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Abstract—Autoregressive (AR) models are commonly obtained
from the linear autocorrelation of a discrete-time signal to obtain
an all-pole estimate of the signal’s power spectrum. We are con-
cerned with the dual, frequency-domain problem. We derive the re-
lationship between the discrete-frequency linear autocorrelation of
a spectrum and the temporal envelope of a signal. In particular, we
focus on the real spectrum obtained by a type-I odd-length discrete
cosine transform (DCT-Io) which leads to the all-pole envelope of
the corresponding symmetric squared Hilbert temporal envelope.
A compact linear algebra notation for the familiar concepts of AR
modeling clearly reveals the dual symmetries between modeling in
time and frequency domains. By using AR models in both domains
in cascade, we can jointly estimate the temporal and spectral en-
velopes of a signal. We model the temporal envelope of the residual
of regular AR modeling to efficiently capture signal structure in
the most appropriate domain.

Index Terms—Autoregressive (AR) modeling, frequency-domain
linear prediction (FDLP), Hilbert envelope, linear prediction in
spectral domain (LPSD), temporal noise shaping (TNS).

I. INTRODUCTION

AUTOREGRESSIVE (AR) modeling identifies and ex-
ploits a particularly simple form of redundancy in signal

sequences by finding the optimal linear combination of a
fixed-length history to predict the next sample—hence the al-
ternative name of linear predictive (LP) modeling. By extracting
the linear dependence (correlation) in a signal, AR models find
many applications in signal compression and communications,
but the form of the model itself—which describes the original
sequence as the result of passing a temporally uncorrelated
(white) excitation sequence through a fixed all-pole digital
filter—leads to some interesting and important applications
in itself. The filter comprises a low-dimensional parametric
approximation of the signal, or specifically its broad spectral
structure, since the magnitude of the Fourier transform of
the signal is the product of the white excitation’s spectrum
(expected to be flat) and coarse spectral variation provided by
the poles of the AR filter.

One prominent application domain relates to human voice,
since voiced speech is well modeled as a broadband, pseudo-pe-
riodic glottal pulse train filtered by resonances (poles) in the
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vocal tract, identified with formants. Formants carry much of
the linguistic information in speech, and many formant tracking
applications operate by fitting AR models to short-time win-
dows of the speech signal, factoring to identify the individual
poles, then constructing formant trajectories from the succes-
sion of center frequencies of these poles [1]. While explicit for-
mant tracks turn out to be a brittle basis for speech recognition,
the properties of AR modeling to suppress fine detail while pre-
serving the broad structure of formants has led to its widespread
use in speech recognition preprocessing, for instance in “percep-
tual linear prediction” (PLP) features [2]. In this application, the
all-pole filter defined by the optimal difference equation coeffi-
cients is taken as the description of a smoothed spectral enve-
lope—the magnitude of the -transform of that filter evaluated
on the unit circle—which is then described by its cepstral coef-
ficients for further statistical modeling in a speech recognizer.

This paper is concerned with using AR models to form
smoothed, parametric models of temporal rather than spectral
envelopes. The duality between the time and frequency do-
mains means that AR modeling can be applied equally well to
sequences which are discrete spectra instead of time-domain se-
quences. In this case the magnitude evaluated on the unit circle
in the -plane describes the time-domain envelope—specifi-
cally the squared Hilbert envelope. Just as conventional AR
models are used most effectively on signals with sharp spectral
peaks that can be well modeled with individual complex pole
pairs, so AR models of the temporal envelope are most appro-
priate for “peaky” temporal envelopes, and individual poles
in the resulting polynomial may be directly associated with
specific energy maxima in the time waveform.

In the same way that a parametric description of the spectral
envelope leads to numerous applications, a temporal envelope
model can be useful. For signals that are expected to consist of
a number of distinct transients, (be they the isolated vocal pitch
pulses of low-pitch male speech, or the irregularly spaced crack-
ling of burning log) fitting an AR model can constrain the mod-
eled envelope to be a sequence of maxima, and the AR fitting
procedure can remove finer-scale detail. This suppression of de-
tail is particularly useful in classification applications, where
the goal is to extract the general form of the signal regardless
of minor variations. Because the envelopes modeled by AR can
include sharp, narrow maxima even for low-order models, this
approach can be preferable to the implicit low-pass filtering of
a low-order Fourier approximation.

