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ELEN E4810: Digital Signal Processing
Topic 1: Introduction

1. Course overview
2. Digital Signal Processing
3. Basic operations & block diagrams
4. Classes of sequences
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1. Course overview

 Digital signal processing:
Modifying signals with computers

 Web site: 
http://www.ee.columbia.edu/~dpwe/e4810/

 Book:
Mitra “Digital Signal Processing” 
(3rd ed., 2005)

 Instructor:  dpwe@ee.columbia.edu

http://www.ee.columbia.edu/~dpwe/e4810/
http://www.ee.columbia.edu/~dpwe/e4810/
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Grading structure
 Homeworks: 20%

 Mainly from Mitra
 Wednesday-Wednesday schedule
 Collaborate, don’t copy

 Midterm: 20%
 One session

 Final exam: 30%
 Project: 30%
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Course project

 Goal: hands-on experience with DSP
 Practical implementation
 Work in pairs or alone
 Brief report, optional presentation
 Recommend MATLAB
 Ideas on website
 Don’t copy! Cite your sources!
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Example past projects

 Solo Singing Detection
 Guitar Chord Classifier
 Speech/Music Discrimination
 Room sonar
 Construction equipment monitoring

 DTMF decoder
 Reverb algorithms
 Compression algorithms
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MATLAB
 Interactive system for numerical 

computation
 Extensive signal processing library
 Focus on algorithm, not implementation
 Access: 

 Columbia Site License: 
https://portal.seas.columbia.edu/matlab/

 Student Version (need Sig. Proc. toolbox)
 Engineering Terrace 251 computer lab

https://portal.seas.columbia.edu/matlab/
https://portal.seas.columbia.edu/matlab/
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2. Digital Signal Processing

 Signals:
Information-bearing function

 E.g. sound: air pressure variation at a 
point as a function of time p(t)

 Dimensionality:
Sound: 1-Dimension
Greyscale image i(x,y) : 2-D
Video: 3 x 3-D: {r(x,y,t) g(x,y,t) b(x,y,t)}
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Example signals

 Noise - all domains
 Spread-spectrum phone - radio
 ECG - biological
 Music
 Image/video - compression
 ….
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Signal processing

 Modify a signal to extract/enhance/ 
rearrange the information

 Origin in analog electronics e.g. radar
 Examples…

 Noise reduction
 Data compression
 Representation for recognition/

classification…
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Digital Signal Processing 
 DSP = signal processing on a computer
 Two effects: discrete-time, discrete level

x(t)

x[n]
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DSP vs. analog SP

 Conventional signal processing:

 Digital SP system:

Processorp(t) q(t)

Processorp(t) q(t)A/D D/A
p[n] q[n]
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Digital vs. analog

 Pros
 Noise performance - quantized signal
 Use a general computer - flexibility, upgrde
 Stability/duplicability
 Novelty

 Cons
 Limitations of A/D & D/A
 Baseline complexity / power consumption
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DSP example

 Speech time-scale modification:
extend duration without altering pitch

                                                                 

M
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3. Operations on signals
 Discrete time signal often obtained by 

sampling a continuous-time signal

 Sequence {x[n]} = xa(nT), n=…-1,0,1,2…
 T= samp. period; 1/T= samp. frequency
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Sequences

 Can write a sequence by listing values:

 Arrow indicates where n=0
 Thus, 

{x[n]} = {. . . ,�0.2, 2.2, 1.1, 0.2,�3.7, 2.9, . . .}
↑
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Left- and right-sided

 x[n] may be defined only for certain n:
 N1 ≤ n ≤ N2: Finite length (length = …)
 N1 ≤ n: Right-sided (Causal if N1 ≥ 0)
 n ≤ N2: Left-sided (Anticausal)

 Can always extend with zero-padding

Right-sidedLeft-sided
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Operations on sequences

 Addition operation:

 Adder

 Multiplication operation

 Multiplier
A

x[n] y[n]

x[n] y[n]

w[n] y[n] = x[n] + w[n]

y[n] = A� x[n]
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More operations

 Product (modulation) operation:

 Modulator

 E.g. Windowing: 
Multiplying an infinite-length sequence 
by a finite-length window sequence 
to extract a region

x[n] y[n]

w[n] y[n] = x[n]� w[n]
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Time shifting

 Time-shifting operation:
 where N is an integer
 If N > 0, it is delaying operation

 Unit delay

 If N < 0, it is an advance operation
 Unit advance

y[n]x[n]

y[n]x[n]
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Combination of basic operations

 Example

    

� 

y[n] = 1x[n]   +  2x[n 1]
+  3x[n  2]    +  4x[n  3]
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Up- and down-sampling

 Certain operations change the effective 
sampling rate of sequences by adding 
or removing samples

 Up-sampling = adding more samples
 = interpolation

 Down-sampling = discarding samples
 = decimation
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Down-sampling

 In down-sampling by an integer factor 
 M > 1, every M-th sample of the input 

sequence is kept and M - 1 in-between 
samples are removed:

� 

xd[n]= x[nM ]

� 

xd[n]M
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Down-sampling

 An example of down-sampling

� 

y[n]= x[3n]3
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Up-sampling

 Up-sampling is the converse of down-
sampling:  L-1 zero values are inserted 
between each pair of original values.

L

xu[n] =

�
x[n/L] n = 0,±L, 2L, . . .

