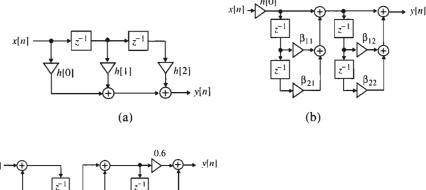
- **2.2** Express the sequence $x[n] = 1, -\infty < n < \infty$, in terms of the unit step sequence $\mu[n]$.
- 2.5 Consider the following sequences:

$$x[n] = \{-4 \quad 5 \quad 1 \quad -2 \quad -3 \quad 0 \quad 2\}, \quad -3 \le n \le 3$$

 $y[n] = \{6 \quad -3 \quad -1 \quad 0 \quad 8 \quad 7 \quad -2\}, \quad -1 \le n \le 5$
 $w[n] = \{3 \quad 2 \quad 2 \quad -1 \quad 0 \quad -2 \quad 5\}, \quad 2 \le n \le 8.$

The sample values of each of the above sequences outside the ranges specified are all zeros. Generate the following sequences: (a) c[n] = x[-n+2], (b) d[n] = y[-n-3], (c) e[n] = w[-n], (d) u[n] = x[n] + y[n-2], (e) $v[n] = x[n] \cdot w[n+4]$, (f) s[n] = y[n] - w[n+4], and (g) r[n] = 3.5y[n].

2.7 Analyze the block diagrams of Figure P2.1 and develop the relation between y[n] and x[n].



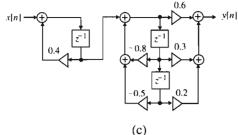


Figure P2.1

- **2.12** Let $x_{\text{ev}}[n]$ and $x_{\text{od}}[n]$ be even and odd real sequences, respectively. Which one of the following sequences is an even sequence, and which one is an odd sequence?
 - (a) $g[n] = x_{ev}[n]x_{ev}[n]$, (b) $u[n] = x_{ev}[n]x_{od}[n]$, (c) $v[n] = x_{od}[n]x_{od}[n]$.
- **2.13** (a) Show that a causal real sequence x[n] can be fully recovered from its even part $x_{\text{ev}}[n]$ for all $n \ge 0$, whereas it can be recovered from its odd part $x_{\text{od}}[n]$ only for all n > 0.
- (b) Is it possible to fully recover a causal complex sequence y[n] from its conjugate antisymmetric part $y_{ca}[n]$? Can y[n] be fully recovered from its conjugate symmetric part $y_{cs}[n]$? Justify your answers.
- **2.31** Determine the fundamental period of the sinusoidal sequence $x[n] = A \sin(\omega_0 n)$ for the following values of the angular frequency ω_0 :
 - (a) 0.6π , (b) 0.28π , (c) 0.45π , (d) 0.55π , (e) 0.65π .
- M 2.3 (a) Write a MATLAB program to generate a sinusoidal sequence $x[n] = A \sin(\omega_0 n + \phi)$, and plot the sequence using the stem function. The input data specified by the user are the desired length L, amplitude A, the angular frequency ω_0 , and the phase ϕ where $0 < \omega_0 < \pi$ and $0 \le \phi \le 2\pi$. Using this program, generate the sinusoidal sequences shown in Figure 2.16.
- (b) Generate sinsusoidal sequences with the angular frequencies given in Problem 2.31. Determine the period of each sequence from the plot, and verify the result theoretically.
- M 2.4 Write a MATLAB program to plot a continuous-time sinusoidal signal and its sampled version, and verify Figure 2.22. You need to use the hold function to keep both plots.

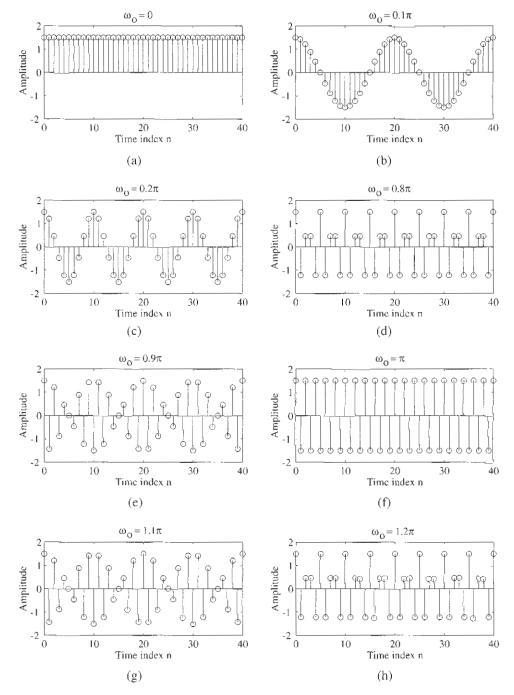


Figure 2.16: A family of sinusoidal sequences given by $x[n] = 1.5 \cos \omega_0 n$: (a) $\omega_0 = 0$, (b) $\omega_0 = 0.1\pi$, (c) $\omega_0 = 0.2\pi$, (d) $\omega_0 = 0.8\pi$, (e) $\omega_0 = 0.9\pi$, (f) $\omega_0 = \pi$, (g) $\omega_0 = 1.1\pi$, and (h) $\omega_0 = 1.2\pi$.

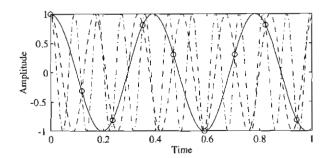


Figure 2.22: Ambiguity in the discrete-time representation of continuous-time signals. $g_1(t)$ is shown with the solid line, $g_2(t)$ is shown with the dashed line, $g_3(t)$ is shown with the dashed-dot line, and the sequence obtained by sampling is shown with circles.