
Decoding speech in the presence of other sources

J.P. Barker a,*,1, M.P. Cooke a,1, D.P.W. Ellis b

a Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield, S1 4DP, UK
b Department of Electrical Engineering, Columbia University, 500 W. 120th Street, New York, NY 10027, USA

Received 7 June 2002; received in revised form 21 November 2003; accepted 20 May 2004

Abstract

The statistical theory of speech recognition introduced several decades ago has brought about low word error rates
for clean speech. However, it has been less successful in noisy conditions. Since extraneous acoustic sources are present
in virtually all everyday speech communication conditions, the failure of the speech recognition model to take noise into
account is perhaps the most serious obstacle to the application of ASR technology.

Approaches to noise-robust speech recognition have traditionally taken one of two forms. One set of techniques
attempts to estimate the noise and remove its effects from the target speech. While noise estimation can work in
low-to-moderate levels of slowly varying noise, it fails completely in louder or more variable conditions. A second
approach utilises noise models and attempts to decode speech taking into account their presence. Again, model-based
techniques can work for simple noises, but they are computationally complex under realistic conditions and require
models for all sources present in the signal.

In this paper, we propose a statistical theory of speech recognition in the presence of other acoustic sources. Unlike
earlier model-based approaches, our framework makes no assumptions about the noise background, although it can
exploit such information if it is available. It does not require models for background sources, or an estimate of their
number. The new approach extends statistical ASR by introducing a segregation model in addition to the conventional
acoustic and language models. While the conventional statistical ASR problem is to find the most likely sequence of
speech models which generated a given observation sequence, the new approach additionally determines the most likely
set of signal fragments which make up the speech signal. Although the framework is completely general, we provide one
interpretation of the segregation model based on missing-data theory. We derive an efficient HMM decoder, which
searches both across subword state and across alternative segregations of the signal between target and interference.
We call this modified system the speech fragment decoder.

The value of the speech fragment decoder approach has been verified through experiments on small-vocabulary tasks
in high-noise conditions. For instance, in a noise-corrupted connected digit task, the new approach decreases the word
error rate in the condition of factory noise at 5dB SNR from over 59% for a standard ASR system to less than 22%.
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1. Introduction

In the real world, the speech signal is frequently
accompanied by other sound sources on reaching
the auditory system, yet listeners are capable of
holding conversations in a wide range of listening
conditions. Recognition of speech in such !adverse"
conditions has been a major thrust of research in
speech technology in the last decade. Nevertheless,
the state of the art remains primitive. Recent
international evaluations of noise robustness have
demonstrated technologically useful levels of
performance for small vocabularies in moderate
amounts of quasi-stationary noise (Pearce and
Hirsch, 2000). Modest departures from such con-
ditions lead to a rapid drop in recognition
accuracy.

A key challenge, then, is to develop algorithms
to recognise speech in the presence of arbitrary
non-stationary sound sources. There are two
broad categories of approaches to dealing with
interference for which a stationarity assumption
is inadequate. Source-driven techniques exploit evi-
dence of a common origin for subsets of source
components, while model-driven approaches utilise
prior (or learned) representations of acoustic
sources. Source-driven approaches include primi-
tive auditory scene analysis (Brown and Cooke,
1994; Wang and Brown, 1999; see review in Cooke
and Ellis, 2001) based on auditory models of pitch
and location processing, independent component
analysis and blind source separation (Bell and
Sejnowski, 1995; Hyvärinen and Oja, 2000) which
exploit statistical independence of sources, and
mainstream signal processing approaches (Parsons,
1976; Denbigh and Zhao, 1992). The prime exam-
ples of model-driven techniques are HMM decom-
position (Varga and Moore, 1990) and parallel
model combination (PMC) (Gales and Young,
1993), which attempt to find model state sequence
combinations which jointly explain the acoustic
observations. Ellis" !prediction-driven" approach

(Ellis, 1996) can also be regarded as a technique
influenced by prior expectations.