This idea was first applied in audio coding by Herre and John-
ston [3] who dubbed it temporal noise shaping (TNS). This fre-
quency-domain version of D*PCM [4] was used to eliminate
pre-echo artifacts associated with transients in perceptual audio
coders such as MPEG2 AAC by factoring-out the parameter-
ized time envelope prior to quantization, then reintroducing it
during reconstruction. Traditional transform coding introduced
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“reverberation” or temporal-smearing pre-echo artifacts to sig-
nals that were “peaky” in time, and TNS eliminated these arti-
facts. In their original and subsequent papers [3], [5]–[7] Herre
and Johnston motivated TNS by citing the duality between the
squared Hilbert envelope and the power spectrum for continuous
signals, but no exact derivation for finite-length discrete-time
signals was given.

Kumaresan et al. [8]–[13] have also addressed the problem
of AR modeling of the temporal envelope of a signal. Specifi-
cally, in [8] Kumaresan formulated the so-called linear predic-
tion in the spectral domain (LPSD) equations. Working with a
continuous, periodic time-domain signal and its corresponding
infinite-length Fourier series, he used an all-pole model in order
to fit the Hilbert envelope without calculating the corresponding
analytic signal. By considering the discrete, periodic signal ob-
tained by sampling the continuous signal, the AR model of the
infinite series was taken as an approximate model for the fi-
nite-length discrete Fourier transform of a finite discrete signal.

We solve the same problem of finding an AR model of a dis-
crete spectrum and relating it to the envelope of the finite, dis-
crete time-domain signal, but our solution is expressed entirely
in the discrete, finite domain through matrix operations. One
particular issue we examine concerns continuity at boundaries:
because the envelope calculated on the -plane is intrinsically
periodic, discontinuities between the first and last values of a
finite-length sequence, which is treated as periodic by the anal-
ysis, will lead to Gibbs-type ringing. To avoid this, we sym-
metrize the time signal prior to analysis and model the enve-
lope of the resulting, double-length signal. As a consequence,
we end up using a discrete cosine transform (DCT) to shift be-
tween temporal and spectral domains, and our envelopes, while
constrained to have zero slope at the edges, do not suffer from
discontinuities in value. This leads to our central result, that
to obtain an all-pole model describing the squared Hilbert en-
velope of an odd-length symmetrized discrete sequence, one
should apply AR modeling to the real spectrum computed by
the DCT type I odd (DCT-Io).

We present a linear-algebra derivation of AR models that is
completely symmetric for spectral and temporal envelopes. By
using orthogonal versions of all transforms, energy preservation
and perfect reconstruction properties are guaranteed. This leads
to a joint fit of a cascade of temporal and spectral AR models
that obtains a lower average minimum total squared error when
compared to independent modeling in each domain.

Section II presents the mathematical background needed to
relate autocorrelation and envelopes. In Section III we formu-
late the time-domain and the frequency-domain AR models in
a dual fashion and combine them to form the cascade and joint
time-frequency models. Section IV contains two examples,
modeling the temporal envelope of voiced speech, and mod-
eling the speech residual. We draw conclusions and discuss
future work in Section V.

II. RELATING AUTOCORRELATION AND ENVELOPES

The aspect of AR modeling that interests us is its ability to ap-
proximate the envelope of the transform of a signal by starting
from the autocorrelation in the nontransformed domain. Con-
ventionally, this is estimating the spectral envelope from the

autocorrelation of the time signal. In the dual domain, this be-
comes estimating the temporal envelope from the autocorrela-
tion of the spectrum—in our case the DCT. We show that by
concentrating on odd-length, symmetric signals this relationship
is particularly tidy.

