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1. Introduction 
 
The problem of automatically separating music signals from speech signals has been 
extensively studied.  In general, approaches to this problem consider a small set of 
features to be extracted from the input signals.  These features are carefully chosen to 
emphasize signal characteristics that differ between speech and music.  This project 
combined two well-established features used to distinguish speech and music, as well as a 
third more novel feature.  Once the typical values of these features were defined by a set 
of training data, a decision system for classifying future samples was chosen.  Here, a 
simple k - nearest neighbor algorithm was implemented to determine whether an 
incoming sample should be considered speech or music.  The implementation considered 
here treats each sample as a whole and labels the entire sample as either speech or music. 
 
 
2. Signal Features 
 
A large number of signal features have been employed for the problem of discriminating 
speech and music [1].  This project used two well-established features, the zero-crossing 
rate (specifically the variance of this rate) and the percentage of low-energy periods 
relative to the RMS value of the signal.  The third feature used was a novel measurement 
of the residual error signal produced by linear predictive coding.  These three features 
were combined to improve the robustness of the classification system and to hopefully 
balance out any ambiguities in any single feature set. 
 
 
2.1. Variance of Zero-Crossing Rate 
 
For this feature, the number of time-domain zero-crossings in each frame of the signal is 
calculated.  While this rate is somewhat useful in distinguishing speech and music, a 
more useful measure is the short-term variance in the zero-crossing rate [2].  Figure 1 
shows the zero-crossing features for a typical 5-second sample of music.  Figure 2 shows 
the equivalent for a sample of speech.  While the mean zero-crossing rate is 
approximately equal for both, the distribution of zero-crossings is very different.  Music 
has a fairly normal distribution of frames with lower and higher zero-crossing rates.  
Speech however displays a much more skewed distribution.  It demonstrates long periods 
with a low zero-crossing rate and very distinct periods with a smooth transition to a much 
higher zero-crossing rate.  As a result of these characteristics, the average variance in the 
zero-crossing rate of speech signals tends to be higher than that of music signals. 
     In this implementation, the zero-crossing rate (number of zero-crossings per sample) 
was calculated for each 20 ms frame of a sample’s data.  Then the local variance of the 
zero-crossing rate was calculated over each second of data (with 50 frames of data per 
second).  Finally the mean of the local variances was taken to be that sample’s data value 
for the zero-crossing variance feature. 
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Figures 1 and 2. Zero-crossing features of a typical music sample and a typical speech 
sample.  Top is the rate of zero-crossings for each frame.  Middle is the standard 
deviation of the zero-crossing rate as calculated over all frames within the last second of 
data.  Bottom is a histogram of the zero-crossing rate. 
 
 
2.2. Percentage of Low-Energy Frames 
 
This feature is based on the fact that music tends to be more continuous than speech and 
therefore has fewer instances of quiet frames.  To quantify this, each frame is compared 
with the local frames’ average root mean square (RMS) power.  Quiet frames will tend to 
fall below 50% of this average RMS value [1].  Therefore the percentage of frames with 
power less than 50% of the local (within a second) average is a good distinguisher 
between music and speech signals.  This percentage should generally be higher for 
speech than music.  Figures 3 and 4 show the RMS power in each frame of data for a 
typical music and speech signal.  They also show the threshold 50% below the local mean 
RMS power, used to identify “low-energy frames”. 
     In this implementation, the RMS power in each 20 ms frame was calculated.  Then the 
local mean of the RMS power was calculated over the last second of data.  For each 
frame after the initial second of data, the frame was counted as a low-energy frame if it 
fell below 50% of this local mean.  The number of low-energy frames in a sample over 
the total number of frames was taken as the sample’s data value for this feature. 
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Figures 3 and 4. RMS power per frame in a typical music and speech sample.  The red 
line is 50% of the mean of the local RMS power (where local is considered to be within 
the last second of data).  Frames with RMS power below this line are considered “low-
energy frames”. 
 
