ELEN E4810: Digital Signal Processing Topic 4: The Z Transform

1. The Z Transform
2. Inverse Z Transform

1. The Z Transform

- Powerful tool for analyzing \& designing DT systems
- Generalization of the DTFT:

$$
G(z)=Z\{g[n]\}=\sum_{n=-\infty}^{\infty} g[n] z^{-n} \quad z \text { Transform }
$$

- z is complex...
- $z=e^{j \omega} \rightarrow$ DTFT
- $z=r \cdot e^{j \omega} \rightarrow \sum_{n} g[n] r^{-n} e^{-j \omega n}$

DTFT of $r^{-n \cdot} g[n]$

Region of Convergence (ROC)

- Critical question:

Does summation $G(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$ converge (to a finite value)?

- In general, depends on the value of z
- \rightarrow Region of Convergence: Portion of complex z-plane for which a particular $G(z)$ will converge

ROC Example

- e.g. $x[n]=\lambda^{n} \mu[n]$

$$
\Rightarrow X(z)=\sum_{n=0}^{\infty} \lambda^{n} z^{-n}=\frac{1}{\left.1-\lambda z^{-1} \quad \begin{array}{c}
\text { "closed form" } \\
\text { when } \\
\left|\lambda z^{-1}\right|<1
\end{array}\right) .<1}
$$

- \sum converges only for $\left|\lambda z^{-1}\right|<1$ i.e. ROC is $|z|>|\lambda|$
(previous slide)
- $|\lambda|<1$ (e.g. 0.8) - finite energy sequence
- $|\lambda|>1$ (e.g. 1.2) - divergent sequence, infinite energy, DTFT does not exist but still has ZT when $|z|>1.2$ (in ROC)

About ROCs

- ROCs always defined in terms of $|z|$ \rightarrow circular regions on z-plane (inside circles/outside circles/rings)
- If ROC includes unit circle ($|z|=1$), $\rightarrow g[n]$ has a DTFT (finite energy sequence)

Another ROC example

- Anticausal (left-sided) sequence:

$$
\begin{aligned}
& x[n]=-\lambda^{n} \mu[-n-1] \\
& X(z)= \sum_{n}\left(-\lambda^{n} \mu[-n-1]\right) z^{-n} \\
&=-\sum_{n=-\infty}^{-1} \lambda^{n} z^{-n}=-\sum_{m=1}^{\infty} \lambda^{-m} z^{m} \\
&=-\lambda^{-1} z \frac{1}{1-\lambda^{-1} z}=\frac{1}{1-\lambda z^{-1}}
\end{aligned}
$$

- Same ZT as $\lambda^{n} \mu[n]$, different sequence?

ROC is necessary!

- A closed-form expression for ZT must specify the ROC:

z-plane several sequences with different ROCs

Rational Z-transforms

- $G(z)$ expression can be any function; rational polynomials are important class:
$G(z)=\frac{P(z)}{D(z)}=\frac{p_{0}+p_{1} z^{-1}+\ldots+p_{M-1} z^{-(M-1)}+p_{M} z^{-M}}{d_{0}+d_{1} z^{-1}+\ldots+d_{N-1} z^{-(N-1)}+d_{N} z^{-N}}$
- By convention, expressed in terms of z^{-1} - matches ZT definition
- (Reminiscent of LCCDE expression...)

Factored rational ZTs

- Numerator, denominator can be factored:
$G(z)=\frac{p_{0} \Pi_{\ell=1}^{M}\left(1-\zeta_{\ell} z^{-1}\right)}{d_{0} \Pi_{\ell=1}^{N}\left(1-\lambda_{\ell} z^{-1}\right)}=\frac{z^{M} p_{0} \prod_{\ell=1}^{M}\left(z-\zeta_{\ell}\right)}{z^{N} d_{0} \prod_{\ell=1}^{N}\left(z-\lambda_{\ell}\right)}$
- $\left\{\zeta_{\ell}\right\}$ are roots of numerator $\rightarrow G(z)=0 \rightarrow\left\{\zeta_{\}}\right\}$are the zeros of $\boldsymbol{G}(z)$
- $\left\{\lambda_{\ell}\right\}$ are roots of denominator
$\rightarrow G(z)=\infty \rightarrow\left\{\lambda_{\ell}\right\}$ are the poles of $\boldsymbol{G}(z)$

