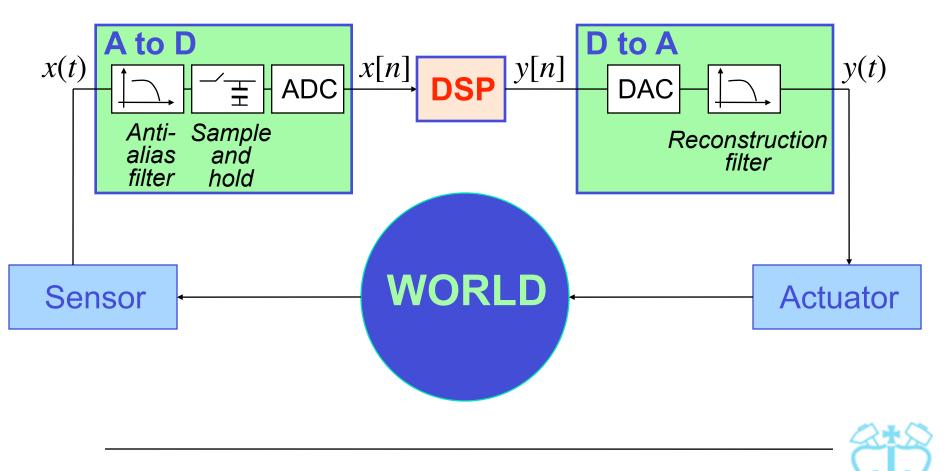
ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals

- 1. Sampling and Reconstruction
- 2. Quantization

1. Sampling & Reconstruction DSP must interact with an analog world:



Sampling: Frequency Domain

■ Sampling: CT signal → DT signal by recording values at 'sampling instants':

Discrete
$$g[n] = g_a(nT)$$
 Continuous
Sampling period T
 \rightarrow samp.freq. $\Omega_{samp} = 2\pi/T$ rad/sec

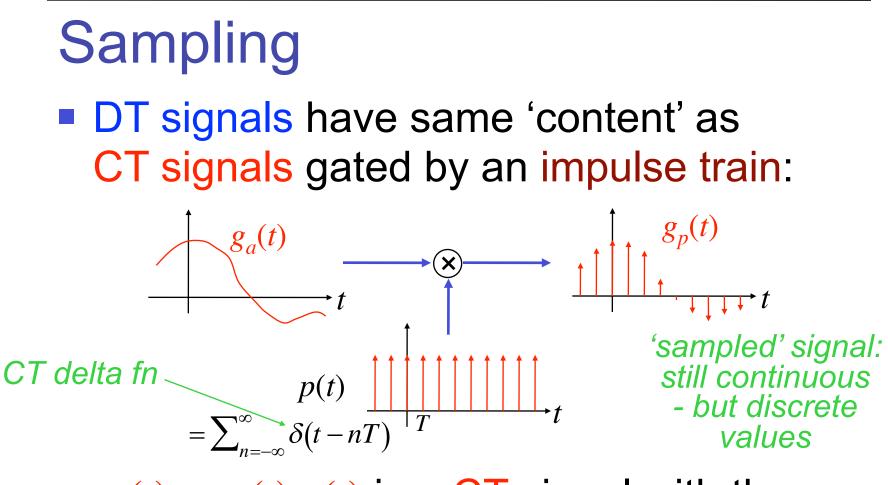
- What is the relationship of the spectra?
- i.e. relate $G_a(j\Omega) = \int_{-\infty}^{\infty} g_a(t) e^{-j\Omega t} dt$ CTFT