 
2.3. Linear Predictive Coding Residual 
 
Linear predictive coding (LPC) is a technique used to encode (typically) speech data so 
that less data can be used to transmit the same basic speech signal.  LPC is based on a 
simple model of speech.  It assumes the human vocal tract can be modeled as an all-pole 
filter through which an impulse train and white noise can be passed to create the sounds 
of speech.  Figure 5 shows this model.  During speech, periods of voiced speech (vocal 
cord vibrations) are modeled as an impulse train, while periods of unvoiced speech 
(fricatives and plosives) are considered to be equivalent to white noise, and therefore do 
not add information to the signal.  Consequently the signal can be transmitted as merely 
 

 
Figure 5. Linear predictive coding model of speech 
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the coefficients of the LPC filter and the impulse train, which is less data than the original 
signal.  LPC analysis to find appropriate filter coefficients for each segment of a signal is 
typically performed on 20-30 ms overlapping frames of a signal.  Conversely, the original 
signal can be passed through the inverse of the calculated LPC filters, to produce what is 
referred to as the residual [3]. 
     The coefficients of the LPC filters of a signal have sometimes been used as a feature 
in discriminating speech from music.  A somewhat more novel approach is to consider 
the residual signal itself and its properties as a feature of speech signals [4].  In this 
project, the LPC residuals of several music and speech samples were examined to 
determine any usable patterns.  Figures 6 and 7 show the residual signals obtained from 
typical samples of music and speech.  They also show the normalized energy of the 
residual for each frame of the data and a histogram of the distribution of this energy. 
 

 
Figures 6 and 7. LPC Residual features of a typical music and speech sample.  Top is the 
residual signal itself.  Middle is the normalized energy per frame.  Bottom is a histogram 
showing the distribution of the residual energies per frame. 
 
The initial observation that was made was that speech seems to have a much more 
variable residual than music, which typically seems fairly constant.  Taking measures of 
the variance directly was not very successful, however.  This led to calculation of the 
residuals’ energy over each frame of data in an attempt to find a usable pattern.  It was 
found that the distributions of residual energy were skewed in a noticeable way.  
Furthermore, while the residual energy of music seemed to vary around the mean 
randomly, the residual energy of speech seemed to have a lower mean and more peaks 
high above the mean than below it.  This led to the conclusion that the number of large 
peaks in residual energy could be a useable feature to distinguish speech from music. 
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     In this implementation, the LPC coefficients and gain were calculated using a MatLab 
implementation found in [5].  The calculations were made every 20 ms over 30 ms 
frames of data.  Each frame of sample data was then run through the inverse of its LPC 
filter and divided by the gain.  These frame-by-frame residuals were then scaled and 
added together to produce a single residual signal.  The energy of each 20 ms frame was 
then calculated as the sum of the absolute values of the squared residuals and normalized 
by the number of samples in the frame.  The percentage of frames with energy more than 
25% above the mean was then taken as the data value of the sample for this feature. 
 
 
3. Training Data 
 
In order to obtain a set of baseline measurements of the above features for “typical” 
speech and music samples, a set of training data was used.  The training data consisted of 
four samples each of pure music (no vocals) or pure speech, obtained from [6].  Each data 
sample was five seconds long and sampled at 22.05 kHz.  Each of the three feature 
calculations was performed on all data samples, to obtain a set of values that could be 
considered typical of music and speech signals. 
 
 
4. Classification System 
 
Once a set of baseline feature measurements was established, a system was needed to 
classify future data samples as having features more like speech or music.  A k-nearest 
neighbor algorithm was chosen, for simplicity.  In this classification scheme, the n feature 
values of a sample are taken to represent a location in an n-dimensional feature space.  
Here the three features can be translated to a three-dimensional feature space.  The 
distance between a new data point and every training data point is calculated and a vote is 
taken among the k closest training data points (k neighbors) to determine the 
classification of the new data sample.  In this implementation, k was chosen as 3 because 
of the small size of the training data and also in order to prevent ties. 
     Also, the range covered by each of the three features was normalized to a unit length 
in order to weight each feature equally in the distance calculations.  This ensured that 
larger-valued features did not dominate over smaller ones. 
 
 
5. Test Data 
 
Another set of data was used to determine the accuracy of the proposed features and 
classification system.  This set of test data consisted of 23 samples each of music and 
speech.  Each sample was between 4 and 7 seconds long, in order to keep it similar to the 
test data.  The music samples were obtained from a large personal collection and attempts 
were made to include a wide variety of music types.  The speech samples were obtained 
from a combination of [7] and [8] and attempts were made to include both male and 
female speakers and samples with both single and multiple voices. 
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6. Results 
 
Using the k-nearest neighbor framework, the feature data was normalized and plotted in a 
unit square 3-dimensional space for easy visualization.  Figure 8 shows one view of the 
feature space, with all training and test data displayed. 
 