A. Linear Autocorrelation

Let be an -dimensional real column vector that represents
a finite-duration discrete-time real signal

(1)

where denotes transposition. Let be a column vector
that represents the biased linear (aperiodic) autocorrelation of

, where . In column vector form we have

(2)
where

(3)

is always odd-length with , and is even-sym-
metric over the lag i.e., .

We define as the zero-padding matrix

(4)

where is the identity matrix. Left-multiplying by the
matrix pads an input sequence to the right and left by
and zeros respectively, where the dimension can be inferred
by the vector that is applied to. For the most part of this
paper will be zero (meaning no left padding) in which case
we will drop the parameter and denote the matrix as . The
special case (right padding by zeros) is simply
denoted as . Note that the transposed zero-padding matrix
applied to an -dimensional vector (where as
above) simply selects the first elements, and the product
applied to an -dimensional vector zeroes out the last
elements.

Let be the unitary discrete Fourier transform (DFT)
matrix defined as

(5)

where the row and column indexes are , .
For the unitary DFT we have and .

Defining as the forward DFT of the zero-padded
input signal , the autocorrelation of (3) is

(6)

where denotes complex conjugation and denotes
the Hadamard (element wise) product, giving the familiar rela-
tionship between autocorrelation and the magnitude of the trans-
form-domain signal. Note the distinction between of (6) and

of (2), which is rotated by elements to start with .
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B. WSHS Symmetry of Autocorrelation

In the terminology of Martucci [14], autocorrelation is
left whole-sample symmetric—right half-sample symmetric
(WSHS). Formally, an -point sequence is WSHS
symmetric if

(7)

and is always an odd-length sequence. An infinite periodic
extension of is symmetric over the sample at index

(the whole-sample part) and also symmetric over the “half-
sample” i.e., .

The -dimensional WSHS symmetric extension oper-
ator (SEO) matrix is defined [14] as

. . .
(8)

where is the reverse identity matrix (1’s on
the antidiagonal). We can right-symmetrize an -dimensional
signal by left multiplying it by S i.e., . is essen-
tially an aliasing operator: it “folds” and adds the signal onto
itself, to reduce points to .

Note that the DFT and inverse DFT (IDFT) of a WSHS se-
quence are also WSHS. In our case this means that since the
autocorrelation is WSHS, then the corresponding sampled
power spectrum in (6) will also be WSHS.

C. Discrete Cosine Transform Type I Odd (DCT-Io)

Out of the 16 discrete trigonometric transforms (DTT) first
tabulated by Wang [15], we are interested in the DCT-Io which
is the only one related to the DFT through the WSHS SEO op-
erator [14], meaning that the WSHS symmetry property of the
autocorrelation can be preserved through the DCT-Io. The or-
thogonal DCT-Io matrix is defined as

(9)

where , and the coefficients are

(10)

We place the weights on the main diagonal of an
matrix that we define as

. . .
(11)

and we derive the following orthogonal DCT-Io factorization
(see Appendix I):

(12)

Fig. 1. DCT-Io factorization. A pictorial representation of (12). Diagonal ma-
trices are represented by diagonal lines and basis vectors are represented by
horizontal lines.

Notice that the DFT matrix is and complex whereas
the DCT-Io matrix is and real; moreover the inverse
of is trivial since it is diagonal and non singular. One way
to interpret this equation is that the DCT-Io can be seen simply
as the first elements of the DFT of the WSHS-
symmetrized input vector. In order to make the columns
and rows orthogonal, we left and right multiply by and
respectively. This interpretation is depicted pictorially in Fig. 1.

Although is orthogonal and self-inverse (involutary),
we wish to derive a nonorthogonal forward and corre-
sponding inverse pair of DCT-Io transforms. We
have

(13)

(We can move the like this because of the identity matrix
on the left-hand side i.e., if and is nonsingular,
then and thus .) Associating the scalar
weights 2 and 1/2 with the forward and inverse nonorthogonal
DCT-Io we can divide into a pair of new transforms

(14)

(15)

and thus . Note that, like the orthogonal DCT-Io ,
includes the term i.e., a truncated Fourier transform

of a WSHS-symmetrized sequence. The main difference is that
in the vector being processed is exactly the input sequence,
whereas in the intervening factor modifies the input
vector prior to the transform. Note that affects only the first
element of the time and frequency domain signals.