Pole-zero diagram

- Can plot poles and zeros on complex z-plane:

- (Value of) expression determined by roots

Z-plane surface

- G(z): cpx function of a cpx variable
- Can calculate value over entire z-plane

ROCs and sidedness

- Two sequences have: $G(z)=\frac{1}{1-\lambda z^{-1}}$

$$
\begin{aligned}
-\operatorname{ROC}|z|>|\lambda| \rightarrow & g[n]=\lambda^{n} \mu[n] \\
& \text { RIGHT-SIDED }
\end{aligned}
$$

- Each ZT pole \rightarrow region in ROC outside or inside $I \lambda \mid$ for R / L sided term in $g[n]$
- Overall ROC is intersection of each term's

ZT is Linear

- $G(z)=Z\{g[n]\}=\sum_{\forall n} g[n] z^{-n} \quad z$ Transform

$$
\begin{aligned}
y[n] & =\alpha g[n]+\beta h[n] \\
\Rightarrow Y(z) & =\Sigma(\alpha g[n]+\beta h[n]) z^{-n} \quad \quad \text { Linear } v \\
& =\Sigma \alpha g[n] z^{-n}+\Sigma \beta h[n] z^{-n}=\alpha G(z)+\beta H(z)
\end{aligned}
$$

- Thus, if $y[n]=\alpha_{1} \lambda_{1}^{n} \mu[n]+\alpha_{2} \lambda_{2}^{n} \mu[n]$
then

$$
Y(z)=\frac{\alpha_{1}}{1-\lambda_{1} z^{-1}}+\frac{\alpha_{2}}{1-\lambda_{2} z^{-1}}
$$

ROC intersections

- Consider $G(z)=\frac{1}{1-\lambda_{1} z^{-1}}+\frac{1}{1-\lambda_{2} z^{-1}}$
with $\left|\lambda_{1}\right|<1,\left|\lambda_{2}\right|>1 \ldots$ no ROC specified
- Two possible sequences for λ_{1} term...
$-\lambda_{1}{ }^{n} \mu[-n-1]$
or $\lambda_{1}{ }^{n} \mu[n]$

- Sinnilarly for λ_{2} •••
$-\lambda_{2}{ }^{n} \mu[-n-1]$

$\rightarrow 4$ possible $g[n]$ seq's and ROCs ...
Dan Ellis

ROC intersections: Case 1

$$
G(z)=\frac{1}{1-\lambda_{1} z^{-1}}+\frac{1}{1-\lambda_{2} z^{-1}} \quad g[n]=\lambda_{1}{ }^{n} \mu[n]+\lambda_{2}{ }^{n} \mu[n]
$$

ROC: $|z|>\left|\lambda_{1}\right|$ and $|z|>\left|\lambda_{2}\right|$

ROC intersections: Case 2

$$
\begin{array}{ll}
G(z)=\frac{1}{1-\lambda_{1} z^{-1}}+\frac{1}{1-\lambda_{2} z^{-1}} & g[n]=-\lambda_{1}{ }^{n} \mu[-n-1]-\lambda_{2}{ }^{n} \mu[-n-1] \\
& \text { both left-sided: }\left\{\begin{array}{l}
\text { g! } \\
!8 \\
0-\infty-\infty-\infty
\end{array}\right.
\end{array}
$$

ROC: $|z|<\left|\lambda_{1}\right|$ and $|z|<\left|\lambda_{2}\right|$

ROC intersections: Case 3

$$
\begin{array}{ll}
G(z)=\frac{1}{1-\lambda_{1} z^{-1}}+\frac{1}{1-\lambda_{2} z^{-1}} & g[n]=\lambda_{1}{ }^{n} \mu_{\mu}[n]-\lambda_{2}{ }^{n} \mu[-n-1] \\
& \text { two-sided: }
\end{array}
$$

ROC: $|z|>\left|\lambda_{1}\right|$ and $|z|<\left|\lambda_{2}\right|$

ROC intersections: Case 4

$$
G(z)=\frac{1}{1-\hat{\lambda}_{1} z^{-i}} \cdot \frac{i}{1-\lambda_{2} z^{-1}}
$$

$$
g[n]=-\lambda_{1}{ }^{n} \mu[-n-1]+\lambda_{2}{ }^{n} \mu[n]
$$

two-sided:

ROC: $|z|<\left|\lambda_{1}\right|$ and $|z|>\left|\lambda_{2}\right|$?

