#### EE E6820: Speech & Audio Processing & Recognition

# Lecture 10: Signal Separation

Dan Ellis <dpwe@ee.columbia.edu>
Michael Mandel <mim@ee.columbia.edu>

Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/~dpwe/e6820

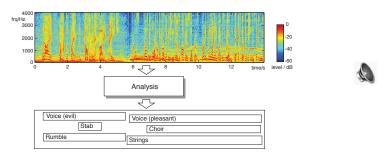
April 14, 2009

- Sound mixture organization
- 2 Computational auditory scene analysis
- 3 Independent component analysis
- Model-based separation

## Outline

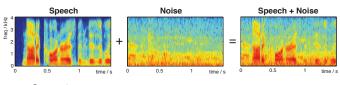
- Sound mixture organization
- 2 Computational auditory scene analysis
- Independent component analysis
- 4 Model-based separation

## Sound Mixture Organization



- Auditory Scene Analysis: describing a complex sound in terms of high-level sources / events
  - ... like listeners do
- Hearing is ecologically grounded
  - reflects 'natural scene' properties
  - subjective, not absolute

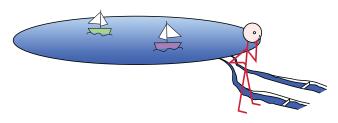
## Sound, mixtures, and learning





- Sound
  - carries useful information about the world
  - complements vision
- Mixtures
  - ... are the rule, not the exception
    - medium is 'transparent', sources are many
    - must be handled!
- Learning
  - the 'speech recognition' lesson: let the data do the work
  - like listeners

# The problem with recognizing mixtures



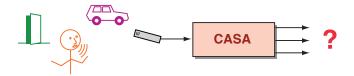
"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman, 1990)

- Received waveform is a mixture
  - two sensors, N signals . . . underconstrained
- Disentangling mixtures as the primary goal?
  - perfect solution is not possible
  - need experience-based constraints

## Approaches to sound mixture recognition

- Separate signals, then recognize
  - e.g. Computational Auditory Scene Analysis (CASA), Independent Component Analysis (ICA)
    - ▶ nice, if you can do it
- Recognize combined signal
  - 'multicondition training'
  - combinatorics...
- Recognize with parallel models
  - full joint-state space?
  - divide signal into fragments, then use missing-data recognition

## What is the goal of sound mixture analysis?



- Separate signals?
  - output is unmixed waveforms
  - underconstrained, very hard . . .
  - too hard? not required?
- Source classification?
  - output is set of event-names
  - listeners do more than this...
- Something in-between?
   Identify independent sources + characteristics
  - standard task, results?

## Segregation vs. Inference

- Source separation requires attribute separation
  - sources are characterized by attributes (pitch, loudness, timbre, and finer details)
  - need to identify and gather different attributes for different sources...
- Need representation that segregates attributes
  - spectral decomposition
  - periodicity decomposition
- Sometimes values can't be separated
  - e.g. unvoiced speech
    - maybe infer factors from probabilistic model?

$$p(O,x,y) \rightarrow p(x,y \mid O)$$

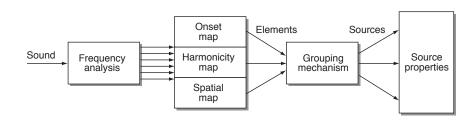
or: just skip those values & infer from higher-level context

## Outline

- Sound mixture organization
- 2 Computational auditory scene analysis
- Independent component analysis
- Model-based separation

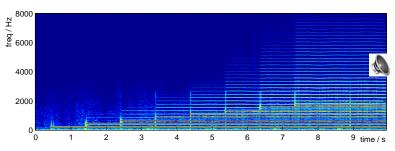
# Auditory Scene Analysis (Bregman, 1990)

- How do people analyze sound mixtures?
  - break mixture into small elements (in time-freq)
  - elements are grouped in to sources using cues
  - sources have aggregate attributes
- Grouping 'rules' (Darwin and Carlyon, 1995)
  - cues: common onset/offset/modulation, harmonicity, spatial location, . . .



## Cues to simultaneous grouping

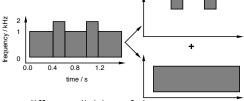
Elements + attributes



- Common onset
  - simultaneous energy has common source
- Periodicity
  - energy in different bands with same cycle
- Other cues
  - spatial (ITD/IID), familiarity, . . .

