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@ Classification

© Generative models

© Gaussian models

@ Hidden Markov models
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Classification and generative models
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o Classification
» discriminative models
» discrete, categorical random variable of interest
> fixed set of categories

@ Generative models

» descriptive models

» continuous or discrete random variable(s) of interest
> can estimate parameters

» Bayes' rule makes them useful for classification
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Building a classifier

@ Define classes/attributes
» could state explicit rules
> better to define through ‘training’ examples
@ Define feature space
@ Define decision algorithm
> set parameters from examples
@ Measure performance
» calculated (weighted) error rate

Pols vowel formants: "u" (x) vs. "0" (0)
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Classification system parts

Sensor
signal l
Pre-processing/ e STFT
segmentation * Locate vowels
segment l

Feature extraction ¢ Formant extraction

feature vector l

Classification

class l

e Context constraints

Post-processing Costs/risk
OStS/TIS
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Feature extraction

@ Right features are critical

» waveform vs formants vs cepstra
» invariance under irrelevant modifications

@ Theoretically equivalent features may act very differently in a
particular classifier

> representations make important aspects explicit
» remove irrelevant information

@ Feature design incorporates ‘domain knowledge'
> although more data = less need for ‘cleverness’
e Smaller ‘feature space’ (fewer dimensions)

— simpler models (fewer parameters)
— less training data needed
— faster training

[inverting MFCCs] & Q Q &
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Optimal classification

@ Minimize probability of error with Bayes optimal decision

0 = argmax p(6; | x)

i

p(error) = /p(error]x)p(x) dx

-3 /A (1 pl6i] 9)p(x) o

» where A; is the region of x where 6; is chosen
but p(f; | x) is largest in that region
» so p(error) is minimized
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Sources of error

Xon  wa
p(xleay)-Pr(coy) X
P(xlop)-Pr(wp)

X
Pr(wpfXay) Pr(w/Xa,)
= Pr(errXay) = Pr(errXay)

@ Suboptimal threshold / regions (bias error)

» use a Bayes classifier
@ Incorrect distributions (model error)

> better distribution models / more training data
e Misleading features (‘Bayes error’)

» irreducible for given feature set
> regardless of classification scheme
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Two roads to classification

Optimal classifier is

6 = argmax p(6; | x)

but we don't know p(6; | x)

@ Can model distribution directly

e.g. Nearest neighbor, SVM, AdaBoost, neural net
» maps from inputs x to outputs 6;
» a discriminative model

e Often easier to model data likelihood p(x|6;)

> use Bayes' rule to convert to p(0; | x)
> a generative (descriptive) model
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Nearest neighbor classification

Pols vowel formants: "u" (x), "0" (0), "a" (+)
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Find closest match (Nearest Neighbor)
e Naive implementation takes O(N) time for N training points
@ As N — oo, error rate approaches twice the Bayes error rate
o With K summarized classes, takes O(K) time
@ Locality sensitive hashing gives approximate nearest neighbors
in O(dn'/<") time (Andoni and Indyk, 2006)
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Support vector machines

@ “Large margin” linear classifier for
separable data

» regularization of margin avoids
over-fitting

» can be adapted to non-separable
data (C parameter)

» made nonlinear using kernels \
k(x1,x2) = ®(x1) - ®(x2) W+ b0

@ Depends only on training points near the decision boundary,
the support vectors

@ Unique, optimal solution for given ® and C
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Generative models

@ Describe the data using structured probabilistic models

@ Observations are random variables whose distribution depends
on model parameters
@ Source distributions p(x | 6;)

> reflect variability in features

» reflect noise in observation

» generally have to be estimated from data (rather than known
in advance)

p(x|ey;)

ARy,

' X
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Generative models (2)

Three things to do with generative models

@ Evaluate the probability of an observation,
possibly under multiple parameter settings

p(x),  p(x|61), p(x|02),

@ Estimate model parameters from observed data

0 = argmin C(6%,0 | x)
o

@ Run the model forward to generate new data

%~ p(x|6)
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Random variables review