ROC intersections

- Note: Two-sided exponential

$$
\begin{aligned}
g[n] & =\alpha^{n} \quad-\infty<n<\infty \\
& =\underbrace{\alpha^{n} \mu[n]}_{\substack{R O C \\
\alpha^{n}|>|\alpha|}}+\underbrace{\alpha^{n} \mu[-n-1]}_{\substack{R O C \\
|z|<|\alpha|}}
\end{aligned}
$$

- No overlap in ROCs
\rightarrow ZT does not exist (does not converge for any z)

ZT of LCCDEs

- LCCDEs have solutions of form:

$$
y_{c}[n]=\alpha_{i} \lambda_{i}^{n} \mu[n]+\ldots
$$

- Hence ZT $\quad Y_{c}(z)=\frac{\alpha_{i}}{1-\lambda_{i} z^{-1}}+\cdots$
- Each term $\lambda_{i}{ }^{n}$ in $g[n]$ corresponds to a pole λ_{i} of $G(z) \quad$... and vice versa
- LCCDE sol'ns are right-sided \Rightarrow ROCs are $|z|>\left|\lambda_{i}\right|$

Z-plane and DTFT

- Slice between surface and unit cylinder $\left(|z|=1 \Rightarrow z=e^{j \omega}\right)$ is $G\left(e^{j \omega}\right)$, the DTFT

${ }_{n} \quad\left|G\left(e^{j \omega}\right)\right|$

Some common Z transforms

$g[n]$	$G(z)$	$R O C$
$\delta[n]$	1	$\forall z$
$\mu[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$\alpha^{n} \mu[n]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|>\|\alpha\|$

$r^{n} \cos \left(\omega_{0} n\right) \mu[n] \frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}} \quad|z|>r$ $r^{n} e^{j \omega_{0} n}+r^{n} e^{-j \omega_{0} n}$
$r^{n} \sin \left(\omega_{0} n\right) \mu[n] \quad \frac{r \sin \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}} \quad|z|>r$

$$
\text { poles at } z=r e^{ \pm j \omega_{0}}\left(\bigcup_{x}^{x}\right) \text {, }
$$

"conjugate pole

Dan Ellis

Z Transform properties

$$
g[n] \leftrightarrow G(z) \quad W / R O C R g
$$

Conjugation $g^{*}[n] \quad G^{*}\left(z^{*}\right) \quad \mathcal{R g}$
Time reversal $g[-n]$
$G(1 / z)$
$1 / \mathcal{R} g$
Time shift

$$
g\left[n-n_{0}\right]
$$

$z^{-n} G(z)$
$\mathcal{R g}(0 / \infty ?)$
Exp. scaling
$\alpha^{n} g[n]$
$G(z / \alpha)$
$|\alpha| \mathcal{R} g$
Diff. wry z

$$
n g[n] \quad-z \frac{d G(z)}{d z}
$$

$\mathcal{R g}(0 / \infty ?)$

Z Transform properties

$$
g[n] \quad G(z)
$$

Convolution $g[n] \circledast h[n] \quad G(z) H(z)$

Modulation $g[n] h[n] \frac{1}{2 \pi j} \oint_{C} G(v) H(z / v) v^{-1} d v$ at least RgRh
Parseval: $\sum_{n=-\infty}^{\infty} g[n] h^{*}[n]=\frac{1}{2 \pi j} \oint_{C} G(v) H^{*}(1 / v) v^{-1} d v$

ZT Example

- $x[n]=r^{n} \cos \left(\omega_{0} n\right) \mu[n]$; can express as

$$
\frac{1}{2} \mu[n]\left(\left(r e^{j \omega_{0}}\right)^{n}+\left(r e^{-j \omega_{0}}\right)^{n}\right)=v[n]+v^{*}[n]
$$

$$
\begin{array}{r}
v[n]=1 /{ }_{2} \mu[n] \alpha^{n} ; \alpha=r e^{j \omega_{0}} \\
\rightarrow V(z)=1 /\left(2\left(1-r e j \omega_{0} z^{-1}\right)\right) \\
* / *):|z|>r
\end{array}
$$