#### The effect of context

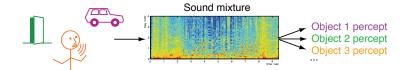
- Context can create an 'expectation'
  i.e. a bias towards a particular interpretation
- e.g. Bregman's "old-plus-new" principle:
  - ► A change in a signal will be interpreted as an added source whenever possible





► a different division of the same energy depending on what preceded it

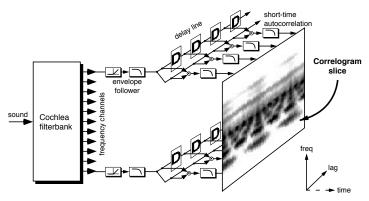
# Computational Auditory Scene Analysis (CASA)



- Goal: Automatic sound organization
  - Systems to 'pick out' sounds in a mixture
  - ... like people do
- e.g. voice against a noisy background
  - ▶ to improve speech recognition
  - Approach
    - psychoacoustics describes grouping 'rules'
    - ... just implement them?

## CASA front-end processing

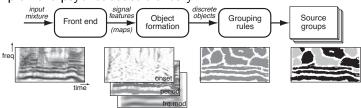
Correlogram: Loosely based on known/possible physiology



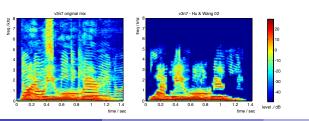
- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors

## Bottom-Up Approach (Brown and Cooke, 1994)

Implement psychoacoustic theory

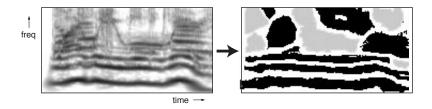


- left-to-right processing
- uses common onset & periodicity cues
- Able to extract voiced speech





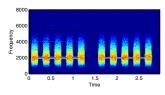
## Problems with 'bottom-up' CASA

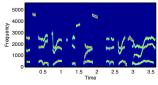


- Circumscribing time-frequency elements
  - need to have 'regions', but hard to find
- Periodicity is the primary cue
  - ▶ how to handle aperiodic energy?
- Resynthesis via masked filtering
  - cannot separate within a single t-f element
- Bottom-up leaves no ambiguity or context
  - how to model illusions?

## Restoration in sound perception

- Auditory 'illusions' = hearing what's not there
- The continuity illusion & Sinewave Speech (SWS)







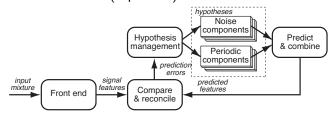
- duplex perception
- What kind of model accounts for this?
  - ▶ is it an important part of hearing?

## Adding top-down constraints: Prediction-Driven CASA

- Perception is not direct
   but a search for plausible hypotheses -
- Data-driven (bottom-up)...



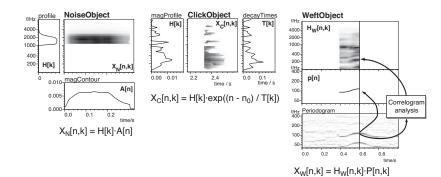
- objects irresistibly appear
- vs. Prediction-driven (top-down)



- match observations with a 'world-model'
- need world-model constraints...

## Generic sound elements for PDCASA (Ellis, 1996)

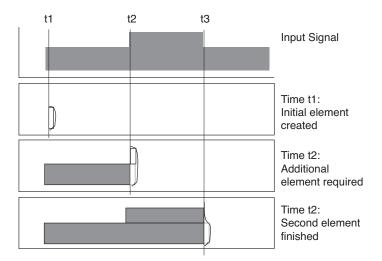
- Goal is a representational space that
  - covers real-world perceptual sounds
  - minimal parameterization (sparseness)
  - separate attributes in separate parameters



Object hierarchies built on top...

