ELEN E4810: Digital Signal Processing Topic 2: Time domain

1. Discrete-time systems
2. Convolution
3. Linear Constant-Coefficient Difference Equations (LCCDEs)
4. Correlation

1. Discrete-time systems

- A system converts input to output:
$x[n] \rightarrow$ DT System $\rightarrow y[n] \quad\{y[n]\}=f(\{x[n]\})_{V_{n}}$
- E.g. Moving Average (MA):

$$
\begin{gathered}
y[n]=\frac{1}{M} \sum_{k=0}^{M-1} x[n-k] \\
(M=3)
\end{gathered}
$$

Moving Average (MA)

$$
y[n]
$$

MA Smoother

- MA smoothes out rapid variations (e.g. "12 month moving average")
- e.g.

> t.y. \quad signal noise $x[n]=s[n]+d[n]$

$$
y[n]=\frac{1}{5} \sum_{k=0}^{4} x[n-k]
$$

Accumulator

- Output accumulates all past inputs:

$$
\begin{aligned}
y[n] & =\sum_{\ell=-\infty}^{n} x[\ell] \\
& =\sum_{\ell=-\infty}^{n-1} x[\ell]+x[n] \\
& =y[n-1]+x[n]
\end{aligned}
$$

Accumulator

Classes of DT systems

- Linear systems obey superposition:

- if input $x_{1}[n] \rightarrow$ output $y_{1}[n], x_{2} \rightarrow y_{2} \ldots$
- given a linear combination of inputs: $\quad x[n]=\alpha x_{1}[n]+\beta x_{2}[n]$
- then output $y[n]=\alpha y_{1}[n]+\beta y_{2}[n]$ for all $\alpha, \beta, x_{1}, x_{2}$
i.e. same linear combination of outputs

Linearity: Example 1

- Accumulator: $y[n]=\sum^{n} x[\ell]$

$$
x[n]=\alpha \cdot x_{1}[n]+\beta \cdot x_{2}[n]
$$

$$
\rightarrow y[n]=\sum^{n}\left(\alpha x_{1}[\ell]+\beta x_{2}[\ell]\right)
$$

$$
=\sum^{\ell=-\infty}\left(\alpha x_{1}[\ell]\right)+\sum^{2}\left(\beta x_{2}[\ell]\right)
$$

$$
=\alpha \sum x_{1}[\ell]+\beta \sum x_{2}[\ell]
$$

$$
=\alpha \cdot y_{1}[n]+\beta \cdot y_{2}[n]
$$

Dan Ellis

Linearity Example 2:

- "Teager Energy operator":

$$
\begin{gathered}
y[n]=x^{2}[n]-x[n-1] \cdot x[n+1] \\
x[n]=\alpha \cdot x_{1}[n]+\beta \cdot x_{2}[n] \\
\rightarrow y[n]=\left(\alpha x_{1}[n]+\beta x_{2}[n]\right)^{2} \\
-\left(\alpha x_{1}[n-1]+\beta x_{2}[n-1]\right) \\
\quad\left(\alpha x_{1}[n+1]+\beta x_{2}[n+1]\right) \\
\neq \alpha \cdot y_{1}[n]+\beta \cdot y_{2}[n] \quad X \text { Nonlinear }
\end{gathered}
$$

Linearity Example 3:

- 'Offset' accumulator: $\quad y[n]=C+\sum_{\ell=-\infty}^{n} x[\ell]$

$$
\Rightarrow y_{1}[n]=C+\sum_{\ell=-\infty}^{n} x_{1}[\ell]
$$

but $\quad \begin{aligned} y[n] & =C+\sum_{\ell=-\infty}^{n}\left(\alpha x_{1}[\ell]+\beta x_{2}[\ell]\right) \\ & \neq \alpha y_{1}[n]+\beta y_{2}[n] \quad X \text { Nonlinear }\end{aligned}$
.. unless $C=0$

