseline complexity / power consumption

DSP example

- Speech time-scale modification: extend duration without altering pitch

3. Operations on signals

- Discrete time signal often obtained by sampling a continuous-time signal

- Sequence $\{x[n]\}=x_{a}(n T), n=\ldots-1,0,1,2 \ldots$
- $T=$ samp. period; $1 / T=$ samp. frequency

Sequences

- Can write a sequence by listing values: $\{x[n]\}=\{\ldots,-0.2, \underset{\uparrow}{2.2}, 1.1,0.2,-3.7,2.9, \ldots\}$
- Arrow indicates where $n=0$
- Thus, $x[-1]=-0.2, x[0]=2.2, x[1]=1.1$,

Left- and right-sided

- $x[n]$ may be defined only for certain n :
- $N_{1} \leq n \leq N_{2}$: Finite length (length $=\ldots$)
- $N_{1} \leq n$: Right-sided (Causal if $N_{1} \geq 0$)
- $n \leq N_{2}$: Left-sided (Anticausal)
- Can always extend with zero-padding

Operations on sequences

- Addition operation:

- Adder $x[n] \longrightarrow \oplus \mid$

$$
w[n] \quad y[n]=x[n]+w[n]
$$

- Multiplication operation
- Multiplier ${ }_{x[n]-\longrightarrow^{A} \longrightarrow{ }_{y}[n]=A \times x[n]}$

More operations

- Product (modulation) operation:
- Modulator

$$
x[n] \longrightarrow \underset{\mid}{\mathbb{Q}} \longrightarrow y[n]
$$

$$
w[n]
$$

$$
y[n]=x[n] \times w[n]
$$

- E.g. Windowing:

Multiplying an infinite-length sequence by a finite-length window sequence to extract a region

Time shifting

- Time-shifting operation: $y[n]=x[n-N]$ where N is an integer
- If $N>0$, it is delaying operation
- Unit delay $x[n] \longrightarrow z^{-1} \longrightarrow y[n]$

$$
y[n]=x[n-1]
$$

- If $N<0$, it is an advance operation
- Unit advance

$$
x[n] \longrightarrow z \longrightarrow y[n] \quad y[n]=x[n+1]
$$

Combination of basic operations

- Example

$$
\begin{aligned}
y[n]= & \alpha_{1} x[n]+\alpha_{2} x[n-1] \\
& +\alpha_{3} x[n-2]+\alpha_{4} x[n-3]
\end{aligned}
$$

Up- and down-sampling

- Certain operations change the effective sampling rate of sequences by adding or removing samples
- Up-sampling = adding more samples = interpolation
- Down-sampling = discarding samples = decimation

Down-sampling

- In down-sampling by an integer factor $M>1$, every M-th sample of the input sequence is kept and $M-1$ in-between samples are removed:

$$
x_{d}[n]=x[n M]
$$

$$
x[n]-\backslash M \longrightarrow x_{d}[n]
$$

Down-sampling

- An example of down-sampling

Dan Ellis
2013-09-04

Up-sampling

- Up-sampling is the converse of downsampling: $L-1$ zero values are inserted between each pair of original values.

$$
\begin{aligned}
x_{u}[n]= & \begin{cases}x[n / L] & n=0, \pm L, 2 L, \ldots \\
0 & \text { otherwise }\end{cases} \\
& x[n] \longrightarrow \mid L \longrightarrow x_{u}[n]
\end{aligned}
$$

Up-sampling

- An example of up-sampling

not inverse of downsampling!

Complex numbers

- .. a mathematical convenience that lead to simple expressions
- A second "imaginary" dimension ($\mathrm{j} \equiv \sqrt{ }-1$) is added to all values.
- Rectangular form: $x=x_{r e}+\mathrm{j} \cdot x_{i m}$ where magnitude $|x|=\sqrt{ }\left(x_{r e}{ }^{2}+x_{i m}{ }^{2}\right)$ and phase $\theta=\tan ^{-1}\left(x_{i m} / x_{r e}\right)$
- Polar form: $x=|x| \mathrm{e}^{\mathrm{j} \theta}=|x| \cos \theta+\mathrm{j} \cdot|x| \sin \theta$

$$
\left(e^{j \theta}=\cos \theta+j \sin \theta\right)
$$

Complex math

- When adding, real
 and imaginary parts add: $(a+\mathrm{j} b)+(c+\mathrm{j} d)$
$=(a+c)+\mathrm{j}(b+d)$
- When multiplying, magnitudes multiply and phases add:
$r \mathrm{ej}^{\theta} \cdot \cdot \mathrm{sej}^{\varphi}=r \mathrm{se}^{\mathrm{j}}(\theta+\varphi)$
- Phases modulo 2π

Complex conjugate

- Flips imaginary part / negates phase: Conjugate $x^{*}=x_{r e}-\mathrm{j} \cdot x_{i m}=|x| \mathrm{ej}(-\theta)$
- Useful in resolving to real quantities:

$$
x+x^{*}=x_{r e}+\mathrm{j} \cdot x_{i m}+x_{r e}-\mathrm{j} \cdot x_{i m}=2 x_{r e}
$$

$$
x \cdot x^{*}=|x| \mathrm{ej}^{\mathrm{j}(\theta)}|x| \mathrm{ej}^{\mathrm{j}(-\theta)}=|x|^{2}
$$