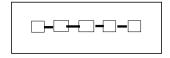
## PDCASA for old-plus-new

#### Incremental analysis



## PDCASA for the continuity illusion

- Subjects hear the tone as continuous ... if the noise is a plausible masker
- Data-driven analysis gives just visible portions:

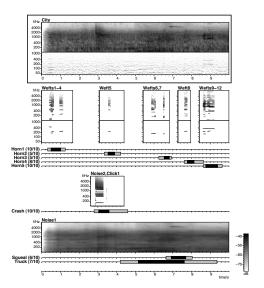


• Prediction-driven can infer masking:



#### Prediction-Driven CASA

Explain a complex sound with basic elements





#### Aside: Ground Truth

- What do people hear in sound mixtures?
  - do interpretations match?
- → Listening tests to collect 'perceived events':



#### Aside: Evaluation

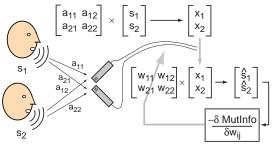
- Evaluation is a big problem for CASA
  - what is the goal, really?
  - what is a good test domain?
  - how do you measure performance?
- SNR improvement
  - tricky to derive from before/after signals: correspondence problem
  - can do with fixed filtering mask
  - differentiate removing signal from adding noise
- Speech Recognition (ASR) improvement
  - recognizers often sensitive to artifacts
- 'Real' task?
  - mixture corpus with specific sound events...

## Outline

- Sound mixture organization
- 2 Computational auditory scene analysis
- Independent component analysis
- 4 Model-based separation

# Independent Component Analysis (ICA) (Bell and Sejnowski, 1995, etc.)

 If mixing is like matrix multiplication, then separation is searching for the inverse matrix

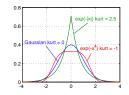


- i.e.  $W \approx A^{-1}$ 
  - ▶ with *N* different versions of the mixed signals (microphones), we can find *N* different input contributions (sources)
  - how to rate quality of outputs? i.e. when do outputs look separate?

## Gaussianity, Kurtosis, & Independence

- A signal can be characterized by its PDF p(x)
  - i.e. as if successive time values are drawn from a random variable (RV)
    - Gaussian PDF is 'least interesting'
    - Sums of independent RVs (PDFs convolved) tend to Gaussian PDF (central limit theorem)
- Measures of deviations from Gaussianity:
   4th moment is Kurtosis ("bulging")

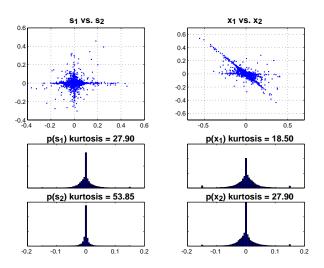
$$\operatorname{kurt}(y) = \operatorname{\mathsf{E}}\left[\left(\frac{y-\mu}{\sigma}\right)^4\right] - 3$$



- kurtosis of Gaussian is zero (this def.)
- 'heavy tails' → kurt > 0
- ▶ closer to uniform dist. → kurt < 0</p>
- Directly related to KL divergence from Gaussian PDF

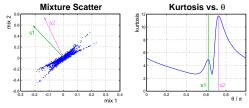
## Independence in Mixtures

Scatter plots & Kurtosis values



## Finding Independent Components

- Sums of independent RVs are more Gaussian
  - → minimize Gaussianity to undo sums
  - i.e. search over  $w_{ij}$  terms in inverse matrix





• Solve by Gradient descent or Newton-Raphson:

$$w^{+} = E[xg(w^{T}x)] - E[g'(w^{T}x)]w$$
  
 $w = \frac{w^{+}}{\|w^{+}\|}$ 

"Fast ICA", (Hyvärinen and Oja, 2000)
 http://www.cis.hut.fi/projects/ica/fastica/

#### Limitations of ICA

- Assumes instantaneous mixing
  - real world mixtures have delays & reflections
  - STFT domain?

$$x_1(t) = a_{11}(t) * s_1(t) + a_{12}(t) * s_2(t)$$
  

$$\Rightarrow X_1(\omega) = A_{11}(\omega)S_1(\omega) + A_{12}(\omega)S_2(\omega)$$

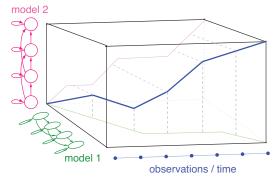
- ightharpoonup Solve  $\omega$  subbands separately, match up answers
- Searching for best possible inverse matrix
  - ▶ cannot find more than *N* outputs from *N* inputs
  - but: "projection pursuit" ideas + time-frequency masking...
- Cancellation inherently fragile
  - $\hat{s}_1 = w_{11}x_1 + w_{12}x_2$  to cancel out  $s_2$
  - sensitive to noise in x channels
  - time-varying mixtures are a problem