 
Figure 8. View of 3-dimensional feature space 

 
As predicted, the speech samples displayed a higher percentage of low energy frames 
than the music samples.  Similarly, the percentage of high peaks in the LPC residual 
energy was generally higher for speech and lower for music.  Figure 9 shows another 
view of the feature space, with a clearer display of the zero-crossing data. 
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Figure 9. View of 2-dimensional space for zero-crossing and LPC residual features 

 
Again, the samples behaved mostly as predicted, with speech samples tending to have a 
higher variance in zero-crossing rate.  However, in both of these views it is clear that 
there were some outliers that did not follow the general pattern.  Specifically, there are 
two music test samples that behaved like speech samples along all three of the feature 
axes.  They would definitely be misclassified using this system.  This may be because 
these two samples share some characteristics in common with speech and their 
differences from speech cannot be measured with the three features used here.  When 
investigated, these two samples were both identified as having very dominant percussive 
sounds (possibly clapping in both cases) with little melody in between.  It makes sense 
that these samples might be misclassified as speech since they are likely to have a high 
percentage of low energy frames and other speech-like qualities. 
     Another problem may be the one music training data sample that is very far removed 
from the others along the “low energy frames” axis.  However, since it seems to cluster 
nicely with the music samples along the other two axes, it is assumed to be a usable 
training data point. 
     Using the k-nearest neighbor classification system described above, this system had 
the following success rates: 
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 Music Test Data Speech Test Data Total 
Number Correct 17 22 39 

Number Incorrect 6 1 7 
% Correct 73.9% 95.7% 84.8% 

 
 
7. Conclusions 
 
This system proved to be fairly reliable.  Although it was far more reliable for speech 
than for music, it still provided a high accuracy rate overall.  A possible explanation for 
the disparity between speech and music classification accuracy may be that music as a 
concept comprises a much more varied set of signals than does speech.  While the four 
samples of speech training data may have accurately defined the typical locations of 
speech samples in this feature space, the four samples of music may have been too few to 
accurately represent the locations of a variety of music.  Another possible explanation 
may be that these three features are just not enough to reliably differentiate speech from 
most music.  There may be an unexamined correlation between two or all three of the 
features used here, which would lower their combined usefulness (since the goal of using 
more than one feature is to add information to the system).  Another failing of this 
implementation is that it only classifies entire samples of data as being speech or music.  
A more sophisticated discriminator would have the ability to determine the boundaries 
between speech and music in a continuous incoming signal, in real time.  However, the 
same features used here could be implemented in such a system in order to partition an 
incoming data signal into periods of speech and/or music on a short-term basis. 
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% Main - run all training and test data, plot results
 
%**********************************************************************
% Training process:
%**********************************************************************
% Set up training data (4 samples music / 4 samples speech):
train_music_files = {'music1.wav','music2.wav','music3.wav','music4.wav'}
train_speech_files = {'speech1.wav','speech2.wav','speech3.wav','speech4.wav'}
 
%**********************************************************************
% Training: perform all 3 tests on training data
 
% Music samples:
for i = 1:length(train_music_files)
    train_lpc_music(i) = lpc_test(cell2mat(train_music_files(i)))
    train_zcr_music(i) = zcr_test(cell2mat(train_music_files(i)))
    train_rms_music(i) = rms_test(cell2mat(train_music_files(i)))
end
mean_train_lpc_music = mean(train_lpc_music)
mean_train_zcr_music = mean(train_zcr_music)
mean_train_rms_music = mean(train_rms_music)
 
% Speech samples:
for i = 1:length(train_speech_files)
    train_lpc_speech(i) = lpc_test(cell2mat(train_speech_files(i)))
    train_zcr_speech(i) = zcr_test(cell2mat(train_speech_files(i)))
    train_rms_speech(i) = rms_test(cell2mat(train_speech_files(i)))
end
mean_train_lpc_speech = mean(train_lpc_speech)
mean_train_zcr_speech = mean(train_zcr_speech)
mean_train_rms_speech = mean(train_rms_speech)
 
%**********************************************************************
% Testing new data:
%**********************************************************************
% Set up testing data:
music_files = dir(['m_*.wav'])
speech_files = dir(['s_*.wav'])
 
%**********************************************************************
% Testing:
 
% Music samples:
for i = 1:length(music_files)
    lpc_music(i) = lpc_test(music_files(i).name)
    zcr_music(i) = zcr_test(music_files(i).name)
    rms_music(i) = rms_test(music_files(i).name)
end
 