Pure source-driven approaches are typically
used to produce a clean signal which is then fed
to an unmodified recogniser. In real-world listen-
ing conditions, this segregate-then-recognise ap-
proach fails (see also the critique in Slaney,
1995), since it places too heavy a demand on the
segregation algorithm to produce a signal suitable
for recognition. Conventional recognisers are
highly sensitive to the kinds of distortion resulting
from poor separation. Further, while current algo-
rithms do a reasonable job of separating periodic
signals, they are less good both at dealing with
the remaining portions and extrapolating across
unvoiced regions, especially when the noise back-
ground contains periodic sources. The problem
of distortion can be solved using missing data
(Cooke et al., 1994, 2001) or multiband (Bourlard
and Dupont, 1997) techniques, but the issue of
sequential integration across aperiodic intervals
remains.

Pure model-driven techniques also fail in prac-
tice, due to their reliance on the existence of mod-
els for all sources present in a mixture, and the
computational complexity of decoding multiple
sources for anything other than sounds which pos-
sess a simple representation.

There is evidence that listeners too use a combi-
nation of source and model driven processes
(Bregman, 1990). For instance, vowel pairs pre-
sented concurrently on the same fundamental
can be recognised at levels well above chance, indi-
cating the influence of top-down model-matching
behaviour, but even small differences in fundamen-
tal—which create a source-level cue—lead to sig-
nificant improvements in identification indicating
that the model-driven search is able efficiently to
exploit the added low-level information (Scheffers,
1983). Similarly, when the first three speech form-
ants are replaced by sinusoids, listeners recognise
the resulting sine-wave speech at levels approach-

6 J.P. Barker et al. / Speech Communication 45 (2005) 5–25



ing natural speech, generally taken as evidence of a
purely top-down speech recognition mechanism,
since the tokens bear very little resemblance to
speech at the signal level (Bailey et al., 1977;
Remez et al., 1981). However, when presented with
a sine-wave cocktail party consisting of a pair of
simultaneous sine-wave sentences, performance
falls far below the equivalent natural speech sen-
tence-pair condition, showing that low-level signal
cues are required for this more demanding condi-
tion (Barker and Cooke, 1999).

In this paper, we present a framework which
attempts to integrate source- and model-driven
processes in robust speech recognition. We demon-
strate how the decoding problem in ASR can be
extended to incorporate decisions about which re-
gions belong to the target signal. Unlike pure
source-driven approaches, the integrated decoder
does not require a single hard-and-fast prior segre-
gation of the entire target signal, and, in contrast
to pure model-based techniques, it does not as-
sume the existence of models for all sources pre-
sent. Since it is an extension of conventional
speech decoders, it maintains all of the advantages
of the prevailing stochastic framework for ASR by
delaying decisions until all relevant evidence has
been observed. Furthermore, it allows a tradeoff
between the level of detail derived from source-dri-
ven processing and decoding speed.

Fig. 1 motivates the new approach. The upper
panel shows an auditory spectrogram of the utter-
ance ‘‘two five two eight three’’ spoken by a male
speaker mixed with drum beats at a global SNR
of 0dB. The centre panel segments the time-fre-
quency plane into regions, which are dominated
(in the sense of possessing a locally-favourable
SNR) by one or other source. The correct assign-
ment of regions to the two sources is shown in
the lower panel.

In outline, our new formalism defines as an
admissible search over all combinations of regions
(which we call fragments) to generate the most
likely word sequence (or, more generally, sequence
of source models). This is achieved by decompos-
ing the likelihood calculation into three parts: in
addition to the conventional language model term,
we introduce a segregation model, which defines

how fragments are formed, and a modified acoustic
model, which links the observed acoustics to source
models acquired during training.

Section 2 develops the new formalism, and
shows how the segregation model and partial
acoustic model can be implemented in practice.
Section 3 demonstrates the performance of the
resulting decoder applied to digit strings with
added noise. Section 4 discusses issues that have
arisen with the current decoder implementation
and future research directions.