and
$$G(e^{j\omega}) = \sum_{-\infty}^{\infty} g[n]e^{-j\omega n}$$

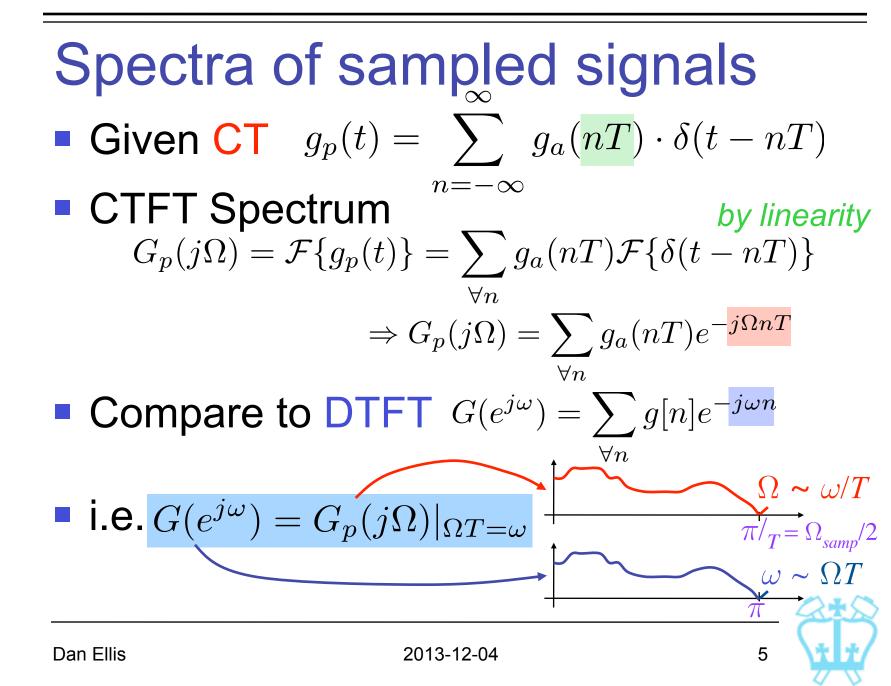
 ω in rad/**sample**

3

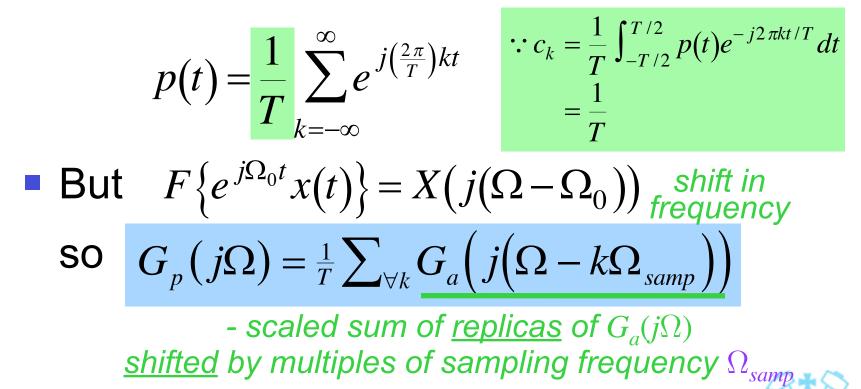
DTFT



g_p(t) = g_a(t)·p(t) is a CT signal with the same information as DT sequence g[n]



Spectra of sampled signals Also, note that $p(t) = \sum_{\forall n} \delta(t - nT)$ is periodic, thus has Fourier Series:

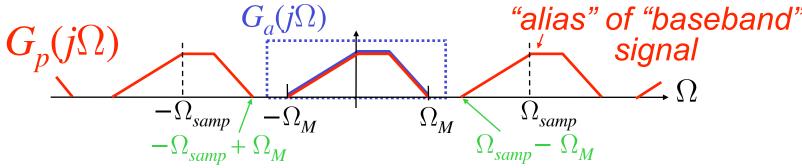


Dan Ellis

2013-12-04

Avoiding aliasing

Sampled analog signal has spectrum:



- $g_a(t)$ is bandlimited to $\pm \Omega_M$ rad/sec
- When sampling frequency Ω_{samp} is large...
- → no overlap between aliases
- → can recover $g_a(t)$ from $g_p(t)$ by low-pass filtering

Aliasing & The Nyquist Limit

• If bandlimit Ω_M is too large, or sampling rate Ω_{samp} is too small, aliases will overlap:

 $\Omega_M \ \Omega_{samp}$

2

- $-\Omega_{samp} \Omega_M$ Spectral effect cannot be filtered out
 - \rightarrow cannot recover $g_a(t)$ Sampling theorum
- Avoid by: $\Omega_{samp} \Omega_M \ge \Omega_M \Longrightarrow \Omega_{samp} \ge 2\Omega_M$
- i.e. bandlimit $g_a(t)$ at $\leq \Omega_{samp}$