- Hence, $X(z)=V(z)+V^{*}\left(z^{*}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{1}{1-r e^{j \omega_{0}} z^{-1}}+\frac{1}{1-r e^{-j \omega_{0}} z^{-1}}\right) \\
& =\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}
\end{aligned}
$$

Another ZT example

$$
y[n]=(n+1) \alpha^{n} \mu[n]
$$

$$
=x[n]+n x[n] \quad \text { where } x[n]=\alpha^{n} \mu[n]
$$

$$
X(z)=\frac{1}{1-\alpha z^{-1}}
$$

$$
\leftrightarrow-z \frac{d X(z)}{d z}
$$

$$
(|z|>|\alpha|)
$$

$$
=-z \frac{d}{d z}\left(\frac{1}{1-\alpha z^{-1}}\right)=\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}
$$

$$
\underset{\operatorname{ROC}|z|>|\alpha|}{\Rightarrow} Y(z)=\frac{1}{1-\alpha z^{-1}}+\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}=\frac{1}{\left(1-\alpha z^{-1}\right)^{2}} \quad \begin{aligned}
& \text { repeated } \\
& \text { root }-\mid Z T
\end{aligned}
$$

2. Inverse Z Transform (IZT)

- Forward z transform was defined as:

$$
G(z)=\mathcal{Z}\{g[n]\}=\sum_{n=-\infty}^{\infty} g[n] z^{-n}
$$

- 3 approaches to inverting $G(z)$ to $g[n]$:
- Generalization of inverse DTFT
- Power series in z (long division)
- Manipulate into recognizable pieces (partial fractions)

IZT \#1: Generalize IDTFT

- If $z=r e^{j \omega}$ then

$$
G(z)=G\left(r e^{j \omega}\right)=\sum g[n] r^{-n} e^{-j \omega n}=\operatorname{DTFT}\left\{g[n] r^{-n}\right\}
$$

- SO $g[n] r^{-n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(r e^{j \omega}\right) e^{j \omega n} d \omega$ IDTFT
$z=r e e^{j \omega} \Rightarrow d \omega=d z / j z$
$=\frac{1}{2 \pi j} \oint C G(z) z^{n-1} r^{-n} d z$
Counterclockwise closed contour at $|z|=r$ within ROC
- Any closed contour around origin will do - Cauchy: $g[n]=\Sigma\left[\right.$ residues of $\left.G(z) z^{n-1}\right]$

IZT \#2: Long division

- Since $G(z)=\sum_{n=-\infty}^{\infty} g[n] z^{-n}$ if we could express $G(z)$ as a simple power series $G(z)=a+b z^{-1}+c z^{-2} \ldots$ then can just read off $g[n]=\{a, b, c, \ldots\}$
- Typically $G(z)$ is right-sided (causal) and a rational polynomial $G(z)=\frac{P(z)}{D(z)}$
- Can expand as power series through long division of polynomials

IZT \#2: Long division

- Procedure:
- Express numerator, denominator in descending powers of z (for a causal fn)
- Find constant to cancel highest term \rightarrow first term in result
- Subtract \& repeat \rightarrow lower terms in result
- Just like long division for base-10 numbers

IZT \#2: Long division

$$
\begin{aligned}
& \text { - e.g. } H(z)= \frac{1+2 z^{-1}}{1+0.4 z^{-1}-0.12 z^{-2}} \\
& 1+0.4 z^{-1}-0.12 z^{-2} \begin{aligned}
1+1.6 z^{-1}-0.52 z^{-2}+0.4 z^{-3} \ldots \\
1+2 z^{-1}
\end{aligned} \\
& \frac{1+0.4 z^{-1}-0.12 z^{-2}}{1.6 z^{-1}+0.12 z^{-2}} \\
& \frac{1.6 z^{-1}+0.64 z^{-2}-0.192 z^{-3}}{-0.52 z^{-2}+0.192 z^{-3}}
\end{aligned}
$$

