3.75 Consider the two LTI causal digital filters with impulse responses given by

$$h_A[n] = 0.3\delta[n] - \delta[n-1] + 0.3\delta[n-2],$$

$$h_B[n] = 0.3\delta[n] + \delta[n-1] + 0.3\delta[n-2].$$

- (a) Sketch the magnitude responses of the two filters and compare their characteristics.
- (b) Let $h_A[n]$ be the impulse response of a causal digital filter with a frequency response $H_A(e^{j\omega})$. Define another digital filter whose impulse response $h_C[n]$ is given by

$$h_C[n] = (-1)^n h_A[n],$$
 for all n .

What is the relation between the frequency response $H_C(e^{j\omega})$ of this new filter and the frequency response $H_A(e^{j\omega})$ of the parent filter?

7.5 Let a causal LTI discrete-time system be characterized by a real impulse response h[n] with a DTFT $H(e^{j\omega})$. Consider the system of Figure P7.1, where x[n] is a finite-length sequence. Determine the frequency response of the overall system $G(e^{j\omega})$ in terms of $H(e^{j\omega})$, and show that it has a zero-phase response.

Figure P7.1

7.16 (a) Design a length-5 FIR bandpass filter with an antisymmetric impulse response h[n], i.e., h[n] = -h[4-n], $0 \le n \le 4$, satisfying the following magnitude response values: $|H(e^{j0.3\pi})| = 0.3$ and $|H(e^{j0.6\pi})| = 0.8$.

- (b) Determine the exact expression for the frequency response of the filter designed, and plot its magnitude and phase responses using MATLAB.
- 7.28 Let $H_{LP}(z)$ denote the transfer function of an ideal real coefficient lowpass filter having a cutoff frequency of ω_P , with $\omega_P < \pi/2$. Consider the complex coefficient transfer function $H_{LP}(e^{j\omega_0}z)$, where $\omega_P < \omega_O < \pi \omega_P$. Sketch its magnitude response for $-\pi \le \omega \le \pi$. What type of filter does it represent? Now consider the transfer function $G(z) = H_{LP}(e^{j\omega_0}z) + H_{LP}(e^{-j\omega_0}z)$. Sketch its magnitude response for $-\pi \le \omega \le \pi$. Show that G(z) is a real-coefficient bandpass filter with a passband centered at ω_O . Determine the width of its passband in terms of ω_P and its impulse response g[n] in terms of the impulse response $h_{LP}[n]$ of the parent lowpass filter.

7.61 Let $H_1(z)$, $H_2(z)$, $H_3(z)$, and $H_4(z)$ be, respectively, Type 1, Type 2, Type 3, and Type 4 linear-phase FIR filters. Are the following filters composed of a cascade of the above filters linear phase? If they are, what are their types?

(a)
$$G_a(z) = H_1(z)H_1(z)$$
, (b) $G_b(z) = H_1(z)H_2(z)$, (c) $G_c(z) = H_1(z)H_3(z)$.

(d)
$$G_d(z) = H_1(z)H_4(z)$$
, (e) $G_e(z) = H_2(z)H_2(z)$, (f) $G_f(z) = H_3(z)H_3(z)$.

(g)
$$G_g(z) = H_4(z)H_4(z)$$
, (h) $G_h(z) = H_2(z)H_3(z)$, (i) $G_i(z) = H_3(z)H_4(z)$.

M 7.12 Design a stable second-order IIR notch filter with a center frequency at 0.6π and a 3-dB bandwidth of 0.2π . Plot its gain response.