% Speech samples:
for i = 1:length(speech_files)
    lpc_speech(i) = lpc_test(speech_files(i).name)
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    zcr_speech(i) = zcr_test(speech_files(i).name)
    rms_speech(i) = rms_test(speech_files(i).name)
end
 
%**********************************************************************
% Scale all three features between 0 and 1 to normalize distances:
 
min_lpc = min([min(train_lpc_music), min(train_lpc_speech), min(lpc_music), min
(lpc_speech)])
max_lpc = max([max(train_lpc_music), max(train_lpc_speech), max(lpc_music), max
(lpc_speech)])
min_zcr = min([min(train_zcr_music), min(train_zcr_speech), min(zcr_music), min
(zcr_speech)])
max_zcr = max([max(train_zcr_music), max(train_zcr_speech), max(zcr_music), max
(zcr_speech)])
min_rms = min([min(train_rms_music), min(train_rms_speech), min(rms_music), min
(rms_speech)])
max_rms = max([max(train_rms_music), max(train_rms_speech), max(rms_music), max
(rms_speech)])
 
train_lpc_music = (train_lpc_music - min_lpc)/(max_lpc - min_lpc)
train_zcr_music = (train_zcr_music - min_zcr)/(max_zcr - min_zcr)
train_rms_music = (train_rms_music - min_rms)/(max_rms - min_rms)
train_lpc_speech = (train_lpc_speech - min_lpc)/(max_lpc - min_lpc)
train_zcr_speech = (train_zcr_speech - min_zcr)/(max_zcr - min_zcr)
train_rms_speech = (train_rms_speech - min_rms)/(max_rms - min_rms)
 
lpc_music = (lpc_music - min_lpc)/(max_lpc - min_lpc)
zcr_music = (zcr_music - min_zcr)/(max_zcr - min_zcr)
rms_music = (rms_music - min_rms)/(max_rms - min_rms)
lpc_speech = (lpc_speech - min_lpc)/(max_lpc - min_lpc)
zcr_speech = (zcr_speech - min_zcr)/(max_zcr - min_zcr)
rms_speech = (rms_speech - min_rms)/(max_rms - min_rms)
 
%**********************************************************************
% Combine independent measures into one matrix for each set of data:
 
music_training = [train_lpc_music  train_zcr_music  train_rms_music]
speech_training = [train_lpc_speech  train_zcr_speech  train_rms_speech]
music_testing = [lpc_music  zcr_music  rms_music]
speech_testing = [lpc_speech  zcr_speech  rms_speech]
 
%**********************************************************************
% Plot 3-D decision space:
 
% Plot training data:
plot3(music_training(1,:), music_training(2,:), music_training(3,:), '*r')
hold on
plot3(speech_training(1,:), speech_training(2,:), speech_training(3,:), '*b')
 
% Plot test data:
plot3(music_testing(1,:), music_testing(2,:), music_testing(3,:), '*g')
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plot3(speech_testing(1,:), speech_testing(2,:), speech_testing(3,:), '*k')
 
% Label:
xlabel('LPC Residual Energy Measure')
ylabel('Variance of Zero-Crossing Rate')
zlabel('Percentage of Low Energy Frames')
legend('Music Training Data','Speech Training Data','Music Test Data','Speech Test Data')
grid on
 
%**********************************************************************
% K-Nearest Neighbor Classification: (K = 3) (0 = music, 1 = speech)
 
% Classify music samples:
music_classification = []
for i = 1:length(music_testing)
    
    % Calculate distaces to each of 8 training samples
    for j = 1:length(music_training)
        dist(j) = sqrt((music_testing(1,i)-music_training(1,j))^2 + (music_testing(1,i)-
music_training(1,j))^2 + (music_testing(1,i)-music_training(1,j))^2)
    end
    for j = 1:length(speech_training)
        dist(j+4) = sqrt((music_testing(1,i)-speech_training(1,j))^2 + (music_testing(1,i)
-speech_training(1,j))^2 + (music_testing(1,i)-speech_training(1,j))^2)
    end
    
    % Find three closest neighbors
    sort_dist = sort(dist)
    n1 = find(dist == sort_dist(1))
    n2 = find(dist == sort_dist(2))
    n3 = find(dist == sort_dist(3))
    neighbor = [n1,n2,n3]
    neighbor = neighbor(1:3)
    