Property: Shift (time) invariance

- Time-shift of input causes same shift in output
- i.e. if $x_{1}[n] \rightarrow y_{1}[n]$
then $x[n]=x_{1}\left[n-n_{0}\right]$

$$
\Rightarrow y[n]=y_{1}\left[n-n_{0}\right]
$$

- i.e. process doesn't depend on absolute value of n

Shift-invariance counterexample

- Upsampler: $\quad x[n]-1 L-y[n]$
$y[n]= \begin{cases}x[n / L] & n=0, \pm L, \pm 2 L, \ldots \\ 0 & \text { otherwise }\end{cases}$
$y_{1}[n]=x_{1}[n / L] \quad(n=r \cdot L)$
$x[n]=x_{1}\left[n-n_{0}\right]$
$\Rightarrow y[n]=x[n / L]=x_{1}\left[n / L-n_{0}\right]$
Not shift invariant

$$
=x_{1}\left[\frac{n-L \cdot n_{0}}{L}\right]=y_{1}\left[n-L \cdot n_{0}\right] \neq y_{1}\left[n-n_{0}\right]
$$

Another counterexample

$$
y[n]=n \cdot x[n] \quad \text { scaling by time index }
$$

- Hence $\quad y_{1}\left[n-n_{0}\right]=\left(n-n_{0}\right) \cdot x_{1}\left[n-n_{0}\right]$
- If $x[n]=x_{1}\left[n-n_{0}\right] \xrightarrow{ } \neq$ then

$$
y[n]=n \cdot x_{1}\left[n-n_{0}\right]
$$

- Not shift invariant
- parameters depend on n

Linear Shift Invariant (LSI)

- Systems which are both linear and shift invariant are easily manipulated mathematically
- This is still a wide and useful class of systems
- If discrete index corresponds to time, called Linear Time Invariant (LTI)

Causality

- If output depends only on past and current inputs (not future), system is called causal
- Formally, if $x_{1}[n] \rightarrow y_{1}[n] \& x_{2}[n] \rightarrow y_{2}[n]$

Causal $\rightarrow x_{1}[n]=x_{2}[n] \quad \forall n<N$

$$
\Leftrightarrow y_{1}[n]=y_{2}[n] \quad \forall n<N
$$

Causality example

- Moving average: $y[n]=\frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$
$y[n]$ depends on $x[n-k], k \geq 0 \rightarrow$ causal
- 'Centered' moving average

$$
\begin{aligned}
y_{c}[n] & =y[n+(M-1) / 2] \\
& =\frac{1}{M}\left(x[n]+\sum_{k=1}^{(M-1) / 2} x[n-k]+x[n+k]\right)
\end{aligned}
$$

- .. looks forward in time \rightarrow noncausal
- .. Can make causal by delaying

Impulse response (IR)

(unit sample sequence)

- Given a system: $x[n] \rightarrow$ DT system $\rightarrow y[n]$

$$
\text { if } x[n]=\delta[n] \text { then } y[n] \Delta h[n]
$$

"impulse response"

- LSI system completely specified by $h[n]$

Impulse response example

- Simple system:

$$
x[n]=\delta[n] \text { impulse }
$$

$y[n]=h[n]$ impulse response

2. Convolution

- Impulse response:

- Shift invariance: $\delta\left[n-n_{0}\right] \rightarrow \mathrm{LSI} \rightarrow h\left[n-n_{0}\right]$
- + Linearity:

$$
\begin{aligned}
& \alpha \cdot \delta[n-k] \\
& +\beta \cdot \delta[n-l]
\end{aligned} \rightarrow \text { LSI } \rightarrow \begin{gathered}
\alpha \cdot h[n-k] \\
+\beta \cdot h[n-l]
\end{gathered}
$$

- Can express any sequence with $\delta \mathbf{s}$:

$$
x[n]=x[0] \delta[n]+x[1] \delta[n-1]+x[2] \delta[n-2] . .
$$

Convolution sum

- Hence, since $x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$
- For LSI, $y[n]=\sum_{k=\infty}^{\infty} x[k] h[n-k]$ Convolution sum
written as $y[n]=x[n] \circledast h[n]$
- Summation is symmetric in x and h i.e. $l=n-k \rightarrow$

$$
x[n] \circledast h[n]=\sum_{l=-\infty}^{\infty} x[n-l] h[l]=h[n] \circledast x[n]
$$

Convolution properties

- LSI System output $y[n]=$ input $x[n]$ convolved with impulse response $h[n]$ $\rightarrow h[n]$ completely describes system
- Commutative: $x[n] * h[n]=h[n] * x[n]$
- Associative:

$$
(x[n] \circledast h[n]) \circledast y[n]=x[n] \circledast(h[n] \circledast y[n])
$$

- Distributive:

$$
h[n] \circledast(x[n]+y[n])=h[n] \circledast x[n]+h[n] \circledast y[n]
$$

Interpreting convolution

- Passing a signal through a (LSI) system is equivalent to convolving it with the system's impulse response

Convolution interpretation 1

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \quad \underset{\text { call } l-n]]}{ }=g[n]
$$

- Time-reverse h, shift by n, take inner product against fixed x

er $h[0-k]$

Convolution interpretation 2

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

- Shifted x 's weighted by points in h
- Conversely, weighted, delayed versions of h...

