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Sparse + Low-Rank + NMF
• Optimization to decompose spectogram:	


minimize	

s.t.

2

Y = S + L + H · W
|S|1 + |L|� + DKL(Y � S� L||H · W)

Y

L

H•W

S

Zhuo Chen



E4896 Music Signal Processing (Dan Ellis) 2014-05-05 -    /19

Beta Process NMF
• Automatically choose how many 

components to use
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ABSTRACT

Nonnegative matrix factorization (NMF) has been widely
used for discovering physically meaningful latent compo-
nents in audio signals to facilitate source separation. Most
of the existing NMF algorithms require that the number of
latent components is provided a priori, which is not always
possible. In this paper, we leverage developments from the
Bayesian nonparametrics and compressive sensing litera-
ture to propose a probabilistic Beta Process Sparse NMF

(BP-NMF) model, which can automatically infer the proper
number of latent components based on the data. Unlike
previous models, BP-NMF explicitly assumes that these
latent components are often completely silent. We derive
a novel mean-field variational inference algorithm for this
nonconjugate model and evaluate it on both synthetic data
and real recordings on various tasks.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [9] has been ex-
tensively applied to analyze audio signals, since the ap-
proximate decomposition of the audio spectrogram into the
product of 2 nonnegative matrices X ⇡ WH provides a
physically meaningful interpretation. We can view each
column of X, which represents the power density across
frequencies at a particular time, as a nonnegative linear
combination of the columns of W, determined by the col-
umn of activation H. Thus W can be considered as a dic-
tionary, where each column acts as a component. This can
be particularly useful for audio source separation, where
the goal is to find out the individual sources from mixed
signal.

Audio source separation poses a meaningful and chal-
lenging problem, which has been actively studied for the
last few decades. One of the obstacles which makes source
separation difficult is that the number of sources is gener-
ally not known. For example, when we listen to a piece of
polyphonic music, it is difficult and tedious to figure out
how many notes or instruments are being played. How-
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ever, most existing NMF algorithms require the number of
components to be provided as input, based on the assump-
tion that there exists a certain mapping between the learned
components and real sources. To address this issue, we
propose BP-NMF, a nonparametric Bayesian NMF model
that uses a beta process prior. The model automatically
determines how many sources it needs to explain the data
during posterior inference.

1.1 Related Work

NMF has been applied to many music analysis problems
such as music transcription [1,12], music analysis [5], and
music source separation [10, 15].

On the other hand, most of the literature on nonpara-
metric Bayesian latent factor models focuses on conjugate
linear Gaussian models, for example, beta process factor
analysis [11] which is the main inspiration for BP-NMF.
However, such models are not appropriate for audio spec-
trograms as they do not impose nonnegativity constraints.
To address this limitation, [7] proposed a nonparametric
Bayesian NMF model based on the gamma process.

BP-NMF extends the standard NMF model in two ways:

• BP-NMF can explicitly and completely silence la-
tent components when they should not be active. This
captures the intuition that a note which appears fre-
quently during one phrase may not contribute any-
thing in another phrase, and most notes are silent
most of the time.

• The number of latent components, which is difficult
to set a priori, is inferred by the model.

Both of these issues have been addressed in previous work,
but to the authors’ knowledge, BP-NMF is the first model
to combine them.

2. BP-NMF

We adopt the notational conventions that upper case bold
letters (e.g. X,D, S and Z) denote matrices and lower
case bold letters (e.g. x, d s, and z) denote vectors. f 2
{1, 2, · · · , F} is used to index frequency. t 2 {1, 2, · · · , T}
is used to index time. k 2 {1, 2, · · · ,K} is used to index
dictionary components.

BP-NMF is formulated as:

X = D(S� Z) +E (1)

(a) The selected components learned from single-track instru-
ment. For each instrument, the components are sorted by approx-
imated fundamental frequency. The dictionary is cut off above
5512.5 Hz for visualization purposes.

(b) The box-and-whisker plot for the correlations from both BP-
NMF matching and random matching. A paired Wilcoxon signed-
rank test shows that they are significantly different.

Figure 4: The results from the proposed evaluation.

Therefore, this evaluation mechanism can also be applied
to determine a range for the “proper” number of compo-
nents to describe the data.