D. Discrete-Time “Analytic” Signal

The analytic signal was introduced by Gabor [16]. Its funda-
mental property is that its spectrum vanishes for negative fre-
quencies or, put another way, it is “causal” in the frequency do-
main. By this definition, a discrete-time signal cannot be ana-
lytic because its spectrum is periodic and thus not causal. One
way to define a discrete-time “analytic” signal is by forcing
the spectrum to be “periodically causal” [17] meaning that the
second half of each periodic repetition of the spectrum is forced
to be zero. Marple [18] used this definition in order to derive a
discrete-time analytic signal using the DFT.

In the time domain, the analytic signal is complex with its
real part being the original signal and its imaginary part being
the Hilbert transform of the original signal [19]. The squared
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magnitude of this time-domain signal is the temporal envelope
we will approximate through AR modeling, by showing its dual
relationship to the sampled power spectrum.

Conversion to an analytic signal can be expressed as a matrix
multiply. The analytic transformation matrix is

(16)

We can interpret as follows. After taking the DFT of the
input signal we first zero-out the negative frequencies by mul-
tiplying with thus forcing the spectrum to be periodically
causal. Then we scale with the appropriate weights as
defined in [18] to ensure orthogonality of the real and imagi-
nary parts. Finally we take the IDFT to return to the time
domain.

E. Autocorrelation of the DCT-Io

Eqn. (6) showed that the autocorrelation of the time-domain
signal is the IDFT of the power spectrum. The dual of this is
that the autocorrelation of the DCT-Io transform of a signal
is the DFT of the WSHS-symmetric squared Hilbert envelope.
Starting from the nonorthogonal DCT-Io of , , its
autocorrelation is given by analogy to (6) as

(17)

where analogously to of (6). (Because is
WSHS-symmetric and has a pure-real transform, and are
interchangeable here.)

Using the forward DCT-Io of (14) and the analytic transfor-
mation matrix of (16) we can express as follows:

(18)

(The last equation holds since with an ap-
propriate change of dimensionality of from to

.) The important interpretation of this formula is that
the inverse DFT of the zero-padded DCT-Io of is equal to
the analytic WSHS-symmetrized signal. This means that the
Hadamard product in (17) is just the squared Hilbert en-
velope of the WSHS-symmetrized signal. This equality allows
us to model the temporal envelope of by fitting an AR model
to the DCT-Io.

This derivation depended on using the nonorthogonal .
However, the material differences between and the orthog-
onal DCT-Io lie only in the zero-index terms in both time
and frequency. If the signal being analyzed has zero values for
these terms, we could equally use . We can construct such
a signal by 1) subtracting its mean in the time domain, and 2)
left-padding with a zero, since this first time-domain value is,
by duality, the mean value in the frequency domain.

III. AUTOREGRESSIVE MODELING

Since the autocorrelation of the DCT-Io relates to the WSHS-
symmetrized temporal envelope just as the time-domain auto-
correlation determines the power spectrum, we can use auto-
correlation-based AR techniques to approximate the temporal
envelope. We present three variants. In Section III-A we re-
view the standard time-domain AR model and its frequency-
domain counterpart. Section III-B uses time and frequency do-
main AR models in cascade to model both spectral and temporal
envelopes. Lastly, Section III-C optimizes the cascade, jointly
minimizing a total quadratic error by iterating on the partial
derivatives with respect to the time- and frequency-domain AR
models.

A. Time and Frequency Duality

Consider convolution expressed in a matrix form. If and
are - and -dimensional vectors respectively, we must

zero-pad each one to length to avoid circular aliasing
when convolving them, i.e.,

(19)

where is a right-circulant matrix [20], [21] with as its
first column (i.e., generated by ). Convolution is com-
mutative, so (19) is also equal to where
is the right-circulant matrix generated by .