## Outline

- Sound mixture organization
- 2 Computational auditory scene analysis
- Independent component analysis
- Model-based separation

## Model-Based Separation: HMM decomposition

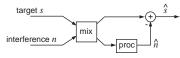
- (e.g. Varga and Moore, 1990; Gales and Young, 1993)
- Independent state sequences for 2+ component source models



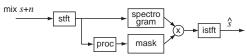
- New combined state space  $q' = q1 \times q2$ 
  - need pdfs for combinations  $p(X | q_1, q_2)$

# One-channel Separation: Masked Filtering

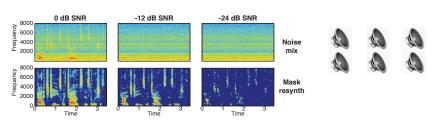
Multichannel → ICA: Inverse filter and cancel



One channel: find a time-frequency mask

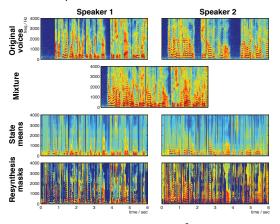


 Cannot remove overlapping noise in t-f cells, but surprisingly effective (psych masking?):



# "One microphone source separation"

- (Roweis, 2001)
- ullet State sequences o t-f estimates o mask





- ▶ 1000 states/model ( $\rightarrow$  10<sup>6</sup> transition probs.)
- simplify by subbands (coupled HMM)?

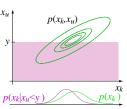
## Speech Fragment Recognition

- (Barker et al., 2005)
- Signal separation is too hard! Instead:
  - segregate features into partially-observed sources
  - then classify
- Made possible by missing data recognition
  - integrate over uncertainty in observations for true posterior distribution
- Goal: Relate clean speech models  $P(X \mid M)$  to speech-plus-noise mixture observations
  - ... and make it tractable

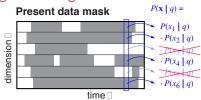
# Missing Data Recognition

- Speech models  $p(x \mid m)$  are multidimensional...
  - i.e. means, variances for every freq. channel
    - need values for all dimensions to get  $p(\cdot)$
- But: can evaluate over a subset of dimensions  $x_k$

$$p(x_k \mid m) = \int p(x_k, x_u \mid m) \, dx_u$$



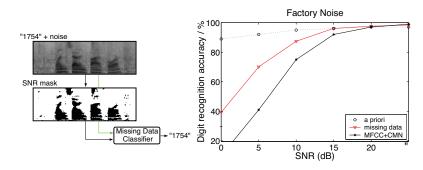
• Hence, missing data recognition:



hard part is finding the mask (segregation)

## Missing Data Results

- Estimate static background noise level N(f)
- Cells with energy close to background are considered "missing"



- must use spectral features!
- But: nonstationary noise → spurious mask bits
  - can we try removing parts of mask?

## Comparing different segregations

 Standard classification chooses between models M to match source features X

$$M^* = \underset{M}{\operatorname{argmax}} p(M \mid X) = \underset{M}{\operatorname{argmax}} p(X \mid M)p(M)$$

 Mixtures: observed features Y, segregation S, all related by p(X | Y, S)



Joint classification of model and segregation:

$$p(M, S \mid Y) = p(M) \int p(X \mid M) \frac{p(X \mid Y, S)}{p(X)} dX p(S \mid Y)$$

 $\triangleright$  P(X) no longer constant

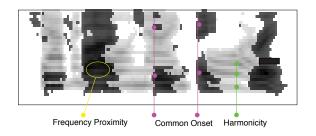
## Calculating fragment matches

$$p(M,S \mid Y) = p(M) \int p(X \mid M) \frac{p(X \mid Y,S)}{p(X)} dX p(S \mid Y)$$