5. CONCLUSION

In this paper, we propose BP-NMF, a Bayesian nonpara-
metric extension of nonnegative matrix factorization, which
can automatically infer the number of latent components.
BP-NMF explicitly assumes that some of the components
are often completely silent. BP-NMF performs well under
existing metrics and under a novel evaluation mechanism.
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Music Complexity
• How can we capture musical patterns in the 

Million Song Dataset?	


• Network analysis of quantized simultaneities	

after Serrà et al. 2012

4

points towards a great degree of conventionalism in the creation
and production of this type of music. Yet, we find three important
trends in the evolution of musical discourse: the restriction of pitch
sequences (with metrics showing less variety in pitch progressions),
the homogenization of the timbral palette (with frequent timbres
becoming more frequent), and growing average loudness levels
(threatening a dynamic richness that has been conserved until
today). This suggests that our perception of the new would be essen-
tially rooted on identifying simpler pitch sequences, fashionable tim-
bral mixtures, and louder volumes. Hence, an old tune with slightly
simpler chord progressions, new instrument sonorities that were in
agreement with current tendencies, and recorded with modern tech-
niques that allowed for increased loudness levels could be easily
perceived as novel, fashionable, and groundbreaking.

Results
To identify structural patterns of musical discourse we first need to
build a ‘vocabulary’ of musical elements (Fig. 1). To do so, we encode
the dataset descriptions by a discretization of their values, yielding
what we call music codewords20 (see Supplementary Information, SI).
In the case of pitch, the descriptions of each song are additionally
transposed to an equivalent main tonality, such that all of them are
automatically considered within the same tonal context or key. Next,

to quantify long-term variations of a vocabulary, we need to obtain
samples of it at different periods of time. For that we perform a
Monte Carlo sampling in a moving window fashion. In particular,
for each year, we sample one million beat-consecutive codewords,
considering entire tracks and using a window length of 5 years (the
window is centered at the corresponding year such that, for instance,
for 1994 we sample one million consecutive beats by choosing full
tracks whose year annotation is between 1992 and 1996, both
included). This procedure, which is repeated 10 times, guarantees a
representative sample with a smooth evolution over the years.

We first count the frequency of usage of pitch codewords (i.e. the
number of times each codeword type appears in a sample). We
observe that most used pitch codewords generally correspond to
well-known harmonic items21, while unused codewords correspond
to strange/dissonant pitch combinations (Fig. 2a). Sorting the fre-
quency counts in decreasing order provides a very clear pattern
behind the data: a power law17 of the form z / r2a, where z corre-
sponds to the frequency count of a codeword, r denotes its rank (i.e. r
5 1 for the most used codeword and so forth), and a is the power law
exponent. Specifically, we find that the distribution of codeword
frequencies for a given year nicely fits to P(z) / (c 1 z) 2b for z .
zmin, where we take z as the random variable22, b 5 1 1 1/a as the
exponent, and c as a constant (Fig. 2b). A power law indicates that
a few codewords are very frequent while the majority are highly

Figure 1 | Method schematic summary with pitch data. The dataset contains the beat-based music descriptions of the audio rendition of a musical piece
or score (G, Em, and D7 on the top of the staff denote chords). For pitch, these descriptions reflect the harmonic content of the piece15, and encapsulate all
sounding notes of a given time interval into a compact representation11,12, independently of their articulation (they consist of the 12 pitch class relative
energies, where a pitch class is the set of all pitches that are a whole number of octaves apart, e.g. notes C1, C2, and C3 all collapse to pitch class C). All
descriptions are encoded into music codewords, using a binary discretization in the case of pitch. Codewords are then used to perform frequency counts,
and as nodes of a complex network whose links reflect transitions between subsequent codewords.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 521 | DOI: 10.1038/srep00521 2
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or score (G, Em, and D7 on the top of the staff denote chords). For pitch, these descriptions reflect the harmonic content of the piece15, and encapsulate all
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Colin Raffel

from Serrà, Corral, Boguña, Haro, & Arcos, 2012 
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Large-Scale Cover Recognition 1
• How can we find covers in 1M songs?	


@ 1 sec / comparison, one search = 11.5 CPU-days	

full N2 mining = 16,000 CPU-years	


• Need a hashing technique	

landmark-based description of chroma patches	

!
!
!
!
!
!
Euclidean space projection?

5
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Large-Scale Cover Recognition 2

• 2D Fourier Transform  
Magnitude (2DFTM)	

fixed-size feature  
to capture “essence”  
of chromagram:  

!

