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Classification and generative models
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Classification
I discriminative models
I discrete, categorical random variable of interest
I fixed set of categories

Generative models
I descriptive models
I continuous or discrete random variable(s) of interest
I can estimate parameters
I Bayes’ rule makes them useful for classification
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Building a classifier

Define classes/attributes
I could state explicit rules
I better to define through ‘training’ examples

Define feature space

Define decision algorithm
I set parameters from examples

Measure performance
I calculated (weighted) error rate
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Pols vowel formants: "u" (x) vs. "o" (o)
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Classification system parts

signal

segment

feature vector

class

Pre-processing/

segmentation

Feature extraction

Classification

Post-processing

Sensor

•  STFT

•  Locate vowels

•  Formant extraction

•  Context constraints

•  Costs/risk
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Feature extraction

Right features are critical
I waveform vs formants vs cepstra
I invariance under irrelevant modifications

Theoretically equivalent features may act very differently in a
particular classifier

I representations make important aspects explicit
I remove irrelevant information

Feature design incorporates ‘domain knowledge’
I although more data ⇒ less need for ‘cleverness’

Smaller ‘feature space’ (fewer dimensions)

→ simpler models (fewer parameters)
→ less training data needed
→ faster training

[inverting MFCCs]
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Optimal classification

Minimize probability of error with Bayes optimal decision

θ̂ = argmax
θi

p(θi | x)

p(error) =

∫
p(error | x)p(x) dx

=
∑

i

∫
Λi

(1− p(θi | x))p(x) dx

I where Λi is the region of x where θi is chosen
. . . but p(θi | x) is largest in that region

I so p(error) is minimized
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Sources of error

p(x|ω2)·Pr(ω2)

p(x|ω1)·Pr(ω1)

x

Xω2
^

Pr(ω1|Xω2)

= Pr(err|Xω2)

^

^

Pr(ω2|Xω1)

= Pr(err|Xω1)

^

^

Xω1
^

Suboptimal threshold / regions (bias error)
I use a Bayes classifier

Incorrect distributions (model error)
I better distribution models / more training data

Misleading features (‘Bayes error’)
I irreducible for given feature set
I regardless of classification scheme
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Two roads to classification

Optimal classifier is

θ̂ = argmax
θi

p(θi | x)

but we don’t know p(θi | x)

Can model distribution directly

e.g. Nearest neighbor, SVM, AdaBoost, neural net
I maps from inputs x to outputs θi
I a discriminative model

Often easier to model data likelihood p(x | θi )
I use Bayes’ rule to convert to p(θi | x)
I a generative (descriptive) model
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Nearest neighbor classification

0 200 400 600 800 1000 1200 1400 1600 1800

600

800

1000

1200

1400

1600

1800
Pols vowel formants: "u" (x), "o" (o), "a" (+)

F1 / Hz

F
2 

/ H
z

x

*

+

o

new observation x

Find closest match (Nearest Neighbor)

Näıve implementation takes O(N) time for N training points

As N →∞, error rate approaches twice the Bayes error rate

With K summarized classes, takes O(K ) time

Locality sensitive hashing gives approximate nearest neighbors
in O(dn1/c2

) time (Andoni and Indyk, 2006)
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Support vector machines

“Large margin” linear classifier for
separable data

I regularization of margin avoids
over-fitting

I can be adapted to non-separable
data (C parameter)

I made nonlinear using kernels
k(x1, x2) = Φ(x1) · Φ(x2) .

(w  x) + b  = –1.

(w  x) + b  = + 1.

x 1

y

y i  = +1

w

(w  x) + b  = 0

x 2

i  = –  1

Depends only on training points near the decision boundary,
the support vectors

Unique, optimal solution for given Φ and C
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Generative models

Describe the data using structured probabilistic models

Observations are random variables whose distribution depends
on model parameters

Source distributions p(x | θi )
I reflect variability in features
I reflect noise in observation
I generally have to be estimated from data (rather than known

in advance)

p(x|ωi)

x

ω1 ω2 ω3 ω4
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Generative models (2)

Three things to do with generative models

Evaluate the probability of an observation,
possibly under multiple parameter settings

p(x), p(x | θ1), p(x | θ2), . . .

