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@ The wave equation
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@ Spherical waves & room acoustics
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@ The wave equation
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Acoustics & sound

Acoustics is the study of physical waves

(Acoustic) waves transmit energy without permanently
displacing matter (e.g. ocean waves)

Same math recurs in many domains

Intuition: pulse going down a rope
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The wave equation

Consider a small section of the rope

K

Displacement y(x), tension S, mass ¢ dx
= Lateral force is

F, = Ssin(¢2) — Ssin(¢1)
0%y
~ SW dx
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Wave equation (2)

Newton's law: F = ma

0%y 0%y
SW dx = GdXW

Call ¢ = S/e (tension to mass-per-length)
hence, the Wave Equation:

252_)/ _ 32)’

ox2 o2

... partial DE relating curvature and acceleration
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Solution to the wave equation

If y(x,t) =f(x—ct) (any f(-))

then
g—i_f'(x—ct) %Z—Cf/(x—‘:t)
0%y Y
W_ f”(X— t) W :sz//(X—Ct)

also works for y(x, t) = f(x + ct)
Hence, general solution:

20y _ %y
ox2  ot?

= y(x,t) =yt (x —ct) +y (x + ct)
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Solution to the wave equation (2)

e yt(x —ct) and y~(x + ct) are traveling waves
» shape stays constant but changes position

time 0O:

time T:

Ax=cT
—_— A ¥
,,,,, y‘

e c is traveling wave velocity (Ax/At)

@ yT moves right, y~ moves left

e resultant y(x) is sum of the two waves
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Wave equation solutions (3)

e What is the form of y™, y=7?
» any doubly-differentiable function will satisfy wave equation
@ Actual waveshapes dictated by boundary conditions
> eg y(x)att=0
> plus constraints on y at particular xs
e.g. input motion y(0,t) = m(t)
rigid termination y(L,t) =0

y |_
y(0.t) = m(t)

YD) yL)=0
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Terminations and reflections

@ System constraints:

>

>
>
>

initial y(x,0) = 0 (flat rope)

input y(0, t) = m(t) (at agent’s hand) (— y™)
termination y(L, t) = 0 (fixed end)

wave equation y(x,t) = yT(x — ct) + y~(x + ct)

@ At termination:

>

i.e.

y(L,t)=0=y"(L—ct)=—y (L+ ct)
yT and y~ are mirrored in time and amplitude around x = L

= inverted reflection at termination

[simulation
travell.m]
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Outline

@ Acoustic tubes: reflections & resonance
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Acoustic tubes

@ Sound waves travel down acoustic tubes:

pressure

» 1-dimensional; very similar to strings

@ Common situation:

» wind instrument bores
» ear canal
» vocal tract
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Pressure and velocity

e Consider air particle displacement &(x, t)
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z(x>}

W

e Particle velocity v(x, t) = %

@ hence volume velocity u(x, t) = Av(x, t)

o (Relative) air pressure p(x,t) =
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Wave equation for a tube

@ Consider elemental volume

1
X Volume dA-dx /

Mass p-dA-dx

@ Newton's law: F = ma

E6820 SAPR (Ellis & Mandel)

\ Force (p+9P/5,-d¥-dA

op ov
_ 9P 4y dA = pdA dx Y
ax panaxa:

dp
~ ox
2 0%¢

ST =
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Acoustic tube traveling waves

@ Traveling waves in particle displacement:
E0,t) =€ (x —ct) + & (x +ct)

e Call ut(a) = —cA%§+(a), Zo = %C

@ Then volume velocity:
u(x,t) = % =ut(x —ct) — u (x +ct)
@ And pressure:

p(x,t) = —=2= = Zg [ut(x — ct) + u™ (x + ct)]

@ (Scaled) sum and difference of traveling waves
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Acoustic traveling waves (2)

Different resultants for pressure and volume velocity:

Acoustic
tube
X
c
— N ut
c

A/\/_ u
—\/_(//—i—/; u(_|>_<,t) i Volume
=u*-u

velocity
W P Pressure
= ZO[u+ + U_]
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Terminations in tubes

e Equivalent of fixed point for tubes?
Solid wall forces
ux,)=0 henceut=u"

Up(t) —=—

(Volume velocity input) )

Open end forces
p(x,t) =0

hence u™ = -u"

@ Open end is like fixed point for rope:
reflects wave back inverted

@ Unlike fixed point, solid wall
reflects traveling wave without inversion
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Standing waves
e Consider (complex) sinusoidal input
uo(t) = Upel™t
o Pressure/volume must have form Ke/(@t+®)
@ Hence traveling waves:
ut(x —ct) = ‘A|ej(_kX+Wt+¢A)

u™(x + ct) = |B|e/lxtwites)

where k = w/c (spatial frequency, rad/m)
(wavelength A = ¢/f = 2mc/w)
@ Pressure and volume velocity resultants show
stationary pattern: standing waves
» even when |A| # |B|

= [simulation sintwavemov.m]
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Standing waves (2)

jot |

pressure = 0 (node)

kx = TU vol.veloc. = max
X=A/2 (antinode)
@ For lossless termination (Jut| = |u™|),

have true nodes and antinodes
@ Pressure and volume velocity are phase shifted
> in space and in time

E6820 SAPR (Ellis & Mandel) Acoustics January 29, 2009 18 / 38



Transfer function

Consider tube excited by ug(t) = Upe/~*

@ sinusoidal traveling waves must satisfy termination ‘boundary
conditions’