• First results on finding covers in 1M songs

6

Average rank meanAP

random 500,000 0.000

jumpcodes 2 308,369 0.002

2DFTM (50 PC) 137,117 0.020

Thierry Bertin-Mahieux
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Jazz Discography Project
• How can MIR help organize jazz collections?	


our tools are quite genre-specific	

e.g. beat tracker is fine for pop, useless for Jazz
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Local Tagging
• MFCC-statistics classifiers on 5 sec windows 

trained from MajorMiner data
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Onset Correlation
• “Ahead of” or “behind” the beat?

9

Brian McFee

Tony Williams Elvin Jones



E4896 Music Signal Processing (Dan Ellis) 2014-05-05 -    /19

Structural Similarity
• Self-similarity shows  

repeating structure in music	


• Can we find similar pieces by finding similar 
structures?

10

Diego Silva	

Helene Papadopoulos

2020 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 7, SEPTEMBER 2011

Fig. 5. Comparison of recurrence plots for two performances of W. A.
Mozart’s Symphony # 40, movement 3. The figures illustrate how beat-tracking
inconsistencies lead to dissimilarities in the RP.

TABLE II
CENS FEATURES: RESULTS ON THE TRAINING SET FOR VARIATIONS

OF FEATURE RATE AND SEQUENCE LENGTH

TABLE III
CRP FEATURES: RESULTS ON THE TRAINING SET FOR VARIATIONS

OF FEATURE RATE AND SEQUENCE LENGTH

filtered version of the first. Fixing after beat tracking does
nothing to address the resulting difference in topology, which is
bound to increase the distance between the plots and therefore
reduce the accuracy of retrieval. Octave errors are unavoidable,
even with state-of-the-art beat-tracking systems such as the one
used. Thus, the remainder of these experiments are performed
without beat-synchronous analysis.

C. Feature Type

Tables II and III, compare performance over variations of
and for the two chroma variants discussed in Section III-A:
CENS and CRP, respectively. Both sets of results show improve-
ment over the use of chroma features. In the case of the CENS
features, each combination sees an average net improve-
ment of 0.26 in MAP, with a 0.197 increase in best performance
for . For CRP features, the net increase in best per-
formance, for , is of 0.233 upon chroma features and
0.036 upon CENS features. Fig. 4 shows the differences with
chroma features to be significant, while the differences between
CRP and CENS features are not.

Fig. 6. Retrieval accuracy on the training set for variations of embedding di-
mension and delay .

In both tables, best results (gray shaded) tend to appear
towards the top-right corner and worst results are mostly
concentrated on bottom-left cells. The trend shows that, while
smoothing is necessary to reduce the effect of short-term
events, excessive amounts produced by using low and
values have a negative impact on retrieval. Notably, results ob-
tained using CENS features, where downsampling is an active
part of their design, are best for maximum and mid-range
values. Conversely, CRP results are best for maximum (no
downsampling) and mid-range values.

More importantly, the removal of timbral content partly
achieved through quantization in the CENS, or via the zeroing
of low DCT coefficients in the CRP, has the largest positive
impact on performance. We conjecture that, at least for the
training set, structural similarity is better characterized by
harmonic than by timbral information in the signal, and that
the “coloring” introduced by the sound’s spectral envelope
is unwanted for this task. This is consistent with preliminary
experiments where chroma features outperform MFCCs for
structural-based similarity [7], and with the wide use of chroma
features for music structure analysis in the literature.

D. Recurrence Plot

Besides feature extraction, the choice of time-delay embed-
ding variables, and the strategy used in the computation of the
recurrence plots, have an impact on the accuracy of retrieval.
Fig. 6 depicts results in the testing set using and

, for and .
The leftmost point of all curves correspond to a MAP of

0.863 for . It is readily observed that choosing
brings about and increase of MAP, with the majority of results
in the [0.90, 0.94] range. Most curves peak somewhere between

, showing a slight decline after that. Best perfor-
mance of , for and , is significantly
better than for the case of no embedding (see Fig. 4).