 $G_{n}(j \leq$

Nyquist

frequency

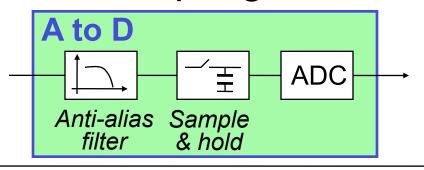
Anti-Alias Filter

- To understand speech, need ~ 3.4 kHz
 - \rightarrow 8 kHz sampling rate (i.e. up to 4 kHz)
- Limit of hearing ~20 kHz

'space' for filter rolloff

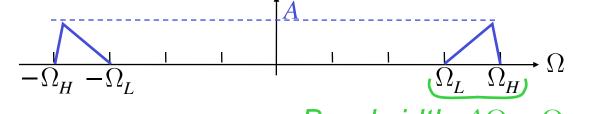
→ 44.1 kHz sampling rate for CDs

Must remove energy above Nyquist with LPF before sampling: "Anti-alias" filter

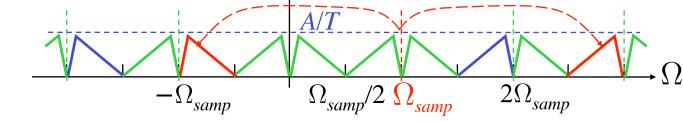


Sampling Bandpass Signals

Signal is not always in 'baseband' around Ω = 0 ... may be at higher Ω:



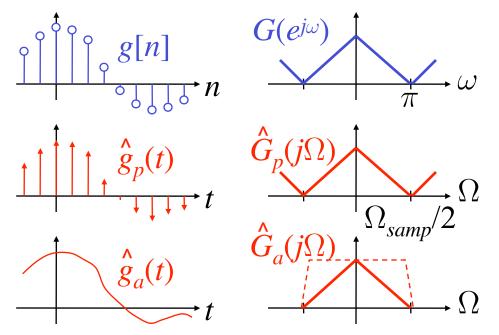
Bandwidth $\Delta \Omega = \Omega_H - \Omega_L$ If aliases from sampling don't overlap, no aliasing distortion; can still recover:



■ Basic limit: $\Omega_{samp}/2 \ge bandwidth \Delta \Omega$

Reconstruction

- To turn g[n]back to $g_a^{(t)}$:
- make a continuous impulse train $\hat{g}_p(t)$
- lowpass filter to extract baseband $\rightarrow \hat{g}_a(t)$



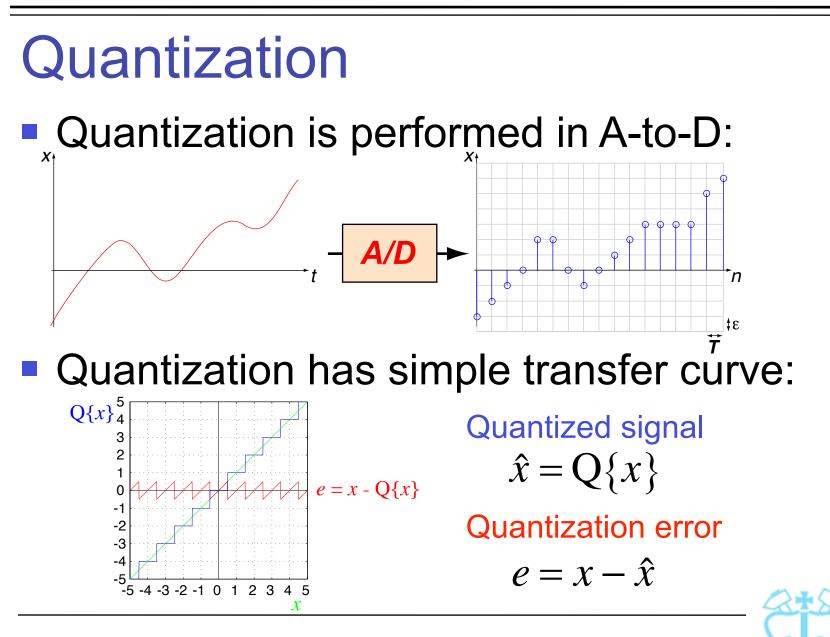
- Ideal reconstruction filter is brickwall
 - i.e. sinc not realizable (especially analog!)
 - use something with finite transition band