@ satisfied by complex constants A and B in

u(x,t) = ut(x — ct) + u (x + ct)
— Aej(—kx—i—wt) + Bej(kx—i—wt)

_ ejwt(Ae—jkx + Beij)

@ standing wave pattern will scale with input magnitude

@ point of excitation makes a big difference . ..
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Transfer function (2)

For open-ended tube of length L excited at x = 0 by Upe/“t

jwt€os k(L — x) P
€ cos kL c

u(x,t) = Up
@ (matches at x = 0, maximum at x = L)
i.e. standing wave pattern

@ e.g. varying L for a given w (and hence k):

U, & ——uU

0

e magnitude of U, depends on L (and w)
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Transfer function (3)

@ Varying w for a given L, j.e. at x =1L

U/_ . U(L, t) . 1 . 1
Up  u(0,t) coskL  cos(wl/c)

u(L)
u(0)

u(L)
——| — 00 = + =
‘ ©) at wl/c=(2r+1)w2,r=0,1,2

@ Output volume velocity always larger than input

o Unbounded for L = (2r +1)Z¢ = (2r + 1)
i.e. resonance (amplitude grows without bound)
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Resonant modes

For lossless tube with L = m%, m odd, X wavelength

u(L)

u(0) is unbounded, meaning:

@ transfer function has pole on frequency axis
@ energy at that frequency sustains indefinitely

L:3-}\1/4

&L:)\O/L]_

@ compare to time domain ...

e.g. 17.5 cm vocal tract, ¢ = 350 m/s
= wo = 27500 Hz (then 1500, 2500, ...)
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Scattering junctions

At abrupt change in area:
e pressure must be continuous

/ P, ) = Pag (X, 1)
£ K+1 4 vol. veloc. must be continuous
U ~— } U (X, 1) = U (X, 1)
/' T Uks )
« traveling waves

+ -t -
Area Ay / Ui U Ui Usg
Area A1 will be different

Solve e.g. for u,  and u,:_l: (generalized term)

2r
1+r +
+ U+t
_ Arr1
Ay
“Area ratio”
Ukl
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Concatenated tube model

Vocal tract acts as a waveguide

Lips T

cous]

Discrete approximation as varying-diameter tube

Ak' Lk

’//
I(: S~ A+t L1
- . X
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Concatenated tube resonances

Concatenated tubes — scattering junctions — lattice filter
erfz
R R
5 - X -
_@M

Can solve for transfer function — all-pole

Approximate vowel synthesis from resonances
[sound example: ah ee 00]
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© Oscillations & musical acoustics
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Oscillations & musical acoustics

Pitch (periodicity) is essence of music

=
P
J

gl

e why? why music?
Different kinds of oscillators
@ simple harmonic motion (tuning fork)
@ relaxation oscillator (voice)
@ string traveling wave (plucked/struck/bowed)

@ air column (nonlinear energy element)
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Simple harmonic motion

@ Basic mechanical oscillation
X = —w’x x = Acos(wt + ¢)

@ Spring + mass (+ damper)
F = kx

k
¢ W=

> X

@ e.g. tuning fork
@ Not great for music

» fundamental (coswt) only
> relatively low energy
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Relaxation oscillator

@ Multi-state process

» one state builds up potential (e.g. pressure)
» switch to second (release) state
» revert to first state, etc.

@ e.g. vocal folds:
~ X

‘\_/

http://www.youtube.com/watch?v=ajbcJiYhFKY
@ Oscillation period depends on force (tension)

> easy to change
» hard to keep stable
= less used in music
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Ringing string

@ e.g. our original ‘rope’ example

tension S
/ mass/length €

o~ = e

L ~L2¢

@ Many musical instruments
» guitar (plucked)
» piano (struck)
» violin (bowed)

e Control period (pitch):

» change length (fretting)
» change tension (tuning piano)
» change mass (piano strings)

@ Influence of excitation ... [pluckla.m]
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Wind tube

@ Resonant tube + energy input

nonlinear
element

energy % I— . o]
I wavegute 41| |5

w= T[—Ic_: (quarter wavelength)

scattering junction
(tonehole)

@ e.g. clarinet
> lip pressure keeps reed closed
> reflected pressure wave opens reed
» reinforced pressure wave passes through
o finger holds determine first reflection
= effective waveguide length
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Outline

@ Spherical waves & room acoustics
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Room acoustics

@ Sound in free air expands spherically:

CG

radius r
@ Spherical wave equation:
Pp 200 _ 10
or2 " ror  c20t?
solved by p(r,t) = %ej(wt—kr)

@ Energy o p? falls as 712
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Effect of rooms (1): Images
Ideal reflections are like multiple sources:

virtual (image) sources
\

reflected
N path

' f@
Y

source listener

‘Early echoes’ in room impulse response:

direct path
early echos
»

hroom(t)‘

L

@ actual reflections may be h,(t), not d(t)
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Effect of rooms (2): Modes

Regularly-spaced echoes behave like acoustic tubes

] =
QV

@ dense, sustained echoes in impulse response

Real rooms have lots of modes!

@ complex pattern of peaks in frequency response
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Reverberation

@ Exponential decay of reflections:

Proom(t)

@ Frequency-dependent

» greater absorption at high frequencies
= faster decay

@ Size-dependent

> larger rooms — longer delays — slower decay

@ Sabine's equation:
0.049V

Sa

@ Time constant varies with size, absorption
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Summary

@ Traveling waves
@ Acoustic tubes & resonances
@ Musical acoustics & periodicity

@ Room acoustics & reverberation

Parting thought
@ Musical bottles J
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