2. Theoretical development

The simultaneous segregation/recognition ap-
proach can be formulated as an extension of the
existing speech recognition theory. When formu-
lated in a statistical manner, the goal of the speech
recogniser is traditionally stated as to find the
word sequence bW ¼ w1;w2; . . . ;wN with the maxi-
mum a posteriori probability given the sequence of
acoustic feature vectors observed for the speech,
X = x1,x2, . . .,xT:

bW ¼ argmax
W

P ðW jXÞ: ð1Þ

This equation is rearranged using Bayes" rule
into

bW ¼ argmax
W

P ðX jW ÞP ðW Þ
P ðX Þ ; ð2Þ

which separates the prior probability of the word
sequence alone P(W) (the language model), the
distribution of the speech features for a particu-
lar utterance, P(XjW) (the acoustic model), and
the prior probability of those features P(X)
(which is constant over W and thus will not
influence the outcome of the argmax). P(W)
may be trained from the word sequences in a
large text corpus, and P(XjW) is learned by mod-
elling the distribution of actual speech features
associated with particular sounds in a speech
training corpus.

Following our considerations above, we may re-
state this goal as finding the word sequence, bW ,
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along with the speech/background segregation, bS ,
which jointly have the maximum posterior
probability.

Further, because the observed features are no
longer purely related to speech but in general in-
clude the interfering acoustic sources, we will de-
note them as Y to differentiate them from the X
used in our speech-trained acoustic models
P(XjW). 2

bW ; bS ¼ argmax
W ;S

P ðW ; SjYÞ: ð3Þ

To reintroduce the speech features X, which are
now an unobserved random variable, we integrate
the probability over their possible values, and
decompose with the chain rule to separate out
P(SjY), the probability of the segregation based
on the observations:

P ðW ;SjYÞ ¼
Z

P ðW ;X ;SjYÞdX ð4Þ

¼
Z

P ðW jX ;S;YÞP ðX jS;YÞdX $P ðSjYÞ:

ð5Þ
Since W is independent of S and Y given X, the

first probability simplifies to P(WjX). As in the
standard derivation, we can rearrange it via Bayes"
rule to obtain a formulation in terms of our
trained distribution models P(W) and P(XjW):

P ðW ; SjYÞ ¼
Z

PðX jW ÞP ðW Þ
PðXÞ

PðX jS;YÞdX $ P ðSjYÞ ð6Þ

¼ P ðW Þ
Z

PðX jW Þ PðX jS;YÞ
PðXÞ

dX

! "
P ðSjYÞ:

ð7Þ
Note that because X is no longer constant, we can-
not drop P(X) from the integral.

In the case of recognition with hidden Markov
models (HMMs), the conventional derivation
introduces an unobserved state sequence Q = q1,
q2, . . .,qT along with models for the joint probabil-
ity of word sequence and state sequence
P(W,Q) = P(QjW)P(W). The Markovian assump-
tions include making the feature vector xi at time i
depend only on the corresponding state qi, making
P(XjQ) = "iP(xijqi). The total likelihood of a par-
ticular W over all possible state sequences is nor-

2 Note, if we were not interested in the speech/background
segregation but only in the most likely word sequence regardless
of the actual segregation then it would be more correct to
integrate Eq. (3) over the segregation space defining
W0 = argmaxW

P
SP(W,SjY). However, this integration pre-

sents some computational complexity so in practice even if we
were not directly interested in the segregation it may be
desirable to implement Eq. (3) directly and take bW as an
approximation of W 0.

Fig. 1. The top panel shows the auditory spectrogram of the utterance ‘‘two five two eight three’’ spoken by a male speaker mixed with
drum beats at 0dB SNR. The lower panel shows the correct segregation of speech energy (black) and drums energy (grey). The centre
panel illustrates the set of fragments generated using knowledge of the speech source and the noise source prior to mixing.
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mally approximated by the score over the single
most-likely state sequence (the Viterbi path). In
our case, this gives,

bW ; bS ¼ argmax
W ;S

max
Q2QW

P ðSjYÞP ðW ÞPðQjW Þ

%
Z

P ðX jQÞ PðX jS;YÞ
P ðXÞ dX ; ð8Þ

where QW represents the set of all allowable state
sequences corresponding to word sequence W.

