2.2 Express the sequence x[rn] = I, —00 < n < 00, in terms of the unit step seauence ulnl.
2.5 Consider the following sequences:
xn]l={-4 5 | =2 =3 0 2}, -3<n<3
ylal={6 -3 —-1 0 8 7 =2}, -1 <n<5
wnl=(3 2 2 -1 0 -2 5),2<n<8.
The sample values of each of the above sequences outside the ranges specified are all zeros. Generate the following

sequences: (a) ¢[n]| = x[-n + 2], (b) dln] = yl—n — 3], (c) e¢[n] = w[—nl, d) uln] = x[n] + yln — 2],
(e) vin]l = x[n]- win + 4], () s[n] = y[r] — win + 4], and (g) r[n] = 3.5y|n].

2.7 Analyze the block diagrams of Figure P2.1 and develop the relation between y[n] and x[n].

h|0]

xln] -—V

x[n]

(c)

Figure P2.1

2.12 Let xey|n] and xoq|n| be even and odd real sequences, respectively. Which one of the following sequences is an
even sequence, and which one is an odd sequence?

(a) gln] = xevlnlxevin), (b) uln| = xevlnlxoglnl, (¢) vln] = xgglnlxogln].
2.13 (a) Show that a causal real sequence x[i] can be fully recovered from its even part xey|n] for alt n = 0. whereas
it can be recovered from its odd part xpgln| ooty for all n > 0.

(b) Is it possible to fully recover a causal complex sequence y[n| from its conjugale antisymmetric part vealn|?
Can v[n] be fully recovered from its conjugate symmetric part yei|n1? Justify your answers.

2.31 Determine the fundamental period of the sinusoidal sequence x[n] = A sin(wyn) for the following values of the
angular frequency wp:

(a) 0.6u7, (b) 0.287, () 0.457, (d) 0.557, (&) 0.65x.

M 2.3 (a) Write a MATLAB program to generate a sinusoidal sequence x[n| = A sin(won +6), and plot the sequence
using the stem function. The input data specified by the user are the desired length L, amplitude A, the angglar
frequency w,. and the phase ¢ where 0 < w, < m and 0 < ¢ < 2. Using this program, generate the sinusoidal
sequences shown in Figure 2.16.

(b) Generate sinsusoidal sequences with the angular frequencies given in Problem 2.3}. Determine the period of
euch sequence from the plot, and verify the result theoretically.

M 2.4 Write 2 MATLAB program to plot a continuous-time sinusoidal signal and its sampled version, and verify
Figure 2.22. You need to use the ho1d function to keep both plots.
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Figure 2.16: A family of sinusoidal sequences given by x[n] = 1.5cos w,n: () w, = 0, (b) @, = 0.17,
(©) wp = 0.2 (d) wp = 0.87. (¢) wp = 097, () wp = 7, (g) wy = 1.1, and (h) w, = 1.27.

{lgure 2.22: Ambiguity in the discrete-time representation of continuous-time signals. g1 (¢) is shown with the solid
finc, go(¢) is shown with the dashed line, g3(¢) is shown with the dashed-dot line, and the sequence oblained by

snpling is shown with circles.