0 otherwise
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Up-sampling

 An example of up-sampling

3

not inverse of downsampling!
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Complex numbers
 .. a mathematical convenience that lead 

to simple expressions
 A second “imaginary” dimension (j≡√-1) 

is added to all values.
 Rectangular form: x = xre + j·xim

 where magnitude |x| = √(xre
2 + xim

2)
 and phase θ = tan-1(xim/xre)

 Polar form: x = |x| ejθ = |x|cosθ + j· |x|sinθ
! (! ! !       )

� 

e j = cos + j sin
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Complex math
 When adding, real 

and imaginary parts 
add: (a+jb) + (c+jd)
 = (a+c) + j(b+d)

 When multiplying, 
magnitudes multiply 
and phases add: 
rejθ·sejφ = rsej(θ+φ)

 Phases modulo 2π

x

real

imag

xre xre
+yre

xim
+yim

yre

x+y

x·y

xim

yim

|x|

|y|

|x|·|y|
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Complex conjugate
 Flips imaginary part / negates phase:

Conjugate x* = xre – j·xim = |x| ej(–µ)

 Useful in resolving to real quantities:
 x + x* = xre + j·xim + xre – j·xim = 2xre

 x·x* = |x| ej(µ) |x| ej(–µ) = |x|2

real

imag

|x|
x

x+x*
= 2xre

x*
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Classes of sequences

 Useful to define broad categories…

 Finite/infinite (extent in n)

 Real/complex:
 x[n] = xre[n] + j·xim[n]
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Classification by symmetry
 Conjugate symmetric sequence:

                  
                     

 Conjugate antisymmetric:
xca[n] = –xca*[-n] = –xre[-n] + j·xim[-n]

if x[n] = xre[n] + j·xim[n]
then xcs[n] = xcs*[-n] 
                  = xre[-n] – j·xim[-n]

Real

n

Im
ag

xre[n]

xim[n]



2013-09-04Dan Ellis 32

Conjugate symmetric decomposition
 Any sequence can be expressed as 

conjugate symmetric (CS) / 
antisymmetric (CA) parts:
 x[n] = xcs[n] + xca[n]
where: 
	
 xcs[n] = 1/2(x[n] + x*[-n])     = xcs*[-n]
	
 xca[n] = 1/2(x[n] – x*[-n])     = -xca*[-n]

 When signals are real,
CS → Even (xre[n] = xre[-n]),  CA → Odd
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Basic sequences
 Unit sample sequence: 

 Shift in time:
  ±[n - k]

 Can express any sequence with ±:
{Æ0,Æ1,Æ2..}= Æ0±[n] + Æ1±[n-1] + Æ2±[n-2]..

1

–4 –3 –2 –1 0 1 2 3 4 5 6
n

1

k–2 k–1 k k+1 k+2 k+3 n
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More basic sequences

 Unit step sequence: 

 Relate to unit sample:

� 

[n] = µ[n]µ[n 1]
µ[n] = [k]

k=

n

µ[n] =

�
1, n � 0
0, n < 0
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Exponential sequences
 Exponential sequences are 

eigenfunctions of LTI systems
 General form:   x[n] = A·Æn

 If A and Æ are real (and positive): 

|Æ| > 1 |Æ| < 1
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Complex exponentials
	
 x[n] = A·Æn

 Constants A, Æ can be complex :
A = |A|ej¡ ;  Æ = e(æ + j!)

→ x[n] = |A| eæn ej(!n + ¡)

scale varying
magnitude

varying
phase R

I

n

1 2 3 4

per-sample
phase advance
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Complex exponentials
 Complex exponential sequence can 

‘project down’ onto real & imaginary 
axes to give sinusoidal sequences

xre[n] = e-n/12cos(πn/6)   xim[n] = e-n/12sin(πn/6)  M

    

� 

x[n] = exp ( 1
12 + j 6)n{ }

xre[n] xim[n]
� 

e j = cos + j sin
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Periodic sequences
 A sequence          satisfying
 is called a periodic sequence with a 

period N where N is a positive integer and 
k is any integer.  

 Smallest value of N satisfying
is called the fundamental period
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Periodic exponentials
 Sinusoidal sequence                         and 

complex exponential sequence              
 are periodic sequences of period N only if 
                   with N & r positive integers
 Smallest value of N satisfying
 is the fundamental period of the 

sequence
 r = 1 → one sinusoid cycle per N samples

r > 1 → r cycles per N samples                 M

� 

oN = 2 r
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Symmetry of periodic sequences
 An N-point finite-length sequence xf[n] 

defines a periodic sequence: 

 Symmetry of xf [n] is not defined 
because xf [n] is undefined for n < 0

 Define Periodic Conjugate Symmetric:

x[n] = xf [�n�N ]

xpcs[n] =1/2 (x[n] + x�[��n�N ])

=1/2
�
xf [n] + x�f [N � n]

�
1 � n < N

“n modulo N” �n�N = n + rN

s.t. 0 � �n�N < N, r � Z
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Sampling sinusoids

 Sampling a sinusoid is ambiguous:

	
  x1 [n] = sin(!0n)
 x2 [n] = sin((!0+2πr)n) = sin(!0n) = x1 [n]

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1
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Aliasing
 E.g. for  cos(!n), ! = 2ºr ± !0 

all (integer) r appear the same after 
sampling

 We say that a larger ! appears 
aliased to a lower frequency

 Principal value for discrete-time 
frequency: 0 ≤ !0 ≤ º 

( i.e. less than 1/2 cycle per sample)