The trend, however, is far from clear for variations of , with
odd delay-values showing better performance for most . Un-
like in [29], we fail to see a clear correspondence between results
obtained using same values of , e.g., for
and . This may be due to the small size of
our training set, which creates the distinct possibility of over-
fitting. However, it is worth noting that variations of for a
given result in statistically insignificant differences of less
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Ordinal LDA Segmentation
• Low-rank decomposition of skewed self-

similarity to identify repeats	


• Learned weighting 
of multiple factors 
to segment	

Linear Discriminant 
Analysis  
between adjacent 
segments
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McFee
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Lyric Recognition
• Speech Recognition for Songs	


lots of interference	

atypical speech
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Polyphonic Audio
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Figure 1: Comparison of vocal types used in this paper, example clip ‘This Love’, Levine-Carmichael. Top row: full
polyphonic audio (including vocals, two electric guitars, bass guitar, piano and drums), Acapella audio (voice only). Bottom
row: Natural speech performed by the authors, synthesized speech using the ‘say’ command in Mac OSX.

level. An example alignment compared to the word-level
ground truth created by the authors of [14] is shown in Fig.
2

In some cases, the acoustic model provided a poor match
to the acapella audio and an alignment between the lyrics
and audio could not be found, which numbered ?? in total,
leaving us with ?? acapella tracks with time-stamped lyrics
and the word and phoneme level. Example output for this
procedure is shown in Figure 2, for a song where the word
onsets were manually entered by the authors of [13].

4. EXPERIMENTS

In this section, we provide a first attempt at extraction of
lyrics from audio, using the alignments from Section 3.2 to
validate our results. We have tested three freely-available
systems for the recognition: pocketsphinx, sphinx4, and
the google voice API. We describe these systems below.

4.1 ASR Models investigated

Pocketsphinx is a lightweight ASR system suitable for
deployment on mobile devices [9], developed at the Lan-
guage Technologies Institute at Carnegie Mellon Univer-
sity and capable of both live (continuous) and batch (pre-
recorded) speech processing. We equipped pocketsphinx
with the HUB4 broadcast news acoustic and language mod-
els, along with the CMU pronounciation dictionary of 131,000
words.

Sphinx4 is a state-of-the-art speech recognition system writ-
ten in Java. It was created via a joint collaboration be-
tween the Sphinx group at Carnegie Mellon University,

Sun Microsystems Laboratories, Mitsubishi Electric Re-
search Labs, and Hewlett Packard, with contributions from
the University of California at Santa Cruz and the Mas-
sachusetts Institute of Technology. The language model,
acoustic model and dictionary used with Sphinx4 were as
used above in pocketsphinx.

Google Voice API is the system used by google to tran-
scribe voicemail messages. We were able to post audio to
this server by a wget command and were returned a tran-
scription. Being an API, we had very little control over the
parameters of this model and could therefore not specify
an acoustic or language model. A further drawback to the
API is that the returned transcriptions lack onset times.

4.2 Audio used

As seen in Section 1, polyphonic audio has large amounts
of background noise and we expect will be extremely chal-
lenging to perform recognition on. However, performing
recognition on the acapella audio may be an easier goal.
We can also synthesize audio using text-to-speech (TTS)
techniques, which may give insights into how the language
models vary. Therefore, we investigated the following three
audio examples:

Synthesized Audio. We synthesized the lyrics obtained
from Section 3.2 using OSX ‘say’ command. Line breaks
in the lyrics were converted to periods to give sentence
structure to the TTS system.

Acapella. These are the acapella discussed in Section 3.1.

Matt McVicar
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Singing ASR
• Speech recognition adapted to singing	


needs aligned data	


• Align scraped “acapellas” and full mix	

including jumps!

13

McVicar
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“Remixavier"
• Optimal align-and-cancel of mix and acapella	


timing and channel may differ

14

Raffel
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Million Song Dataset
• Many Facets	


Echo Nest audio features  
+ metadata	

Echo Nest “taste profile” 
user-song-listen count	

Second Hand Song covers	

musiXmatch lyric BoW	

last.fm tags	

!

• Now with audio?	

resolving artist / album / track / duration  
against what.cd

15
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McFee
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MIDI-to-MSD
• Aligned MIDI to Audio is a nice transcription	


!

!

!

!

!

!

!

!

!
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De-DTMF
• Problem:  

Stationary tones confuse speech detector	

Adaptively filter sinusoids with steady amplitude
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Pitch-based Filtering
• Resample to flatten pitch, then filter

18
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Summary
• Signal Separation	


NMF, RPCA, cancellation, filtering	

!

• Music Information	

Beat tracking, segmentation	

Large datasets	

Indexing & retrieval	

!

• Speech	

Lyric recognition	

Speech detection & enhancement
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