3.19 Determine the DTFT of each of the following finite-length sequences:

(a)
$$y_1[n] = \begin{cases} 1, & -N \le n \le N, \\ 0, & \text{otherwise,} \end{cases}$$
 (b) $y_2[n] = \begin{cases} 1, & 0 \le n \le N, \\ 0, & \text{otherwise,} \end{cases}$ (c) $y_3[n] = \begin{cases} 1 - \frac{|n|}{N}, & -N \le n \le N, \\ 0, & \text{otherwise,} \end{cases}$ (d) $y_4[n] = \begin{cases} N+1-|n|, & -N \le n \le N, \\ 0, & \text{otherwise,} \end{cases}$ (e) $y_f[n] = \begin{cases} \cos(\pi n/2N), & -N \le n \le N, \\ 0, & \text{otherwise,} \end{cases}$ (e) $y_f[n] = \begin{cases} \cos(\pi n/2N), & -N \le n \le N, \\ 0, & \text{otherwise.} \end{cases}$

3.24 Prove the following theorems of the discrete-time Fourier transform: (a) Linearity theorem, (b) Time-reversal theorem, (c) Time-shifting theorem, and (d) Frequency-shifting theorem.

3.30 The magnitude function $|X(e^{j\omega})|$ of a discrete-time sequence x[n] is shown in Figure P3.1 for a portion of the angular frequency axis. Sketch the magnitude function for the frequency range $-\pi \le \omega < \pi$. What type of sequence is x[n]?

Figure P3.1

5.8 Determine the N-point DFTs of the following length-N sequences defined for $0 \le n \le N-1$:

(a)
$$x_a[n] = \sin(2\pi n/N)$$
, (b) $x_b[n] = \cos^2(2\pi n/N)$, (c) $x_c[n] = \cos^3(2\pi n/N)$.

5.15 Let x[n], $0 \le n \le N-1$, be a length-N sequence with an N-point DFT given by X[k], $0 \le k \le N-1$.

5.15 Let
$$x[n]$$
, $0 \le n \le N - 1$, be a length- N sequence with an N -point DFT given by $X[k]$, $0 \le k \le N - 1$. Determine the $2N$ -point DFT of each of the following length- $2N$ sequences:

(a) $g[n] = \begin{cases} x[n], & 0 \le n \le N - 1, \\ 0, & N \le n \le 2N - 1, \end{cases}$
(b) $h[n] = \begin{cases} 0, & 0 \le n \le N - 1, \\ x[n], & N \le n \le 2N - 1. \end{cases}$

M 3.2 Using Program 3.1, determine and plot the real and imaginary parts and the magnitude and phase spectra of the DTFTs of the sequences of Problem 3.19 for N = 10.

M 5.2 Write a MATLAB program to compute the circular convolution of two length-N sequences via the DFT-based approach. Using this program, determine the circular convolution of the following pairs of sequences:

(a)
$$g[n] = \{5, -2, 2, 0, 4, 3\}, h[n] = \{3, 1, -2, 2, -4, 4\},$$

(b)
$$x[n] = \{2-j, -1-j3, 4-j3, 1+j2, 3+j2\}, v[n] = \{-3, 2+j4, -1+j4, 4+j2, -3+j\},$$

(c)
$$x[n] = \cos(\pi n/2)$$
, $y[n] = 3^n$, $0 \le n \le 4$.

Verify your result using the function circonv.

M 5.3 Using MATLAB, verify the symmetry relations of the DFT of a complex sequence as listed in Table 5.1.

Table 5.1: Symmetry properties of the DFT of a complex sequence.

Length-N Sequence	N-point DFT
$x[n] = x_{\rm re}[n] + jx_{\rm im}[n]$	$X[k] = X_{\rm re}[k] + jX_{\rm im}[k]$
$x^*[n]$	$X^*[\langle -k \rangle_N]$
$x^*[\langle -n \rangle_N]$	$X^*[k]$
$x_{re}[n]$	$X_{cs}[k] = \frac{1}{2} \{ X[k] + X^*[\langle -k \rangle_N] \}$
jx_{im}	$X_{ca}[k] = \frac{1}{2} \{ X[k] - X^*[\langle -k \rangle_N] \}$
$x_{cs}[n]$	$X_{re}[k]$
$x_{ca}[n]$	$jX_{\text{im}}[k]$

Note: $x_{cs}[n]$ and $x_{ca}[n]$ are the circular conjugate-symmetric and circular conjugate-antisymmetric parts of x[n], respectively. Likewise, $X_{cs}[k]$ and $X_{ca}[k]$ are the circular conjugate-symmetric and circular conjugate-antisymmetric parts of X[k], respectively.

3.19 Determine the DTFT of each of the following finite-length sequences:

(a)
$$y_1[n] = \begin{cases} 1, & -N \le n \le N, \\ 0, & \text{otherwise,} \end{cases}$$
 (b) $y_2[n] = \begin{cases} 1, & 0 \le n \le N, \\ 0, & \text{otherwise,} \end{cases}$ (c) $y_3[n] = \begin{cases} 1 - \frac{|n|}{N}, & -N \le n \le N, \\ 0, & \text{otherwise,} \end{cases}$ (d) $y_4[n] = \begin{cases} N+1-|n|, & -N \le n \le N, \\ 0, & \text{otherwise,} \end{cases}$ (e) $y_f[n] = \begin{cases} \cos(\pi n/2N), & -N \le n \le N, \\ 0, & \text{otherwise.} \end{cases}$