AR modeling is equivalent to finding the FIR filter, with 1 as
its first coefficient, that minimizes the energy of the output when
applied to the sequence being modeled i.e.,

(20)

where is the right circulant matrix generated by the zero-
padded signal , are the AR
model coefficients to be found, and the residual is the

column vector residual whose norm is to be minimized.
Note that the can be viewed as zero-padding to facilitate
convolution, or as right-multiplying to truncate the last
columns, making the system of equations over-determined.

The solution of (20) is given by minimizing the quadratic
by setting its first derivative with respect to the free

elements in to zero. This leads to the well-known Yule-Walker
equations, which give the classic result that the AR solution de-
pends only on the autocorrelation of the signal being mod-
eled. In our notation, this becomes

(21)

where is the circulant matrix generated by , and the
matrices are simply trimming the other elements appropriately.

The residual from passing the original signal through the FIR
filter defined by the AR coefficients is simply the first ele-
ments of from (20) i.e., . The average minimum
total squared error as defined in [22] is given by

(22)

and it will be used as a goodness-of-fit measure in Section IV-B.
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Fig. 2. Block diagrams of AR models. On the left of the first row we plot
the regular time-domain AR model and on the right the frequency domain AR
model. On the middle row we plot the cascade time-frequency AR model and
on the bottom we plot the joint time-frequency AR model.

In the dual domain, (20) becomes

(23)

where is the circulant matrix generated by the zero-padded
DCT-Io transformed signal ,

are the coefficients of the filter we are estimating—this
time in the DCT-Io domain—and is again a residual to be
minimized. We call this model frequency-domain linear predic-
tion or FDLP [23].

The solution of this equation involves the autocorrelation of
, i.e., the circulant matrix and the vector . From (17) and

(18), we can see that the magnitude of the AR filter defined by
evaluated on the unit circle in the -plane—the analog of the

conventional AR spectral magnitude approximation—is in this
case an approximation of the WSHS-symmetric squared Hilbert
envelope of the original sequence. One implication of this is
that sharp transients in the temporal signal result in significant,
short-lag correlation among values in the DCT-Io which can be
effectively captured by AR models.

The block diagrams of temporal and frequency domain AR
models are plotted on the top row of Fig. 2.

B. Cascade Time-Frequency AR Modeling

The time-domain residual signal is spectrally flat since
its spectral peaks are balanced by the zeros of the estimated FIR
filter. However, any remaining temporal structure is modified
but not in general eliminated. For instance, in voiced speech
the residual still carries clearly audible pitch pulses. We pro-
pose a second AR model operating on the DCT-Io-transformed
residual in order to generate a temporally flat frequency-domain
residual.

This second model is obtained by calculating the DCT-Io
transform of the residual and estimating a new filter that op-
erates on the spectrum of the residual; we have

(24)

where is the circulant matrix generated by (the
zero-padded DCT-Io transformed residual). The filters and
can be calculated by solving (20) and (24) independently, one
after the other. This process is depicted on the block diagram
plotted on the second row of Fig. 2. Note that the ordering of
filters (time domain first) was suggested by our chosen appli-
cation of modeling the speech residual (Section IV-B). From
a theoretical point of view, one as well could estimate the fre-
quency domain filter first.

C. Joint Time-Frequency AR Modeling

The separate, sequential optimization of the two filters in the
cascade model above ultimately aims to minimize a quadratic
error in the frequency domain by eliminating temporal structure.
But the first filter optimized a time-domain error; a fully optimal
solution will solve for both filters jointly. Our objective is to
minimize the final frequency domain residual and we can try to
do that by estimating the two filters jointly. The error measure
we minimize is

(25)

but this time both filters (which affects ) and are variable.
In order to minimize the quadratic we need to
calculate the two partial derivatives with respect to the vectors

and and set them to zero. The partial with respect to is
the same as solving the frequency domain (24) but this time the
solution for is a function of .