Compare Eq. (8) to the corresponding equation
for identifying the word sequence in a conven-
tional speech recogniser:

bW ¼ argmax
W

max
Q2QW

P ðW ÞP ðQjW ÞP ðX jQÞ: ð9Þ

It can be seen that there are three significant
differences:

(1) A new term, P(SjY ) has been introduced. This
is the !segregation model", describing the prob-
ability of a particular segregation S given our
actual observations Y, but independent of
the word hypothesis W—precisely the kind
of information we expect to obtain from a
model of source-driven, low-level acoustic
organisation.

(2) The acoustic model score P(XjQ) is now eval-
uated over a range of possible values for X,
weighted by their relative likelihood given the
observed signal Y and the particular choice
of segregation mask S. This is closely related
to previous work on missing data theory,
and is discussed in more detail in Section 2.3.

(3) The maximisation now occurs over both W
and S. Whereas conventional speech recogni-
tion searches over the space of words

sequences, the extended approach has to
simultaneously search over the space of all
admissible segregations.

In the terms of Bregman"s !Auditory Scene
Analysis" account (Bregman, 1990), the segrega-
tion model may be identified as embodying the
so-called !primitive grouping process", and the
acoustic model plays the part of the !schema-dri-
ven grouping process". Eq. (8) serves to integrate
these two complementary processes within the
probabilistic framework of ASR. The maximisa-
tion over W and S can be achieved by extending
the search techniques employed by traditional
ASR. These three key aspects of the work, namely,
the segregation model, the acoustic model and the
search problem are addressed in greater detail in
the sections which follow (Fig. 2).

2.1. The segregation model

Consider the space of potential speech/back-
ground segregations. An acoustic observation vec-
tor, X may be constructed as a sequence of frames
x1,x2, . . .,xT where each frame is composed of
observations pertaining to a series of, say F, fre-
quency channels. The observation vector is there-
fore composed of T · F spectro-temporal
features. A speech/background segregation may
be conveniently described by a binary mask in
which the label !1" is employed to signify that the
feature belongs to the speech source, and a !0" to
signify that the feature belongs to the background.
As this binary mask has T · F elements it can be
seen that there are 2TF possible speech/background
segregations. So, for example, at a typical frame
rate of 100Hz, and with a feature vector employ-
ing 32 frequency channels, there would be 23200

Search algorithm
e.g. modified decoder

Segregation model
source-level grouping processes

Language model
bigrams, dictionary

Acoustic model
schema-driven processes

Segregation weighting
connection to observations

Fig. 2. An overview of the speech fragment decoding equation.
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possible segregations for a one second audio
sample.

Fortunately, most of these segregations can be
ruled out immediately as being highly unlikely
and the size of the search space can be drastically
reduced. The key to this reduction is to identify
spectro-temporal regions for which there is strong
evidence that all the spectro-temporal pixels con-
tained are dominated by the same sound source.
Such regions constrain the spectro-temporal pixels
contained to share the same speech/background
label. Hence, for each permissible speech/back-
ground segregation, the pixels within any given
fragment must either all be labelled as speech
(meaning that the fragment is part of the speech
source) or must all be labelled as background
(meaning that the fragment is part of some other
source). Consequently, if the spectro-temporal
observation vector can be decomposed into N such
fragments, there will be 2N separate ways of label-
ling the fragments and hence only 2N valid segre-
gations. In general each fragment will contain
many spectro-temporal pixels, and 2N will be
vastly smaller than the size of the unconstrained
segmentation search space, 2TF.