Matrix interpretation
 $$
y[n]=\sum x[n-k] h[k]
$$
 $$
k=-\infty
$$

$$
\left[\begin{array}{c}
y[0] \\
y[1] \\
y[2] \\
\cdots
\end{array}\right]=\left[\begin{array}{ccc}
x[0] & x[-1] & x[-2] \\
x[1] & x[0] & x[-1] \\
x[2] & x[1] & x[0] \\
\cdots & \cdots & \cdots
\end{array}\right]\left[\begin{array}{c}
h[0] \\
h[1] \\
h[2]
\end{array}\right]
$$

- Diagonals in X matrix are equal

Convolution notes

- Total nonzero length of convolving N and M point sequences is $N+M-1$
- Adding the indices of the terms within the summation gives n :

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k] \quad k+(n-k)=n
$$

i.e. summation indices move in opposite senses

Convolution in MATLAB

- The M-file conv implements the convolution sum of two finite-length sequences
- If $a=\left[\begin{array}{lllll}0 & 3 & 1 & 2 & -1\end{array}\right]$

$$
\mathrm{b}=\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
$$

then conv (a, b) yields

$$
\left[\begin{array}{lllllll}
{[0} & 9 & 9 & 11 & 2 & 0 & -1
\end{array}\right]
$$

Connected systems

- Cascade connection:

Impulse response $h[n]$ of the cascade of two systems with impulse responses
$h_{1}[n]$ and $h_{2}[n]$ is $h[n]=h_{1}[n] \circledast h_{2}[n]$

- By commutativity,

Inverse systems

- $\delta[n]$ is identity for convolution i.e. $x[n] \circledast \delta[n]=x[n]$
- Consider

$$
\begin{gathered}
x[n]-h_{1}[n]-y[n]-h_{2}[n]-z[n] \\
z[n]=h_{2}[n] \circledast y[n]=h_{2}[n] \circledast h_{1}[n] \circledast x[n] \\
=x[n] \text { if } h_{2}[n] \circledast h_{1}[n]=\delta[n] \\
-h_{2}[n] \text { is the inverse system of } h_{1}[n]
\end{gathered}
$$

Inverse systems

- Use inverse system to recover input $x[n]$ from output $y[n]$ (e.g. to undo effects of transmission channel)
- Only sometimes possible - e.g. cannot 'invert' $h_{1}[n]=0$
- In general, attempt to solve $h_{2}[n] * h_{1}[n]=\delta[n]$

Inverse system example

- Accumulator:

Impulse response $h_{1}[n]=\mu[n]$

- 'Backwards difference’

$$
h_{2}[n]=\delta[n]-\delta[n-1]
$$

.. has desired property:

$$
\mu[n]-\mu[n-1]=\dot{\delta}[n]
$$

- Thus, 'backwards difference' is inverse system of accumulator.

Parallel connection

- Impulse response of two parallel systems added together is:

$$
h[n]=h_{1}[n]+h_{2}[n]
$$

3. Linear Constant-Coefficient Difference Equation (LCCDE)

- General spec. of DT, LSI, finite-dim sys:

$$
\sum_{k=0}^{N} d_{k} y[n-k]=\sum_{k=0}^{M} p_{k} x[n-k] \quad \text { defined by }\left\{d_{k}\right\},\left\{p_{k}\right\}
$$

- Rearrange for $y[n]$ in causal form:
$y[n]=-\sum_{k=1}^{N} \frac{d_{k}}{d_{0}} y[n-k]+\sum_{k=0}^{M} \frac{p_{k}}{d_{0}} x[n-k]$
- WLOG, always have $d_{0}=1$

Solving LCCDEs

- "Total solution"