In order to calculate the partial with respect to we use the
commutativity property of convolution to write (25) as

(26)

where is the right-circulant matrix generated by . Finally,
the error becomes

(27)

where we have substituted using (20). Now the partial with
respect to is easy to calculate which means that we can ex-
press the optimal as a function of . We do not have an exact
solution of this system of equations, but repeatedly solving for

and in turn (and using each new value in the solution for
the other) settles to a minimal value for . Both of (25) and
(27) are equivalent to “normal equation” forms, solving for the
free elements in the and vectors, respectively, that mini-
mize the length of the residual —which will therefore always
be orthogonal to the subspace defined by the relevant columns
of the left-multiplying matrix. In each iteration, the particular
normal problem being solved depends on the values assigned to
the other AR model, which appear in the left-multiplying ma-
trix and of course change in each iteration. However, the partic-
ular value of that was optimal in the solution of (25) exists
as a possible solution of (27) (i.e., if were unchanged), but
the normal solution allows us to find the global minimum for
that particular fixed value of . Thus, is guaranteed to get
smaller at each iteration, and the iterative procedure will always
converge to a local minimum. In our experience, 5–10 iterations
are sufficient to converge to a value that improves by less than



5242 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 11, NOVEMBER 2007

1% in successive steps. The question remains whether this is
the unique, global optimal solution: we believe it is, given the
simple convexity of each subproblem, but we do not yet have
a proof. The results, however, show that the joint solution does
represent a real improvement over the cascade in any case. A
block diagram representation of the joint model is plotted on
the last row of Fig. 2.

IV. EXAMPLES AND APPLICATIONS

Here we present two applications of the AR models we have
introduced. Section IV-A illustrates the use of the time- and
frequency-domain linear prediction filters to model the formant
structure and pitch pulses, respectively, of a segment of speech.
This simple example demonstrates the flexibility and power of
the parametric model. FDLP poles represent temporal peaks,
with the pole’s distance to the unit circle relating to peak sharp-
ness and the pole’s angle reflecting the peak’s position in time.
This parametric description provides novel features for applica-
tions such as automatic speech recognition [23].

In Section IV-B we show how the second-stage frequency do-
main model can be used to parameterize the residual of a stan-
dard time-domain model, for instance for speech coding appli-
cations. We show that the joint model improves on the cascade
in terms of the average minimum total squared error.

We have also used the cascade model for audio synthesis,
specifically in the modeling of audio textures. Sounds such as
rain or footsteps are rich in temporal micro-transients which
are well represented by the FDLP model [24]. A similar appli-
cation in coding was investigated by Schuijers [25]. He used
FDLP to model the temporal envelope of a noise-excited seg-
ment but substituted the spectral AR-moving average (ARMA)
model with a Laguerre filter. Schuijers’ model later became part
of the MPEG-4 SSC coding standard [26].

A. Temporal Envelope Modeling

Fig. 3 shows the spectral and temporal envelopes of 50 ms of
the /aa/ (arpabet) sound from the word “c_o_ttage,” extracted
from the TIMIT corpus and sampled at 8 kHz. On the upper
left pane we plot the original signal and on the upper right the
output of the DCT-Io transform. On the middle right pane we
plot the first half of the sampled power spectrum, the other half
being WSHS-symmetric. Specifically, we plot as
in (6). On the middle left pane we plot the corresponding first
half of the WSHS-symmetric squared Hilbert envelope; simi-
larly this is given by from (17). On the bottom two
panes we plot AR envelopes modeled by two 24th order filters.
Notice the classic all-pole behavior of fitting the peaks of the
signal—meaning the pitch pulses in the time domain and the for-
mants in the frequency domain—which are well represented by
the poles of the corresponding filters. The valleys of the signal
in time and frequency are smoothed since they contribute little
to the quadratic error. Note that since the Hilbert envelope being
modeled has been WSHS-symmetrized, the temporal envelope
from filter has zero slope at the boundaries (as does the spec-
tral model).

Fig. 4 compares a range of methods for extracting temporal
envelopes. Notice the noisiness of the envelope obtained by
squaring the signal (bottom left); the squared Hilbert envelope

Fig. 3. Dual forms of AR modeling. On the left column (time) we plot 50 ms
of a speech signal, the corresponding squared Hilbert envelope and the all-pole
fit. On the right column (frequency) we display the DCT-Io of the same signal,
the corresponding power spectrum and the conventional time-domain all-pole
fit. Both envelope models are 24th order and the dots show pole angles.