IZT\#3: Partial Fractions

- Basic idea: Rearrange $G(z)$ as sum of terms recognized as simple UTs
- especially $\frac{1}{1-\alpha z^{-1}} \leftrightarrow \alpha^{n} \mu[n]$ or sin/cos forms
- ie. given products

$$
\begin{aligned}
& \frac{P(z)}{\left(1-\alpha z^{-1}\right)\left(1-\beta z^{-1}\right) \cdots} \\
& \frac{A}{1-\alpha z^{-1}}+\frac{B}{1-\beta z^{-1}}+\cdots
\end{aligned}
$$

rearrange to sums

Partial Fractions

- Note that:
$\frac{A}{1-\alpha z^{-1}}+\frac{B}{1-\beta z^{-1}}+\frac{C}{1-\gamma z^{-1}}=\quad \begin{array}{r}\text { order } 2 \text { polynom } \\ u+v z^{-1}+w z^{2}\end{array}$
$A\left(1-\beta z^{-1}\right)\left(1-\gamma z^{-1}\right)+B\left(1-\alpha z^{-1}\right)\left(1-\gamma z^{-1}\right)+C\left(1-\alpha z^{-1}\right)\left(1-\beta z^{-1}\right)$
order 3 polynomial $\rightarrow\left(1-\alpha z^{-1}\right)\left(1-\beta z^{-1}\right)\left(1-\gamma z^{-1}\right)$
- Can do the reverse i.e.
go from $\frac{P(z)}{\Pi_{\ell=1}^{N}\left(1-\lambda_{\ell} z^{-1}\right)}$ to $\sum_{\ell=1}^{N} \frac{\rho_{\ell}}{1-\lambda_{\ell} z^{-1}}$
- if order of $P(z)$ is less than $D(z) \begin{aligned} & \text { else cancel } \\ & w / \text { /long div }\end{aligned}$

Partial Fractions

- Procedure:

$$
F(z)=\frac{P(z)}{\prod_{\ell=1}^{N}\left(1-\lambda_{\ell} z^{-1}\right)}=\sum_{\ell=1}^{N} \frac{\rho_{\ell}}{1-\lambda_{\ell} z^{-1}}
$$

- where $\rho_{\ell}=\left(1-\lambda_{\ell} z^{-1}\right) F(z)_{z=\lambda_{\ell}}$
i.e. evaluate $F(z)$ at the pole (cancels term in but multiplied by the pole term ${ }^{\text {denominator) }}$ \rightarrow dominates $=$ residue of pole

Partial Fractions Example

- Given $H(z)=\frac{1+2 z^{-1}}{1+0.4 z^{-1}-0.12 z^{-2}}$ (again)
factor:

$$
=\frac{1+2 z^{-1}}{\left(1+0.6 z^{-1}\right)\left(1-0.2 z^{-1}\right)}=\frac{\rho_{1}}{1+0.6 z^{-1}}+\frac{\rho_{2}}{1-0.2 z^{-1}}
$$

- where:

$$
\begin{aligned}
& \rho_{1}=\left.\left(1+0.6 z^{-1}\right) H(z)\right|_{z=-0.6}=\left.\frac{1+2 z^{-1}}{1-0.2 z^{-1}}\right|_{z=-0.6}=-1.75 \\
& \rho_{2}=\left.\frac{1+2 z^{-1}}{1+0.6 z^{-1}}\right|_{z=0.2}=2.75
\end{aligned}
$$

Partial Fractions Example

- Hence $H(z)=\frac{-1.75}{1+0.6 z^{-1}}+\frac{2.75}{1-0.2 z^{-1}}$
- If we know ROC $|z|>|\alpha|$ i.e. $h[n]$ causal:

$$
\begin{aligned}
& \Rightarrow h[n]=(-1.75)(-0.6)^{n} \mu[n]+(2.75)(0.2)^{n} \mu[n] \\
&=-1.75\left\{\begin{array}{lllll}
1 & -0.6 & 0.36 & -0.216 & \ldots .
\end{array}\right\} \\
&+2.75\left\{\begin{array}{lllll}
1 & 0.2 & 0.04 & 0.008 & \ldots
\end{array}\right\} \\
&=\left\{\begin{array}{lllll}
1 & 1.6 & -0.52 & 0.4 & \ldots .
\end{array}\right\} \quad \text { same as } \\
& \text { long division! }
\end{aligned}
$$