@ Random variables have joint
distributions, p(x,y)
o Marginal distribution of y

p(y) = / p(x,y) dx

@ Knowing one value in a joint
distribution constrains the remainder

o Conditional distribution of x given y

_plxy) _ pxy)
pixly) = p(y) — [p(x,y)dy
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Bayes' rule

p(x|y)p(y) = p(x,y) = p(y | x)p(x)

p(x|y)p(y)
p(y |x) = T

= can reverse conditioning given priors/marginals
@ terms can be discrete or continuous

@ generalizes to more variables

p(x,y,z) = p(x|y,z)ply,z) = p(x |y, z)p(y | z)p(2)

@ allows conversion between joint, marginals, conditionals
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Bayes' rule for generative models

@ Run generative models backwards to compare them

Likelihood
x|60
pO1x) =  2aEs - pl6)
Posterior prob Evidence = p(x) Prior prob

@ Posterior is the classification we're looking for

» combination of prior belief in each class
» with likelihood under our model
» normalized by evidence (so [ posteriors = 1)

@ Objection: priors are often unknown
but omitting them amounts to assuming they are all equal
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Computing probabilities and estimating parameters

e Want probability of the observation under a model, p(x)
> regardless of parameter settings

e Full Bayesian integral
p(x) = [ plx|6)p(6) @8

e Difficult to compute in general, approximate as p(x | 9)
» Maximum likelihood (ML)

0 = argmax p(x | )
0

» Maximum a posteriori (MAP): ML + prior

0 = argmax p(6 | x) = argmax p(x | §)p(6)
0 0
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Model checking

@ After estimating parameters, run the model forward
@ Check that

» model is rich enough to capture variation in data
> parameters are estimated correctly
> there aren't any bugs in your code

o Generate data from the model and compare it to observations

% ~ p(x|)

» are they similar under some statistics T(x) : RY — R ?
» can you find the real data set in a group of synthetic data sets?

Then go back and update your model accordingly
Gelman et al. (2003, ch. 6)
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Gaussian models

@ Easiest way to model distributions is via parametric model
» assume known form, estimate a few parameters

@ Gaussian model is simple and useful. In 1D

p(x|0;) = ﬁexp [_% (X ;“’)2]
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Gaussians in d dimensions

1 .
exp | =5 (x — i) "7 (x = )

p(x|0;) = 5

1
(2m)9/2|;|1/2

Described by a d-dimensional mean p;
and a d x d covariance matrix ¥;
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Gaussian mixture models

@ Single Gaussians cannot model

» distributions with multiple modes
» distributions with nonlinear correlations

@ What about a weighted sum?

p(x) & Y cp(x | 6k)
k

» where {ck} is a set of weights and {p(x|6k)} is a set of
Gaussian components
» can fit anything given enough components
@ Interpretation: each observation is generated by one of the
Gaussians, chosen with probability cx = p(6x)
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Gaussian mixtures (2)

e.g. nonlinear correlation

resulting
surface

0.6
. Gaussian

02 components

original data 2 R

Problem: finding cx and 6 parameters
@ easy if we knew which 0y generated each x
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Expectation-maximization (EM)

@ General procedure for estimating model parameters when
some are unknown

e.g. which GMM component generated a point

o lteratively updated model parameters ¢ to maximize Q, the
expected log-probability of observed data x and hidden data z

Q(0,06:) :/p(z|x7 0:)log p(z, x| 0)

E step: calculate p(z | x,8;) using 6,

M step: find € that maximizes Q using p(z | x, 6;)
can prove p(x|#) non-decreasing

hence maximum likelihood model

local optimum—depends on initialization

vV vy vy VvYyy
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Fitting GMMs with EM

e Want to find
» parameters of the Gaussians 0k = {pk, Lk}
» weights/priors on Gaussians cx = p(fk)
that maximize likelihood of training data x
@ If we could assign each x to a particular 0, estimation would
be direct
@ Hence treat mixture indices, z, as hidden
» form Q = E[p(x, z|0)]
» differentiate wrt model parameters
— equations for ik, Xk, ck to maximize @
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GMM EM updated equations