The success of the segregation model depends
on being able to identify a reliable set of coherent
fragments. The process of dissecting the represen-
tation into fragments is similar to the process that
occurs in visual scene analysis. The first stage of
interpreting a visual scene is to locate regions
within the scene that are components of larger ob-
jects. For this purpose all manner of primitive
processes may be employed: edge detection, conti-
nuity, uniformity of colour, uniformity of texture
etc. Analogous processes may be used in the anal-
ysis of the auditory !scene", for example, spectro-
temporal elements may be grouped if they form
continuous tracks (i.e. akin to visual edge detec-
tion), tracks may be grouped if they lie in har-
monic relation, energy regions may grouped
across frequency if they onset or offset at the same
time. Fig. 3 illustrates some of the mechanisms
that may be used to bind spectro-temporal regions
to recover partial descriptions of the individual
sound sources. A detailed account of these so-
called !primitive grouping processes" is given in
(Bregman, 1990).

In the experiments that follow, each of the 2N

valid segregations is allocated an equal prior prob-
ability. This stands as a reasonable first approxi-
mation. However, a more detailed segregation
model could be constructed in which the segrega-
tion priors vary across segregations. Such a model
would take into account factors like the relation-
ship between the individual fragments of which
they are composed. For example, if there are two
fragments which cover spectro-temporal regions
in which the acoustic data is periodic and has the
same fundamental frequency, then these two frag-
ments are likely to be parts of the same sound
source, and hence segregations in which they are
labelled as either both speech or both background
should be favoured. Section 4.3 discusses further
such !between-fragment grouping" effects and of
the modifications to the search algorithm that they
require.

2.2. The search problem

The task of the extended decoder is to find the
most probable word sequence and segregation
given the search space of all possible word se-
quences and all possible segregations. Given that
the acoustic match score:

P ðX jQÞP ðXjS;YÞ=P ðXÞ; ð10Þ

is conditioned both on the segregation S and the
subword state Q, the (S,Q) search space cannot
in general be decomposed into independent
searches over S and Q. Since the size of the S space
expands the overall search space it is imperative
that the search in the plane of the segregation
space is conducted as efficiently as possible.

To illustrate this point, imagine a naive imple-
mentation of the search illustrated in Fig. 4. In this
approach, each segregation hypothesis is consid-
ered independently, and therefore requires a sepa-
rate word sequence search. If the segregation
model has identified N coherent fragments, then
there will be 2N segregation hypotheses to con-
sider. Hence, the total computation required for
the decoding will scale exponentially with the num-
ber of fragments. The total number of fragments is
likely to be a linear function of the duration of the
acoustic mixture being processed, therefore the
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computation required will be an exponential func-
tion of this duration. For sufficiently large vocab-
ularies, the cost of decoding the word sequence
typically makes up the greater part of the total
computational cost of ASR. It is clear that the
naive implementation of the word sequence/segre-
gation search is unacceptable unless the total num-
ber of fragments is very small.

The key to constructing an efficient implemen-
tation of the search is to take advantage of similar-
ities that exist between pairs of segregation
hypotheses. Consider the full set of possible segre-
gations. There is a unique segregation for every
possible assignment of speech/background label-
ling to the set of fragments. For any given pair
of hypotheses, some fragments will have the same
label. In particular, some hypotheses will differ

only in the labelling of a single fragment. For such
pairs, the speech/background segregation will be
identical up to the time frame where the differing
fragment onsets, and identical again from the
frame where the fragment offsets. The brute-force
search performs two independent word sequence
searches for two such similar segregation hypothe-
ses (see Fig. 5, column 1). The computational cost
of these two independent searches may be reduced
by allowing them to share processing up to the
time frame where the segregation hypotheses dif-
fer—i.e. the onset of the fragment that is labelled
differently in each hypothesis, marked as time T1
in column 2 of Fig. 5. This sharing of computation
between pairs of segregation hypotheses can be
generalised to encompass all segregation hypothe-
ses by arranging them in a graph structure. As we