Complementary Solution
satisfies $\sum_{k=0}^{N} d_{k} y[n-k]=0$

Particular Solution for given forcing function

$$
x[n]
$$

Complementary Solution

- General form of unforced oscillation i.e. system's 'natural modes'
- Assume y_{c} has form $y_{c}[n]=\lambda^{n}$

$$
\begin{aligned}
& \Rightarrow \sum_{k=0}^{N} d_{k} \lambda^{n-k}=0 \\
& \Rightarrow \lambda^{n-N}\left(d_{0} \lambda^{N}+d_{1} \lambda^{N-1}+\ldots+d_{N-1} \lambda+d_{N}\right)=0 \\
& \Rightarrow \sum_{k=0}^{N} d_{k} \lambda^{N-k}=0 \quad \begin{array}{l}
\text { Characteristic polynomial } \\
\text { of system - depends only on }\left\{d_{k}\right\}
\end{array}
\end{aligned}
$$

Complementary Solution

- $\sum_{k}^{N} d_{k} \lambda^{N-k}=0$ factors into roots λ_{i}, i.e.

$$
k=0
$$

$$
\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots=0
$$

- Each/any λ_{i} satisfies eqn.
- Thus, complementary solution:

$$
y_{c}[n]=\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\alpha_{3} \lambda_{3}^{n}+\ldots
$$

Any linear combination will work
$\rightarrow \alpha_{i} s$ are free to match initial conditions

Complementary Solution

- Repeated roots in chr. poly:

$$
\begin{aligned}
& \left(\lambda-\lambda_{1}\right)^{L}\left(\lambda-\lambda_{2}\right) \ldots=0 \\
& \Rightarrow y_{c}[n]=\alpha_{1} \lambda_{1}^{n}+\alpha_{2} n \lambda_{1}^{n}+\alpha_{3} n^{2} \lambda_{1}^{n} \\
& \\
& \quad+\ldots+\alpha_{L} n^{L-1} \lambda_{1}^{n}+\ldots
\end{aligned}
$$

- Complex $\lambda_{i} s \rightarrow$ sinusoidal $y_{c}[n]=\alpha_{i} \lambda_{i}{ }^{n}$

Particular Solution

- Recall: Total solution $y[n]=y_{c}[n]+y_{p}[n]$
- Particular solution reflects input
- 'Modes' usually decay away for large n leaving just $y_{p}[n]$
- Assume 'form' of $x[n]$, scaled by β : egg. $x[n]$ constant $\rightarrow y_{p}[n]=\beta$

$$
\begin{array}{r}
x[n]=\lambda_{0}{ }^{n} \rightarrow y_{p}[n]=\beta \cdot \lambda_{0}{ }^{n}\left(\lambda_{0} \notin \lambda_{i}\right) \\
\text { or }=\beta n^{L} \lambda_{0}{ }^{n}\left(\lambda_{0} \in \lambda_{i}\right)
\end{array}
$$

LCCDE example $y[n]+y[n-1]-6 y[n-2]=x[n]$
 $$
x[n] \multimap y \longrightarrow y[n]
$$

- Need input: $x[n]=8 \mu[n]$
- Need initial conditions:

$$
y[-1]=1, y[-2]=-1
$$

LCCDE example

- Complementary solution:

$$
\begin{aligned}
& y[n]+y[n-1]-6 y[n-2]=0 ; \quad y[n]=\lambda^{n} \\
& \Rightarrow \lambda^{n-2}\left(\lambda^{2}+\lambda-6\right)=0 \\
& \Rightarrow(\lambda+3)(\lambda-2)=0 \rightarrow \text { roots } \lambda_{1}=-3, \lambda_{2}=2 \\
& \Rightarrow y_{c}[n]=\alpha_{1}(-3)^{n}+\alpha_{2}(2)^{n}
\end{aligned}
$$

- α_{1}, α_{2} are unknown at this point

LCCDE example

- Particular solution:
- Input $x[n]$ is constant $=8 \mu[n]$
assume $y_{p}[n]=\beta$, substitute in:

$$
\begin{aligned}
& y[n]+y[n-1]-6 y[n-2]=x[n] \quad\left(\text { 'large' }^{\prime}\right) \\
& \Rightarrow \beta+\beta-6 \beta=8 \mu[n] \\
& \Rightarrow-4 \beta=8 \Rightarrow \beta=-2
\end{aligned}
$$

LCCDE example

- Total solution $y[n]=y_{c}[n]+y_{p}[n]$

$$
=\alpha_{1}(-3)^{n}+\alpha_{2}(2)^{n}+\beta
$$

- Solve for unknown α_{i} s by substituting initial conditions into DE at $n=0,1, \ldots$ $y[n]+y[n-1]-6 y[n-2]=x[n]$

$$
\begin{aligned}
& \text { - } n=0 \quad y[0]+y[-1]-6 y[-2]=x[0] \\
& \Rightarrow \alpha_{1}+\alpha_{2}+\beta+1+6=8 \\
& \Rightarrow \alpha_{1}+\alpha_{2}=3
\end{aligned}
$$