Classes of sequences

- Useful to define broad categories...
- Finite/infinite (extent in n)
- Real/complex:

$$
x[n]=x_{r e}[n]+\mathrm{j} \cdot x_{i m}[n]
$$

Classification by symmetry

- Conjugate symmetric sequence:
if $x[n]=x_{r e}[n]+\mathrm{j} \cdot x_{i m}[n]$
then $x_{c s}[n]=x_{c s}{ }^{*}[-n]$

$$
=x_{r e}[-n]-\mathrm{j} \cdot x_{i m}[-n]
$$

- Conjugate antisymmetric:

$$
x_{c a}[n]=-x_{c a} *[-n]=-x_{r e}[-n]+\mathrm{j} \cdot x_{i m}[-n]
$$

Conjugate symmetric decomposition

- Any sequence can be expressed as conjugate symmetric (CS) / antisymmetric (CA) parts:

$$
x[n]=x_{c s}[n]+x_{c a}[n]
$$

where:

$$
\begin{aligned}
x_{c s}[n]=1 / 2(x[n]+x *[-n]) & =x_{c s} *[-n] \\
x_{c a}[n]=1 / 2(x[n]-x *[-n]) & =-x_{c a} *[-n]
\end{aligned}
$$

- When signals are real, CS \rightarrow Even $\left(x_{r e}[n]=x_{r e}[-n]\right), \quad \mathrm{CA} \rightarrow$ Odd

Basic sequences

- Unit sample sequence: $\quad \delta[n]= \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}$

- Shift in time:

$$
\delta[n-k]
$$

- Can express any sequence with δ : $\left\{\alpha_{0}, \alpha_{1}, \alpha_{2} ..\right\}=\alpha_{0} \delta[n]+\alpha_{1} \delta[n-1]+\alpha_{2} \delta[n-2]$. .

More basic sequences

- Unit step sequence: $\mu[n]= \begin{cases}1, & n \geq 0 \\ 0, & n<0\end{cases}$

- Relate to unit sample:

$$
\begin{aligned}
& \delta[n]=\mu[n]-\mu[n-1] \\
& \mu[n]=\sum_{k=-\infty}^{n} \delta[k]
\end{aligned}
$$

Exponential sequences

- Exponential sequences are eigenfunctions of LTI systems
- General form: $x[n]=A \cdot \alpha^{n}$
- If A and α are real (and positive):

Dan Ellis
2013-09-04
35

Complex exponentials

$$
x[n]=A \cdot \alpha^{n}
$$

- Constants A, α can be complex :

$$
A=|A| \mathrm{e}^{j \phi} ; \quad \alpha=\mathrm{e}^{(\sigma+j \omega)}
$$

$$
\rightarrow x[n]=|A| \mathrm{e}^{\sigma n} \mathrm{e}^{j(\omega n+\phi)}
$$

$$
\text { scale } \quad \begin{gathered}
\dagger \\
\text { varying }
\end{gathered}
$$ magnitude

Complex exponentials

- Complex exponential sequence can 'project down' onto real \& imaginary axes to give sinusoidal sequences

$$
x[n]=\exp \left\{\left(-\frac{1}{12}+j \frac{\pi}{6}\right) n\right\} \quad e^{i \theta}=\cos \theta+j \sin \theta
$$

 $x_{r e}[n]=\mathrm{e}^{-n / 12} \cos (\pi n / 6) \quad x_{\text {im }}[n]=\mathrm{e}^{-n / 12} \sin (\pi n / 6){ }_{\mathrm{N}}^{\mathrm{M}}$

Dan Ellis

Periodic sequences

- A sequence $\widetilde{x}[n]$ satisfying $\widetilde{x}[n]=\widetilde{x}[n+k N]$, is called a periodic sequence with a period N where N is a positive integer and k is any integer.
Smallest value of N satisfying $\tilde{x}[n]=\widetilde{x}[n+k N]$ is called the fundamental period

Periodic exponentials

- Sinusoidal sequence $A \cos \left(\omega_{o} n+\phi\right)$ and complex exponential sequence $B \exp \left(j \omega_{o} n\right)$ are periodic sequences of period N only if $\omega_{o} N=2 \pi r$ with $N \& r$ positive integers
- Smallest value of N satisfying $\omega_{o} N=2 \pi r$ is the fundamental period of the sequence
- $r=1 \rightarrow$ one sinusoid cycle per N samples $r>1 \rightarrow r$ cycles per N samples

Symmetry of periodic sequences

- An N-point finite-length sequence $x_{f}[n]$ defines a periodic sequence:
$x[n]=x_{f}\left[\langle n\rangle_{N}\right]$ " n modulo $N^{\prime \prime}\langle n\rangle_{N}=n+r N$
- Symmetry of $x_{f}[n]$ is not defined because $x_{f}[n]$ is undefined for $n<0$
- Define Periodic Conjugate Symmetric: $x_{p c s}[n]=1 / 2\left(x[n]+x^{*}\left[\langle-n\rangle_{N}\right]\right)$

$$
=1 / 2\left(x_{f}[n]+x_{f}^{*}[N-n]\right) \quad 1 \leq n<N
$$

Sampling sinusoids

- Sampling a sinusoid is ambiguous:

Aliasing

- E.g. for $\cos (\omega n), \omega=2 \pi r \pm \omega_{0}$
all (integer) r appear the same after sampling
- We say that a larger ω appears aliased to a lower frequency
- Principal value for discrete-time frequency: $0 \leq \omega_{0} \leq \pi$
(i.e. less than $1 / 2$ cycle per sample)