Estimate model parameters from observed data

θ̂ = argmin
θ

C (θ∗, θ | x)

Run the model forward to generate new data

x̃ ∼ p(x | θ̂)
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Random variables review

Random variables have joint
distributions, p(x , y)

Marginal distribution of y

p(y) =

∫
p(x , y) dx

Knowing one value in a joint
distribution constrains the remainder

Conditional distribution of x given y

p(x | y) ≡ p(x , y)

p(y)
=

p(x , y)∫
p(x , y) dy

xµx

σx

σxyσyµy

y
p(x,y)

p(
y)

p(x)

x

y

Y

p(x,y)

p(x | y = Y )
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Bayes’ rule

p(x | y)p(y) = p(x , y) = p(y | x)p(x)

∴ p(y | x) =
p(x | y)p(y)

p(x)

⇒ can reverse conditioning given priors/marginals

terms can be discrete or continuous

generalizes to more variables

p(x , y , z) = p(x | y , z)p(y , z) = p(x | y , z)p(y | z)p(z)

allows conversion between joint, marginals, conditionals
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Bayes’ rule for generative models

Run generative models backwards to compare them

Likelihood

p(θ | x) = p(x | θ)R
p(x | θ)p(θ)

· p(θ)

Posterior prob Evidence = p(x) Prior prob

Posterior is the classification we’re looking for
I combination of prior belief in each class
I with likelihood under our model
I normalized by evidence (so

∫
posteriors = 1)

Objection: priors are often unknown

. . . but omitting them amounts to assuming they are all equal

Michael Mandel (E6820 SAPR) Machine learning February 7, 2008 17 / 43



Computing probabilities and estimating parameters

Want probability of the observation under a model, p(x)
I regardless of parameter settings

Full Bayesian integral

p(x) =

∫
p(x | θ)p(θ) dθ

Difficult to compute in general, approximate as p(x | θ̂)
I Maximum likelihood (ML)

θ̂ = argmax
θ

p(x | θ)

I Maximum a posteriori (MAP): ML + prior

θ̂ = argmax
θ

p(θ | x) = argmax
θ

p(x | θ)p(θ)
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Model checking

After estimating parameters, run the model forward

Check that
I model is rich enough to capture variation in data
I parameters are estimated correctly
I there aren’t any bugs in your code

Generate data from the model and compare it to observations

x̃ ∼ p(x | θ)

I are they similar under some statistics T (x) : Rd 7→ R ?
I can you find the real data set in a group of synthetic data sets?

Then go back and update your model accordingly

Gelman et al. (2003, ch. 6)
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Gaussian models

Easiest way to model distributions is via parametric model
I assume known form, estimate a few parameters

Gaussian model is simple and useful. In 1D

p(x | θi ) =
1

σi

√
2π

exp

[
−1

2

(
x − µi

σi

)2
]

Parameters mean µi and variance σi → fit

p(x|ωi)

xµi

σi

PM
PM

e1/2
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Gaussians in d dimensions

p(x | θi ) =
1

(2π)d/2|Σi |1/2
exp

[
−1

2
(x− µi )

T Σ−1
i (x− µi )

]
Described by a d-dimensional mean µi

and a d × d covariance matrix Σi
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Gaussian mixture models

Single Gaussians cannot model
I distributions with multiple modes
I distributions with nonlinear correlations

What about a weighted sum?

p(x) ≈
∑
k

ckp(x | θk)

I where {ck} is a set of weights and {p(x | θk)} is a set of
Gaussian components

I can fit anything given enough components

Interpretation: each observation is generated by one of the
Gaussians, chosen with probability ck = p(θk)
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Gaussian mixtures (2)

e.g. nonlinear correlation
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Problem: finding ck and θk parameters

easy if we knew which θk generated each x
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Expectation-maximization (EM)