    % If 2 or more neighbors are music, classify as music
    % else classify as speech
    num_music_neighbors = find(neighbor <= 4)
    if (length(num_music_neighbors) >= 2)
        music_classification(i) = 
    else
        music_classification(i) = 
    end
end
 
% Classify speech samples:
speech_classification = []
for i = 1:length(speech_testing)
    
    % Calculate distaces to each of 8 training samples
    for j = 1:length(music_training)
        dist(j) = sqrt((speech_testing(1,i)-music_training(1,j))^2 + (speech_testing(1,i)-
music_training(1,j))^2 + (speech_testing(1,i)-music_training(1,j))^2)
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    end
    for j = 1:length(speech_training)
        dist(j+4) = sqrt((speech_testing(1,i)-speech_training(1,j))^2 + (speech_testing(1,
i)-speech_training(1,j))^2 + (speech_testing(1,i)-speech_training(1,j))^2)
    end
    
    % Find three closest neighbors
    sort_dist = sort(dist)
    n1 = find(dist == sort_dist(1))
    n2 = find(dist == sort_dist(2))
    n3 = find(dist == sort_dist(3))
    neighbor = [n1,n2,n3]
    neighbor = neighbor(1:3)
    
    % If 2 or more neighbors are music, classify as music
    % else classify as speech
    num_music_neighbors = find(neighbor <= 4)
    if (length(num_music_neighbors) >= 2)
        speech_classification(i) = 
    else
        speech_classification(i) = 
    end
end
 
%**********************************************************************
% Calculate success measures:
 
music_correct = length(find(music_classification == 0))
speech_correct = length(find(speech_classification == 1))
total_correct = music_correct + speech_correct
 
music_percent_correct = music_correct / length(music_classification)
speech_percent_correct = speech_correct / length(speech_classification)
total_percent_correct = total_correct / (length(music_classification)+length
(speech_classification))
 
disp(['Music Sample Classification: ', num2str(music_percent_correct*100), ' %'])
disp(['Speech Sample Classification: ', num2str(speech_percent_correct*100), ' %'])
disp(['Total Sample Classification: ', num2str(total_percent_correct*100), ' %'])
 
%**********************************************************************
 
 
 
 



12/14/06 12:28 AM C:\Files\lpc_test.m 1 of 1

% lpc_test.m
% Perform linear predictive coding on sound sample and calculate percentage
% of high energy spikes in the residual signal
 
function [lpc] = lpc_test(wavfilename)
 
% Read wav file
[data, fs]= wavread(wavfilename)
 
% LPC Order
N = 
 
% Length of frame
frame_size = 
frame_length = round(fs*frame_size)
frames_per_sec = round(1/frame_size)   % 50 frames per second
 
% Perform LPC analysis
[A,resid,stream] = lpcproc(data,fs,N)
 
% Find length of residual stream
len_samp = length(stream)
 
% Calculate normalized energy of each frame
energy = []
n = 
for frame = 1:frame_length:len_samp-frame_length
    energy(n) = sum(abs(stream(frame:frame+frame_length-1)).^2)/frame_length
    n = n + 
end
num_frames = length(energy)
 
% Calculate percentage of high spikes
highpoints = 
% If more than 1 second of frames
if (num_frames > frames_per_sec)
    for j = frames_per_sec+1:num_frames
        
        % Mean energy over last second
        meanEnergy(j) = mean(energy(j-frames_per_sec:j))
        
        if (energy(j) > 1.25*meanEnergy(j))
            highpoints = highpoints + 
        end
    end
end
lpc = highpoints/(num_frames-frames_per_sec)
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% zcr_test.m
% Calculate zero-crossing rates for each frame of a sound sample and output
% the average one second variance of the zero-crossing rate
 
function [zcr] = zcr_test(wavfilename)
 
% Read wav file
[data, fs]= wavread(wavfilename)
 
% find length of wav file
len_samp = length(data)
 
% Length of frame
frame_size = 
frame_length = round(fs*frame_size)
frames_per_sec = round(1/frame_size)   % 50 frames per second
 
% Calculate number of zero-crossings in each frame
zcr = []
n = 
for frame = 1:frame_length:len_samp-frame_length
    frameData = data(frame:frame+frame_length-1)
    
    % Sum up zero crossings accross frame
    zcr(n) = 
    for i = 2:length(frameData)
        zcr(n) = zcr(n) + abs(sign(frameData(i)) - sign(frameData(i-1)))
    end
    zcr(n) = zcr(n)/(2*frame_length)
    
    n = n + 
end
num_frames = length(zcr)
 