Fig. 4. Comparison of envelope representations. On the left column we plot the
voiced speech signal, the squared Hilbert envelope, and on the bottom the signal
squared. On the upper right is the low-pass filtered full-rectified signal and on
the middle right is the output of an envelope follower. On the bottom right we
plot three frequency domain AR models of order 16, 24, and 48 shifted by�20,
�10, and 0 dB for readability.

(middle left) is much less noisy by comparison. A low-pass fil-
tered version on the top right smooths out both peaks and valleys
of the signal as all sharp edges are eliminated. On the middle
right a simple envelope follower with exponential attack of 0.1
and exponential decay of 2 ms follows the signal well but it is ap-
proximately piecewise-linear on a log scale. For comparison on
the bottom right we present the estimated envelope using model
orders of 16, 24, and 48, where the detail increases with the
model order. The angles of poles of the FDLP model indicate
the timing of the peaks of the signal and are particularly accu-
rate if the poles are sharply “tuned” (close to the unit circle in
the -plane). Applied to subbands this can provide useful fea-
tures for speech recognition [23].
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Fig. 5. Cascade time-frequency modeling. On the upper row, we present the time-domain speech signal, its corresponding squared Hilbert envelope and its sampled
power spectrum. On the second row we plot the residual in time after whitening the spectral envelope through a regular time-domain AR modeling. On the third
row we present the residual after the second (cascade) AR model, this time filtering the DCT-Io. On the last row we plot the residual after joint modeling. All
models are 24th order.

B. Modeling of the Speech Residual

The second application we present is modeling the residual
of a regular time-domain AR model. A common way to model
the pitch pulses typically remaining in the residual is through a
second long-term predictor (LTP) [27]. Our cascade and joint
AR models can parameterize each pitch pulse in the second,
frequency-domain AR model, and thereby flatten the temporal
envelope of the overall residual.

In Fig. 5, we plot the effect of modeling speech using the cas-
cade model. On the upper row we plot the same speech segment
used in Fig. 3 along with the corresponding squared Hilbert en-
velope and power spectrum. After filtering the signal with the
first-stage time-domain AR filter we get the residual 1 plotted
on the second row along with its two envelopes. Notice how
the pitch pulses persist in the time domain whereas the spec-
tral envelope is broadly flat since the formant peaks have been
captured by the first stage time-domain AR filter. Plotting the
Hilbert envelope in the log domain reveals sharp details in the
temporal envelope that are difficult to capture with traditional
LTP. In fact even though the original time domain signal ap-
pears to contain four pronounced pitch cycles, the first stage
residual contains six dominant temporal peaks which could have
perceptual importance, since they identify moments within the
pitch cycle where the waveform does not correspond simply to
decaying resonances—the kind of textural detail that may con-
tribute to perceived voice quality.

These temporal peaks are modeled by the second stage AR
model operating on the DCT-Io of the residual 1. This opera-
tion is illustrated on the third row where we plot the residual
2 in the time domain after filtering the DCT-Io by the second
filter. Notice that both the temporal and the spectral envelopes

Fig. 6. Average minimum total squared error comparison. All three models
start with 24th order time-domain models. On the time-only plot we keep adding
poles from 0 to 50 for a total of 24 up to 74 poles. On the cascade and joint
models we add 0 to 50 poles on the frequency domain model keeping the time
domain fixed at 24.

are flattened. Also notice that due to the nature of all-pole mod-
eling the dips (or zeros) of the signal are barely affected and
persist in both temporal and spectral envelopes. The residuals 1
and 2 correspond to and respectively in the cascade block
diagram of Fig. 2.

Fig. 5 shows the results of the simple cascade model with
independent, noniterative filter optimization; the joint model
should improve on this. Specifically, we note that the power
spectrum of the final residual has been distorted by the applica-
tion of the frequency-domain AR filter, which might be avoided
by a joint optimization.