LCCDE example

- $n=1 \quad y[1]+y[0]-6 y[-1]=x[1]$
$\Rightarrow \alpha_{1}(-3)+\alpha_{2}(2)+\beta+\alpha_{1}+\alpha_{2}+\beta-6=8$
$\Rightarrow-2 \alpha_{1}+3 \alpha_{2}=18$
- solve: $\alpha_{1}=-1.8, \alpha_{2}=4.8$
- Hence, system output:

$$
y[n]=-1.8(-3)^{n}+4.8(2)^{n}-2 \quad n \geq 0
$$

- Don't find α_{i} s by solving with ICs at

$$
\begin{array}{ll}
\left.n=-1,-2 \quad \begin{array}{ll}
\text { (IS may not reflect natural modes; } \\
\text { Mitra3 ex 2.37-8 } \\
\hline
\end{array} 4.22-3\right) \text { is wrong) }
\end{array}
$$

LCCDE solving summary

- Difference Equation (DE): $A y[n]+B y[n-1]+\ldots=C x[n]+D x[n-1]+\ldots$ Initial Conditions (ICs): $y[-1]=\ldots$
- DE RHS $=0$ with $y[n]=\lambda^{n} \rightarrow$ roots $\left\{\lambda_{i}\right\}$ gives complementary soln $y_{c}[n]=\sum \alpha_{i} \lambda_{i}{ }^{n}$
- Particular soln: $y_{p}[n] \sim x[n]$ solve for $\beta \lambda_{0}{ }^{n}$ "at large n "
- $\alpha_{i} s$ by substituting DE at $n=0,1, \ldots$ ICs for $y[-1], y[-2] ; y_{t}=y_{c}+y_{p}$ for $y[0], y[1]$

LCCDEs: zero input/zero state

- Alternative approach to solving LCCDEs is to solve two subproblems:
- $y_{z i}[n]$, response with zero input (just ICs)
- $y_{z s}[n]$, response with zero state (just $x[n]$)
- Because of linearity, $y[n]=y_{z i}[n]+y_{z s}[n]$
- Both subproblems are 'fully realized'
- But, have to solve for $\alpha_{i} s$ twice (then sum them)

Impulse response of LCCDEs

- Impulse response: $\delta[n] \rightarrow$ LCCDE $\rightarrow h[n]$
i.e. solve with $x[n]=\delta[n] \rightarrow y[n]=h[n]$ (zero ICs)
- With $x[n]=\delta[n]$, 'form' of $y_{p}[n]=\beta \delta[n]$
\rightarrow solve $y[n]$ for $n=0,1,2 \ldots$ to find $\alpha_{i} \mathbf{s}$

LCCDE IR example

- e.g. $y[n]+y[n-1]-6 y[n-2]=x[n]$
(from before); $x[n]=\delta[n] ; y[n]=0$ for $n<0$
- $y_{c}[n]=\alpha_{1}(-3)^{n}+\alpha_{2}(2)^{n} \quad y_{p}[n]=\beta \delta[n]$
- $n=0: y[0]+y[-1]-6 y[-2]=x[0]^{11}$
$\Rightarrow \alpha_{1}+\alpha_{2}+\beta=1$
- $n=1: \alpha_{1}(-3)+\alpha_{2}(2)+1=0$
- $n=2: \alpha_{1}(9)+\alpha_{2}(4)-1-6=0$

$$
\Rightarrow \alpha_{1}=0.6, \alpha_{2}=0.4, \beta=0
$$

- thus $h[n]=0.6(-3)^{n}+0.4(2)^{n} \quad \begin{aligned} & n \geq 0 \\ & \text { Infinite length }\end{aligned}$

System property: Stability

- Certain systems can be unstable e.g.