% Calculate variance in zero-crossing rate from last second of data
lef = 
% If more than 1 second of frames
if (num_frames > frames_per_sec)
    k = 
    for j = frames_per_sec+1:num_frames
        std_zcr(k) = std(zcr(j-frames_per_sec:j))
        k = k + 
    end
end
 
% Result is mean 1-sec variance in zero crossing rate
zcr = mean(std_zcr)
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% rms_test.m
% Calculate the RMS values over frames of a sound sample and return the
% percentage of low energy frames in the sample
 
function [rms] = rms_test(wavfilename)
 
% Read wav file
[data, fs]= wavread(wavfilename)
 
% find length of wav file
len_samp = length(data)
 
% Length of frames
frame_size = 
frame_length = round(fs*frame_size)
frames_per_sec = round(1/frame_size)   % 50 frames per second
 
% Calculate RMS value of each frame
rms = []
n = 
for frame = 1:frame_length:len_samp-frame_length
    frameData = data(frame:frame+frame_length-1)
    
    % Calculate RMS value of frame
    rms(n) = sqrt(sum(frameData.^2)/length(frameData))
    n = n + 
end
num_frames = length(rms)
 
% Calculate number of low energy frames
lef = 
% If more than 1 second of frames
if (num_frames > frames_per_sec)
    for j = frames_per_sec+1:num_frames
        meanRMS(j) = mean(rms(j-frames_per_sec:j))
        if (rms(j) < 0.5*meanRMS(j))
            lef = lef + 
        end
    end
end
 
% Result is percentage of low energy frames
rms = lef/(num_frames-frames_per_sec)
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% lpcproc.m
% Perform LPC analyis on input data
% Return LPC filter coefficients, residuals, and residual stream
% Adapted from Reference [5]:
% G.C. Orsak, et al, "Collaborative SP education using the Internet and
% MATLAB" IEEE Signal Processing Magazine, Vol. 12, No. 6, pp. 23-32, Nov. 1995.
 
function [A,resid,stream] = lpcproc(data,fs,N,frameRate,frameSize)
 
if (nargin<3), N =  end
if (nargin<4), frameRate =  end
if (nargin<5), frameSize =  end
 
preemp = 
 
[row col] = size(data)
if col==1 data=data  end
 
% Set up
nframe =  
samp_between_frames = round(fs/1000*frameRate)
samp_per_frame = round(fs/1000*frameSize)
duration = length(data)
samp_overlap = samp_per_frame - samp_between_frames
 
% Function to add overlapping frames back together
ramp = [0:1/(samp_overlap-1):1]
 
% Preemphasize speech
speech = filter([1 -preemp], 1, data)
 
% For each frame of data
for frameIndex=1:samp_between_frames:duration-samp_per_frame+1
    
    % Pick out frame data
    frameData = speech(frameIndex:(frameIndex+samp_per_frame-1))
    nframe = nframe
    
    autoCor = xcorr(frameData)  % Compute the cross correlation
    autoCorVec = autoCor(samp_per_frame+[0:N])
 
    % Levinson's method
    err(1) = autoCorVec(1)
    k(1) = 
    a = []
    for index=1:N
        numerator = [1 a.']*autoCorVec(index+1:-1:2)
        denominator = -1*err(index)
        k(index) = numerator/denominator  % PARCOR coeffs
        a = [a+k(index)*flipud(a)  k(index)]  
        err(index+1) = (1-k(index)^2)*err(index)
    end
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    % LPC coefficients and gain
    A(:,nframe) = [  a]
    G(nframe) = sqrt(err(N+1))
    
    % Inverse filter to get error signal
    errSig = filter([1 a'],1,frameData)
    resid(:,nframe) = errSig/G(nframe)
    
    % Add residuals together by frame to get continuous residual signal
    if(frameIndex==1)
        stream = resid(1:samp_between_frames,nframe)
    else
        stream = [stream  
        overlap+resid(1:samp_overlap,nframe).*ramp  
        resid(samp_overlap+1:samp_between_frames,nframe)]
    end
    if(frameIndex+samp_between_frames+samp_per_frame-1 > duration)
        stream = [stream  resid(samp_between_frames+1:samp_per_frame,nframe)]
    else
        overlap = resid(samp_between_frames+1:samp_per_frame,nframe).*flipud(ramp)  
    end 
end
 
stream = filter(1, [1 -preemp], stream)
 
 
 
 