Fig. 6 shows the average minimum total squared error of (22)
as a function of the model order for the three models. We plot the
average minimum total squared error of the regular time-only
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Fig. 7. Filter comparison. On the left column we plot the Hilbert envelope of
the residual and its two models (joint and cascade) and on the right we plot the
power spectrum and its two models. The joint and cascade models have been
shifted by +10 dB and �5 dB respectively for readability purposes. All filters
are 24th order.

model for filter orders between 24 and 74. For comparison, in
the cascade and joint models we fix the temporal filter order
at 24 then add 0 to 50 extra coefficients to the second stage
filter, capturing the temporal peaks of the voiced speech signal.
Even the purely time-domain model improves performance as
model order increases, but only by about 1 dB for 50 extra poles.
Adding the same number of coefficients to the second model
gains 4 dB extra at 24 poles onwards. The joint model is able
to squeeze an extra 1 dB over the cascade when we add 35 poles
or more.

Notice the jumps in the joint and cascade model errors at 12
and 24 coefficients. This is because, as observed, this excerpt has
6 main temporal peaks in its residual, so 12 poles allow each to
be modeled by a separate peak (pole-pair), and 24 poles allow
a pair of peaks for each temporal feature. This highlights that,
in general, the order of FDLP models will depend on the antici-
pated density of temporal transients within an analysis window.

To compare the results of the cascade and joint approaches,
Fig. 7 displays their models. On the upper right, we plot
the power spectrum of the original signal and on the left the
squared Hilbert envelope of the first stage residual. Below each
are the AR model envelopes (magnitudes from the -domain)
resulting from joint (above) and cascade (below) optimization.
All models are 24th order, and the joint optimization employed
ten iterations. Notice that the time-domain filter peaks for the
joint model are sharper, and that the jointly estimated spectral
envelope is smoother in the low frequencies while amplifying
some high frequencies consistent with the sharper peaks in
time.

V. CONCLUSION

As the dual of traditional time-domain AR modeling in which
the resulting filter approximates the spectrum, we have pre-
sented frequency-domain LP modeling where the polynomial
provides an approximation of the temporal (Hilbert) envelope,
incorporating all the desirable sharpness-preserving properties
of all-pole modeling.

This technique has potential applications wherever tem-
poral envelopes are of interest. In comparison to traditional
rectify-and-smooth envelope extraction, the AR model has a

well-defined optimal relation to the original signal. All-pole
models also have a number of useful properties: Varying the
length of the window over which envelopes are estimated and/or
the order of the models used controls the tradeoff between local
detail and average representation size, since AR models may
distribute poles nonuniformly to minimize error. Unlike sub-
sampling, a low-order AR model does not necessarily remove
temporal detail, since each pole pair can result in an arbitrarily
sharp peak in the envelope. Finally, there is a vast literature on
representation and manipulation of AR models which can be
brought to bear in this alternative domain.

The cascade model combines AR modeling of both spec-
tral and temporal structure, and we have shown how to jointly
optimize this structure to balance the signal modeling across
domains. Insofar as traditional linear-predictive modeling has
proven to be a versatile and popular model for spectral struc-
ture, we foresee many applications in signal analysis, manip-
ulation, and compression using joint and cascade structures of
the kind we have proposed. We also note that the approach ex-
tends very simply to modeling distinct subranges of the spec-
trum (subbands), to estimate separate temporal envelopes for
these bands [23]. This is simply the dual of AR modeling for
short-time spectral analysis of successive time frames.

Future work includes using ARMA models in the frequency
domain. We believe that zeros on the Hilbert envelope are im-
portant, for instance to model regions in speech such as stop con-
sonants, and we expect that the pure-real spectrum generated by
the DCT-Io will be an effective domain in which to pursue such
representations.

APPENDIX I
PROOF OF THE DCT-Io FACTORIZATION

Let be the matrix of cosines for ,
as it appears in (9). Using (11) we write

the orthogonal DCT-Io matrix as

(28)

Substituting we finally have

(29)

since equals except on the first column. The
right multiplication by establishes the final equality.
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