- $p(X \mid M)$  the clean-signal feature model
- $\frac{p(X \mid Y, S)}{p(X)}$  is X 'visible' given segregation?
- Integration collapses some bands...
- p(S|Y) segregation inferred from observation
  - just assume uniform, find S for most likely M
  - $\triangleright$  or: use extra information in Y to distinguish Ss...
- Result:
  - probabilistically-correct relation between
  - clean-source models  $p(X \mid M)$  and
  - ▶ inferred, recognized source + segregation p(M, S | Y)

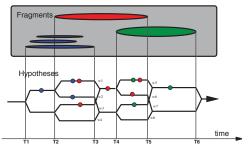
## Using CASA features

- $p(S \mid Y)$  links acoustic information to segregation
  - is this segregation worth considering?
  - ▶ how likely is it?
- Opportunity for CASA-style information to contribute
  - periodicity/harmonicity: these different frequency bands belong together
  - onset/continuity: this time-frequency region must be whole



## Fragment decoding

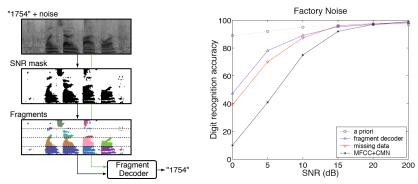
• Limiting *S* to whole fragments makes hypothesis search tractable:



- choice of fragments reflects  $p(S \mid Y)p(X \mid M)$
- i.e. best combination of segregation and match to speech models
- Merging hypotheses limits space demands
  - ... but erases specific history

## Speech fragment decoder results

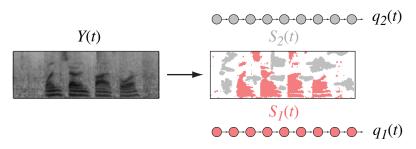
- Simple p(S | Y) model forces contiguous regions to stay together
  - ▶ big efficiency gain when searching *S* space



Clean-models-based recognition rivals trained-in-noise recognition

## Multi-source decoding

Search for more than one source



- Mutually-dependent data masks
  - disjoint subsets of cells for each source
  - each model match  $p(M_x | S_x, Y)$  is independent
  - masks are mutually dependent:  $p(S_1, S_2 | Y)$
- Huge practical advantage over full search

## Summary

- Auditory Scene Analysis:
  - ▶ Hearing: partially understood, very successful
- Independent Component Analysis:
  - Simple and powerful, some practical limits
- Model-based separation:
  - Real-world constraints, implementation tricks

## Parting thought

Mixture separation the main obstacle in many applications *e.g.* soundtrack recognition

#### References

- Albert S. Bregman. *Auditory Scene Analysis: The Perceptual Organization of Sound*. The MIT Press, 1990. ISBN 0262521954.
- C.J. Darwin and R.P. Carlyon. Auditory grouping. In B.C.J. Moore, editor, *The Handbook of Perception and Cognition*, Vol 6, Hearing, pages 387–424. Academic Press, 1995.
- G. J. Brown and M. P. Cooke. Computational auditory scene analysis. Computer speech and language, 8:297–336, 1994.
- D. P. W. Ellis. *Prediction-driven computational auditory scene analysis*. PhD thesis, Department of Electrtical Engineering and Computer Science, M.I.T., 1996.
- Anthony J. Bell and Terrence J. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. *Neural Computation*, 7(6):1129–1159, 1995. ftp://ftp.cnl.salk.edu/pub/tony/bell.blind.ps.Z.
- A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications. *Neural Networks*, 13(4-5):411-430, 2000. http://www.cis.hut.fi/aapo/papers/IJCNN99\_tutorialweb/.
- A. Varga and R. Moore. Hidden markov model decomposition of speech and noise. In Proceedings of the 1990 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 845–848, 1990.
- M.J.F. Gales and S.J. Young. Hmm recognition in noise using parallel model combination. In *Proc. Eurospeech-93*, volume 2, pages 837–840, 1993.
- S. Roweis. One-microphone source separation. In NIPS, volume 11, pages 609–616. MIT Press, Cambridge MA, 2001.
- Jon Barker, Martin Cooke, and Daniel P. W. Ellis. Decoding speech in the presence of other sources. *Speech Communication*, 45(1):5–25, 2005. URL

http://www.ee.columbia.edu/~dpwe/pubs/BarkCE05-sfd.pdf.

45 / 45