Output grows without limit in some conditions

Stability

- Several definitions for stability; we use Bounded-input, bounded-output (BIBO) stable
- For every bounded input $|x[n]|<B_{x} \quad \forall n$ output is also subject to a finite bound,

$$
\mid y[n]<B_{y} \quad \forall n
$$

Stability example

- MA filter: $y[n]=\frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$

$$
\begin{aligned}
y[n] & =\left|\frac{1}{M} \sum_{k=0}^{M-1} x[n-k]\right| \\
& \left.\leq \frac{1}{M} \sum_{k=0}^{M-1} \right\rvert\, x[n-k] \\
& \leq \frac{1}{M} M \cdot B_{x} \leq B_{y} \rightarrow \text { BIBO Stable }
\end{aligned}
$$

Stability \& LCCDEs

- LCCDE output is of form:

$$
y[n]=\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\ldots+\beta \lambda_{0}^{n}+\ldots
$$

- α s and β s depend on input \& ICs, but to be bounded for any input we need $|\lambda|<1$

4. Correlation

- Correlation ~ identifies similarity

 between sequences:Cross
correlation $r_{x y}[\ell]=\sum^{\infty} x[n] y[n-\ell]$ of x against y "lag"

$$
n=-\infty
$$

- Note: $r_{y x}[\ell]=\sum_{n=-\infty}^{\infty} y[n] x[n-\ell]$
call $m=n-\ell$

$$
=\sum_{m=-\infty}^{\infty} y[m+\ell] x[m]=r_{x y}[-\ell]
$$

Correlation and convolution

- Correlation: $\quad r_{x y}[n]=\sum_{k=-\infty}^{\infty} x[k] y[k-n]$
- Convolution: $x[n] \circledast y[n]=\sum_{k=-\infty}^{\infty} x[k] y[n-k]$
- Hence: $r_{x y}[n]=x[n] \circledast y[-n]$

Correlation may be calculated by convolving with time-reversed sequence

Autocorrelation

- Autocorrelation (AC) is correlation of signal with itself:

$$
\begin{aligned}
& \quad r_{x x}[\ell]=\sum_{n=-\infty}^{\infty} x[n] x[n-\ell]=r_{x x}[-\ell] \\
& \text { - Note: } r_{x x}[0]=\sum_{n=-\infty}^{\infty} x^{2}[n]=\varepsilon_{x} \text { Energy of } \\
& \text { sequence } x[n]
\end{aligned}
$$

Correlation maxima

- Note: $\quad r_{x x}[\ell] \leq r_{x x}[0] \Rightarrow \frac{r_{x x}[\ell]}{r_{x x}[0]} \leq 1$
- Similarly: $r_{x y}[\ell] \leq \sqrt{\varepsilon_{x} \varepsilon_{y}} \Rightarrow \frac{r_{x y}[\ell]}{\sqrt{r_{x x}[0] r_{y y}[0]}} \leq 1$
- From geometry,

$$
\langle\mathbf{x y}\rangle=\sum_{i} x_{i} y_{i}=|\mathbf{x} \| \mathbf{y}| \cos \theta^{\quad \mathrm{x} \text { and } \mathrm{y}}
$$

- when $\mathbf{x} / / \mathbf{y}, \cos \theta=1$, else $\cos \theta<1$

AC of a periodic sequence

- Sequence of period $N: \tilde{x}[n]=\tilde{x}[n+N]$
- Calculate AC over a finite window:

$$
\begin{aligned}
r_{\tilde{x} \tilde{x}}[\ell] & =\frac{1}{2 M+1} \sum_{n=-M}^{M} \tilde{x}[n] \tilde{x}[n-\ell] \\
& =\frac{1}{N} \sum_{n=0}^{N-1} \tilde{x}[n] \tilde{x}[n-\ell] \quad \text { if } M \gg N
\end{aligned}
$$

AC of a periodic sequence

$$
r_{\tilde{x} \tilde{x}}[0]=\frac{1}{N} \sum_{n=0}^{N-1} \tilde{x}^{2}[n]=P_{\tilde{x}}<\begin{aligned}
& \text { Average energy per } \\
& \text { sample or Power of } x
\end{aligned}
$$

$$
r_{\tilde{x} \tilde{x}}[\ell+N]=\frac{1}{N} \sum_{n=0}^{N-1} \tilde{x}[n] \tilde{x}[n-\ell-N]=r_{\tilde{x} \tilde{x}}[\ell]
$$

- i.e AC of periodic sequence is periodic

What correlations look like

- AC of any $x[n]$

- AC of periodic

- Cross correlation

What correlation looks like

Autocorrelation of generic signal

Autocorrelation of near-periodic signal

Cross-correlation

Dan Ellis
2013-09-11

Correlation in action

- Close mic vs. video camera mic

Short-time cross-correlation