Fig. 3. An illustration of short-term (above) and long-term (below) primitive grouping cues which may be exploited to recover partial
descriptions of individual sound sources. The figure shows a time-frequency representation of two simultaneous speech utterances.
Regions where the energy of one source dominate are shown in dark grey, while those of the other source are in light grey.
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progress through time, new fragment onsets cause
all current segregation hypotheses to branch,
forming two complementary sets of paths. In one
set, the onsetting fragment is considered to be
speech while in the other it is considered to be
background. However, although this arrangement
saves some computation, the number of segrega-
tion hypotheses under consideration at any partic-
ular frame still grows exponentially with time. This
exponential growth may be prevented by noting
that segregation hypotheses will become identical
again after the offset of the last fragment by which
they differ (marked as time T2 in column 3 of Fig.
5). At this point, the two competing segregation
hypotheses can be compared and the least likely
of the pair can be rejected without affecting the
admissibility of the search. Again, this step can
be generalised to encompass all segregation
hypotheses and effectively brings together the

branches of the diverging segregation hypothesis
tree.

Fig. 6 illustrates the evolution of a set of parallel
segregation hypotheses while processing a segment
of noisy speech which has been dissected into three
fragments (shown schematically by the shaded re-
gions in the figure). When the first fragment (white)
commences, two segregation hypotheses are
formed. In one hypothesis, the white fragment is la-
belled as speech, while in the other it is assigned to
the background. When the grey fragment starts, all
ongoing hypotheses are again split with each pair
covering both possible labellings for the grey frag-
ment. When the white fragment ends, pairs of
hypotheses are merged if their labelling only differs
with regard to the white fragment. This pattern of
splitting and merging continues until the end of
the utterance. Note that at any instant there are
at most four active segregation hypotheses, not

Decoder

Decoder

Decoder

Decoder

Hyp 1

Hyp 2

Hyp 3

Hyp N

Hypotheses

Noisy Speech

Fragments
Noise + Speech

Recognition
Hypothesis

Word Sequence
Search

Accept
highest
scoring

hyp.

Segregation

Fig. 4. The figure illustrates a naive implementation of the segregation/word-sequence search. From a set of N noise and speech
fragments, 2N speech/noise segregation hypotheses can be generated. It is then possible to search for the best word sequence given each
of these 2N segregation hypotheses. The overall best hypothesis can then be found by comparing the scores of these independent
searches.
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the eight required to consider every possible label-
ling of each of the three fragments.

It is important to understand that the evolution
of segregation hypotheses is dependent on the
word sequence hypothesis. For each ongoing word
sequence being considered by the decoder, a par-

ticular corresponding optimal segregation is simul-
taneously developed.

If the word sequence is modelled using HMMs,
then the segregation/word-sequence decoder can
be implemented by extending the token-passing
Viterbi algorithm employed in conventional ASR:

1T

Merge decodings when
speech/background
hypotheses converge

each speech/background
Independent decodings for

hypothesis

1T

hypotheses diverge

Split decoding when
speech/background

Decoder
B

Decoder
A

Decoder
A/B

2

T2

A

B

A

B

Decoder
A

Decoder
B

Decoder
A/B

Decoder

Decoder

Decoder

A

B

A/B

31

Fig. 5. The efficient segregation search exploits the fact that competing segregation hypotheses only differ over a limited number of
frames.

time

Fragments

Speech Source Hypotheses

Fig. 6. The evolution of a set of segregation hypotheses. Each parallel path represents a separate hypothesis, with the shaded dots
indicating which ongoing fragments are being considered as speech part of the speech source.
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• Tokens keep a record of the fragment assign-
ments they have made, i.e. each token stores
its labelling of each fragment encountered as
either speech or background.

• Splitting: When a new fragment starts all exist-
ing tokens are duplicated. In one copy the new
fragment is labelled as speech and in the other it
is labelled as background.

• Merging: When a fragment ends, then for each
state we compare tokens that differ only in the
label of the fragment that is ending. The less
likely token or tokens are deleted.