General procedure for estimating model parameters when
some are unknown

e.g. which GMM component generated a point

Iteratively updated model parameters θ to maximize Q, the
expected log-probability of observed data x and hidden data z

Q(θ, θt) =

∫
z
p(z | x , θt) log p(z , x | θ)

I E step: calculate p(z | x , θt) using θt
I M step: find θ that maximizes Q using p(z | x , θt)
I can prove p(x | θ) non-decreasing
I hence maximum likelihood model
I local optimum—depends on initialization
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Fitting GMMs with EM

Want to find
I parameters of the Gaussians θk = {µk ,Σk}
I weights/priors on Gaussians ck = p(θk)

. . . that maximize likelihood of training data x

If we could assign each x to a particular θk , estimation would
be direct

Hence treat mixture indices, z , as hidden
I form Q = E [p(x , z | θ)]
I differentiate wrt model parameters
→ equations for µk , Σk , ck to maximize Q
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GMM EM updated equations

Parameters that maximize Q

νnk ≡ p(zk | xn, θt)

µk =

∑
n νnkxn∑
n νnk

Σk =

∑
n νnk(xn − µk)(xn − µk)T∑

n νnk

ck =
1

N

∑
n

νnk

Each involves νnk , ‘fuzzy membership’ of xn in Gaussian k

Updated parameter is just sample average, weighted by fuzzy
membership
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GMM examples
Vowel data fit with different mixture counts
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[Example. . . ]

Michael Mandel (E6820 SAPR) Machine learning February 7, 2008 28 / 43



Outline

1 Classification

2 Generative models

3 Gaussian models

4 Hidden Markov models

Michael Mandel (E6820 SAPR) Machine learning February 7, 2008 29 / 43



Markov models

A (first order) Markov model is a finite-state system whose
behavior depends only on the current state

“The future is independent of the past, conditioned on the
present”

e.g. generative Markov model
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Hidden Markov models

Markov model where state sequence Q = {qn} is not directly
observable (‘hidden’)

But, observations X do depend on Q
I xn is RV that depends only on current state p(xn | qn)
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can still tell something about state sequence. . .
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(Generative) Markov models

HMM is specified by parameters Θ:

k a t

k a t •


k a t •


•
•


•


•


•

k

a

t

k a t •


0.9  0.1  0.0  0.0
1.0  0.0  0.0  0.0

0.0  0.9  0.1  0.0
0.0  0.0  0.9  0.1

p(x|q)

x

-  states qi

-  transition

   probabilities aij

-  emission 

   distributions bi(x)

(+ initial state probabilities πi )

aij ≡ p(q j
n | qi

n−1) bi (x) ≡ p(x | qi ) πi ≡ p(qi
1)
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Markov models for sequence recognition
Independence of observations

I observation xn depends only on current state qn

p(X |Q) = p(x1, x2, . . . xN | q1, q2, . . . qN)

= p(x1 | q1)p(x2 | q2) · · · p(xN | qN)

=
N∏

n=1

p(xn | qn) =
N∏

n=1

bqn(xn)

Markov transitions
I transition to next state qi+1 depends only on qi

p(Q |M) = p(q1, q2, . . . |M)

= p(qN | qN−1 . . . q1)p(qN−1 | qN−2 . . . q1)p(q2 | q1)p(q1)

= p(qN | qN−1)p(qN−1 | qN−2)p(q2 | q1)p(q1)

= p(q1)
N∏

n=2

p(qn | qn−1) = πq1

N∏
n=2

aqn−1qn
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Model-fit calculations

From ‘state-based modeling’:

p(X |Θj) =
∑
all Q

p(X |Q,Θj)p(Q |Θj)

For HMMs

p(X |Q) =
N∏

n=1

bqn(xn)

p(Q |M) = πq1

N∏
n=2

aqn−1qn

Hence, solve for Θ̂ = argmaxΘj
p(Θj |X )