Parameters that maximize @

Vnk = P(zk |Xna et)
- Zn VnkXn
ek = =~
Zn Vnk
Zn Vni(Xn — i) (Xn — Mk)T
Zn Vnk

Y=

Ck:%ZVnk
n

@ Each involves vy, ‘fuzzy membership’ of x, in Gaussian k

@ Updated parameter is just sample average, weighted by fuzzy
membership
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GMM examples

Vowel data fit with different mixture counts

1 Gauss logp(x)=-1911 2 Gauss logp(x)=-1864
1600 - 1600 -

1400 1400 . .
1200 1200 : R
1000 1000 :
goo} & 800
600 - 600 :
200 400 600 800 1000 1200 200 400 600 800 1000 1200
3 Gauss logp(x)=-1849 4 Gauss logp(x)=-1840
1600 - 1600 -
1400 . ' 1400
1200 : R 1200
1000 : 1000
800} : | a00f : |
600 - 600 -
200 400 600 800 1000 1200 200 400 600 800 1000 1200
[Example. . .]
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Markov models

o A (first order) Markov model is a finite-state system whose
behavior depends only on the current state

@ “The future is independent of the past, conditioned on the
present”

e.g. generative Markov model

|SAAAAAAAABBBBBBBBBCCCCBBBBBBCE
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Hidden Markov models

@ Markov model where state sequence Q = {q,} is not directly
observable (*hidden")
@ But, observations X do depend on Q
» X, is RV that depends only on current state p(x, | qn)

State sequence
AAAA CCCl

Emission distributions

—_ a=A [la=B (jlg=C Observation @ :
o 08 p o o .
X 06 sequence HA .
a 2 Weegete el o
04 : L :

0.2 .0’0”005

0 0 o o o o

w

Xn
-

_
Sos q=A\/q=B\/q=C 3
=06
o (=P
04 x
0.2 1 .
o ole® : L H
0 1 0 10 20 30
time step n

2 3 . 4
observation X

@ can still tell something about state sequence. . .
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(Generative) Markov models

HMM is specified by parameters ©:

- states Q @ W @ O o

k a t -
1.0 0.0 0.0 0.0

- transition & é é &,_\@ k|0.9 0.1 0.0 0.0
probabilities ajj al0.0 09 0.1 00
t]0.0 00 09 0.1

g ! g :
- emISSIOn bi T
distributions bj(X) p(xlq)]A JA m

(+ initial state probabilities 7;)

aj=plaslan)  bix)=p(x|a)  m=plai)
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Markov models for sequence recognition

@ Independence of observations
» observation x, depends only on current state g,

p(X| Q) = p(x1,x2,...xn | q1, G2, ... qn)
= p(alq)p(x2]q2)---p(xn | gn)

N N
= H p(xn | qn) = H bg,(xn)
n=1 n=1

@ Markov transitions
> transition to next state g;1; depends only on g;

p(QIM)=p(q1,q,... | M)
=planlgn-1---qu)p(gn-1lan—2-.-q1)p(a2 | q1)p(q1)
= p(an | gn-1)pP(gn-1] gn—2)p(q2 | 91)p(q1)

N N
= p(q1) H P(qn | Gn-1) = mq, H a¢,_1Gn
n=2 n=2
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Model-fit calculations

@ From ‘state-based modeling':

p(X18;)=> p(X]Q,0;)p(Q|0;)

all Q
e For HMMs
N
p(X|Q) = [ bau(xn)
n=1
N
p(Q | M) = 7Tq1 H aqn—lqn
n=2

e Hence, solve for & = argmaxg, p(9; | X)
» Using Bayes' rule to convert from p(X | ©;)
@ Sum over all Q777
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Summing over all paths