2. Quantization

- Course so far has been about discrete-time i.e. quantization of time
- Computer representation of signals also quantizes level (e.g. 16 bit integer word)
- Level quantization introduces an error between ideal & actual signal → noise
- Resolution (# bits) affects data size

 quantization critical for compression

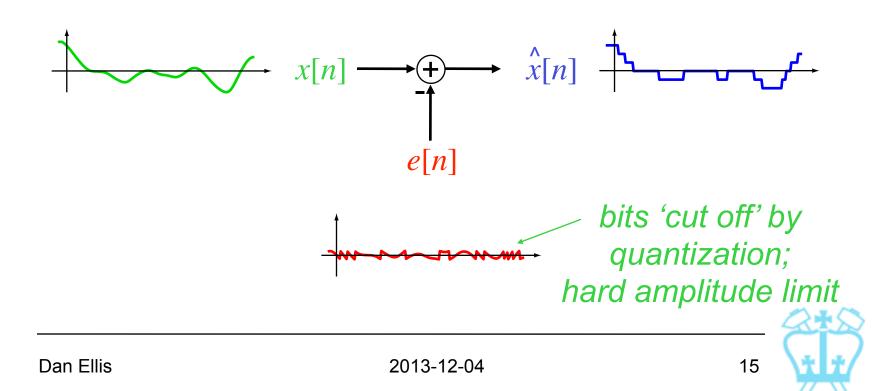
■ smallest data ↔ coarsest quantization



2013-12-04

Quantization noise

Can usually model quantization as additive white noise: *i.e. uncorrelated* with self or signal x



Quantization SNR

Common measure of noise is Signal-to-Noise ratio (SNR) in dB:

$$SNR = 10 \cdot \log_{10} \frac{\sigma_x^2}{\sigma_e^2} \underbrace{\frac{\sigma_x^2}{dB}}_{noise power}$$

When |x| >> 1 LSB, quantization noise has ~ uniform distribution:

$$\Rightarrow \sigma_e^2 = \frac{\varepsilon^2}{12}$$

(quantizer step = ε)

Quantization SNR

Dan Fllis

- Now, σ_x² is limited by dynamic range of converter (to avoid clipping)
- e.g. *b*+1 bit resolution (including sign) output levels vary -2^b· ε .. (2^b-1)ε

 $= \frac{-R_{FS}}{2} \dots \frac{R_{FS}}{2} - \varepsilon \quad \text{where full-scale range} \\ R_{FS} = 2^{b+1} \cdot \varepsilon$

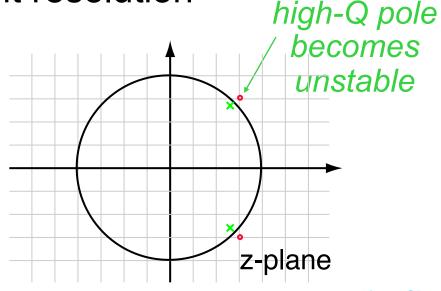
$$\Rightarrow SNR = 10 \log_{10} \frac{\sigma_x^2}{\left[\frac{R_{FS}^2}{2^{2(b+1)} \cdot 12}\right]} \approx 6b + 16.8 - 20 \log_{10} \frac{R_{FS}}{\sigma_x}$$

i.e. ~ 6 dB
SNR per bit depends
on signal

2013-12-04

Coefficient Quantization

- Quantization affects not just signal but filter constants too
 - ... depending on implementation
 - ... may have different resolution
- Some coefficients are very sensitive to small changes
 - e.g. poles near unit circle



12/9 Project Presentations

10:15 Arthur Argall: Genomic Signal Processing 10:25 Yue Hou, Dongxue Liu: **Blind Signal Separation** 10:35 Nathan Lin: Spectral Domain Phase Microscopy 10:45 Minda Yang, Yitong Li: **Reconstruction from Neural Measurements** 10:55 Yinan Wu: Mixed Channel Music 11:05 Maja Rudolph, Preston Conley: Walking Pace Extraction from Video

11:15 Alan Zambeli-Ljepović, Tanya Shah, Sophie Wang: Lung Sounds Analysis