I Using Bayes’ rule to convert from p(X |Θj)

Sum over all Q???
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Summing over all paths

q0 q1 q2 q3 q4

S A A A E
S A A B E
S A B B E
S B B B E

.9 x .7 x .7 x .1 = 0.0441

.9 x .7 x .2 x .2 = 0.0252

.9 x .2 x .8 x .2 = 0.0288

.1 x .8 x .8 x .2 = 0.0128
Σ = 0.1109 Σ = p(X | M) = 0.4020

2.5 x 0.2 x 0.1 = 0.05
2.5 x 0.2 x 2.3 = 1.15
2.5 x 2.2 x 2.3 = 12.65
0.1 x 2.2 x 2.3 = 0.506
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p(Q | M) = Πn p(qn|qn-1) p(X | Q,M) = Πn p(xn|qn) p(X,Q | M)

Observation
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The ‘forward recursion’

Dynamic-programming-like technique to sum over all Q

Define αn(i) as the probability of getting to state qi at time
step n (by any path):

αn(i) = p(x1, x2, . . . xn, qn = qi ) ≡ p(X n
1 , q

i
n)

αn+1(j) can be calculated recursively:

Time steps n

M
o

d
el

 s
ta

te
s 

qi

αn(i+1)

αn(i)

ai+1j

aij

bj(xn+1)

αn+1(j) = [Σ αn(i)·aij]·bj(xn+1)
i=1

S
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Forward recursion (2)

Initialize α1(i) = πibi (x1)

Then total probability p(XN
1 |Θ) =

∑S
i=1 αN(i)

→ Practical way to solve for p(X |Θj) and hence select the most
probable model (recognition)

Observations

X

p(X | M1)·p(M1)

p(X | M2)·p(M2)

Choose best
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Optimal path

May be interested in actual qn assignments
I which state was ‘active’ at each time frame

e.g. phone labeling (for training?)

Total probability is over all paths

. . . but can also solve for single best path, “Viterbi” state sequence

Probability along best path to state qj
n+1:

α̂n+1(j) =

[
max

i
{α̂n(i)aij}

]
bj(xn+1)

I backtrack from final state to get best path
I final probability is product only (no sum)
→ log-domain calculation is just summation

Best path often dominates total probability

p(X |Θ) ≈ p(X , Q̂ |Θ)
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Interpreting the Viterbi path

Viterbi path assigns each xn to a state qi

I performing classification based on bi (x)
. . . at the same time applying transition constraints aij

0 10 20 300

1

2

3

Viterbi labels:

Inferred classification

x n
AAAAAAAABBBBBBBBBBBCCCCBBBBBBBC

Can be used for segmentation
I train an HMM with ‘garbage’ and ‘target’ states
I decode on new data to find ‘targets’, boundaries

Can use for (heuristic) training

e.g. forced alignment to bootstrap speech recognizer
e.g. train classifiers based on labels. . .
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Aside: Training and test data

A rich model can learn every training example (overtraining)

But the goal is to classify new, unseen data
I sometimes use ‘cross validation’ set to decide when to stop

training

For evaluation results to be meaningful:
I don’t test with training data!
I don’t train on test data (even indirectly. . . )
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Aside (2): Model complexity

More training data allows the use of larger models

More model parameters create a better fit to the training data
I more Gaussian mixture components
I more HMM states

For fixed training set size, there will be some optimal model
size that avoids overtraining
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Summary

Classification is making discrete (hard) decisions

Basis is comparison with known examples
I explicitly or via a model

Classification models
I discriminative models, like SVMs, neural nets, boosters,

directly learn posteriors p(θi | x)
I generative models, like Gaussians, GMMs, HMMs, model

likelihoods p(x | θ)
I Bayes’ rule lets us use generative models for classification

EM allows parameter estimation even with some data missing

Parting thought

Is it wise to use generative models for discrimination or vice versa?
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