Model Ml

0.7 0.8
09 oo [ oo

& @ =B

0.1 0.1

Observations Observation

States

01 2
All possible 3-emission paths Qxfrom Sto E

p(Q | M) = Mn P(Ahnldn-1)

likelihoods

p(xjg) | X1 X2 X3
Al25 02 01
N glo1 22 23

3 4timen

P(X | QM) =TTn P(Xalan) PX.Q | M)

Jo G1 92 O3 Q4
S AAAE
S AABE
S A BB E
S B B B E
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9x.7x.7x.1=0.0441
9x.7x.2x.2=0.0252
9x.2x.8x.2=0.0288
1x.8x.8x.2=0.0128

>=0.1109

25x02x0.1=0.05 0.0022
25x02x23=115 0.0290
25x22x23=12.65 0.3643
0.1x2.2x2.3=0.506_0.0065
[Z = p(X|M) =0.4020]
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The ‘forward recursion’

@ Dynamic-programming-like technique to sum over all @

o Define av,(i) as the probability of getting to state g’ at time
step n (by any path):

an(i) = p(X17X27 - Xn,qn = ql) = p(Xlna q;1)

@ any1(J) can be calculated recursively:

S
_— an+1(j) = [Eloln(i)-aij] bj(Xn+1)

=2

%]

2

©

17

3 ) i+ bj(xnea)
S an(i+l)

8
an(i) ~
Time steps n
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Forward recursion (2)

o Initialize a1 (i) = mibi(x1)
o Then total probability p(X{¥|©) = 2}9:1 an(f)
— Practical way to solve for p(X | ©;) and hence select the most
probable model (recognition)

pP(X|M1)-p(My)
. P(X [ M2)-p(M2) 1
Obser;atlons . J Choose best
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Optimal path

@ May be interested in actual g, assignments

» which state was ‘active’ at each time frame
e.g. phone labeling (for training?)

@ Total probability is over all paths
but can also solve for single best path, “Viterbi” state sequence

e Probability along best path to state ¢/, ;:
nia0) = [ max ()23} | 3r12)

» backtrack from final state to get best path
» final probability is product only (no sum)
— log-domain calculation is just summation

@ Best path often dominates total probability
p(X|©) ~ p(X,Q|©)
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Interpreting the Viterbi path

e Viterbi path assigns each x, to a state g

» performing classification based on b;(x)
at the same time applying transition constraints aj

(=
b

Viterbi labels: AaarAAAABBBRBBBBBBBCCCCBBBBBBBC

Inferred classification

4 te
3 : LR
2 N ‘

1 .

. : L :
0% 10 20 30

@ Can be used for segmentation

» train an HMM with ‘garbage’ and ‘target’ states
» decode on new data to find ‘targets’, boundaries

@ Can use for (heuristic) training

e.g. forced alignment to bootstrap speech recognizer

e.g. train classifiers based on labels. . .
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Aside: Training and test data

@ A rich model can learn every training example (overtraining)

error Test
rate data

/

Trammg/f

data

o

training or parameters

Overtraining

@ But the goal is to classify new, unseen data
» sometimes use ‘cross validation' set to decide when to stop
training
@ For evaluation results to be meaningful:

» don't test with training datal
» don't train on test data (even indirectly. . .)

Michael Mandel (E6820 SAPR) Machine learning February 7, 2008 40 / 43



Aside (2): Model complexity

@ More training data allows the use of larger models

error
rate

Test
data

/

Trainin
data g/

More data
—

training or parameters

@ More model parameters create a better fit to the training data

» more Gaussian mixture components
» more HMM states

o For fixed training set size, there will be some optimal model
size that avoids overtraining
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Summary

o Classification is making discrete (hard) decisions
@ Basis is comparison with known examples

> explicitly or via a model
o Classification models

» discriminative models, like SVMs, neural nets, boosters,
directly learn posteriors p(6; | x)

» generative models, like Gaussians, GMMs, HMMs, model
likelihoods p(x | 6)

» Bayes' rule lets us use generative models for classification

o EM allows parameter estimation even with some data missing

Is it wise to use generative models for discrimination or vice versa?

Parting thought J
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