• At each time frame, tokens propagate through
the HMM as usual. However, each state can
hold as many tokens as there are different label-
lings of the currently active fragments. When
tokens enter a state only those with the same
labelling of current active fragments are directly
compared. The token with the highest likeli-
hood score survives and the others are deleted.

It should be stressed that the deletion of tokens
in the !merging" step described above does not af-
fect the admissibility of the search (i.e. it is not a
form of hypothesis pruning). The efficient algo-
rithm will return an identical result to that of a
brute-force approach, which separately considers
every word-sequence/segregation hypothesis. This
is true as long as the Markov assumption remains
valid. In the context of the above algorithm this
means that the future of a partial hypothesis must
be independent of its past. This places some con-
straints on the form of the segregation model.
For example, the Markov assumption may break
down if the segregation model contains between-
fragment grouping effects in which the future scor-
ing of a partial hypothesis may depend on which
groups it has previously interpreted as part of
the speech source. In this case the admissibility
of the search can be preserved by imposing extra
constraints on the hypothesis merging condition.
This point is discussed further in Section 4.3.

2.3. The acoustic model

In Eq. (8), the acoustic model data likelihood
P(XjQ) of a conventional speech recogniser is re-
placed by an integral over the partially-observed

speech features X, weighted by a term conditioned
on the observed signal features Y and the segrega-
tion hypothesis S:
Z

PðX jQÞ PðX jS;YÞ
P ðXÞ

dX ; ð11Þ

where P(XjQ) is the feature distribution model of
a conventional recogniser trained on clean speech,
and P(XjS,Y)/P(X) is a likelihood weighting fac-
tor introducing the influence of the particular
(noisy) observations Y and the assumed segrega-
tion S.

The integral over the entire space of X—the full
multidimensional feature space at every time
step—is clearly impractical. Fortunately, it can
be broken down into factors. Firstly, the Markov
assumption of independent emissions given the
state sequence allows us to express the likelihood
of the sequence as the product of the likelihoods
at each time step i: 3

Z
PðX jQÞ PðX jS;YÞ

P ðXÞ
dX

¼
Y

i

Z
P ðxijqiÞ

P ðxijS;YÞ
P ðxiÞ

dxi: ð12Þ

Secondly, in a continuous-density (CDHMM)
system, P(xjq) is modelled as a mixture of M mul-
tivariate Gaussians, usually each with a diagonal
covariance matrix:

P ðxjqÞ ¼
XM

k¼1

P ðkjqÞP ðxjk; qÞ; ð13Þ

where P(kjq) are the mixing coefficients. Since the
individual dimensions of a diagonal-covariance
Gaussian are independent, we can further factor-
ise the likelihood over the feature vector elements
xj:

P ðxjqÞ ¼
XM

k¼1

P ðkjqÞ
Y

j

P ðxjjk; qÞ: ð14Þ

3 This also assumes independence of each time step for the
prior P(X) and for the likelihood of X given the segregation
hypothesis and observations, P(XjS,Y). Both these assumptions
are open to serious question, and we return to them in Section
4.
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Assuming a similar decomposition of the prior
P(X), we can take the integral of Eq. (12) inside
the summation to give:
Z

P ðxjqÞ P ðxjS;YÞ
P ðxÞ

dx

¼
XM

k¼1

P ðkjqÞ
Y

j

Z
P ðxjjk; qÞ

P ðxjjS;YÞ
P ðxjÞ

dxj;

ð15Þ

where P(xjjk,q) is now a simple unidimensional
Gaussian.

We can consider the factor

P ðxjjS;YÞ
P ðxjÞ

ð16Þ

as the !segregation weighting"—the factor by
which the prior probability of a particular value
for the speech feature is modified in light of the
segregation mask and the observed signal. Since
we are working with models of subband spectral
energy, we can use a technique closely related to
the missing-data idea of bounded integration
(Cooke et al., 2001): For subbands that are
judged to be dominated by speech energy (i.e.,
under the segregation hypothesis S, not one of
the !masked" channels), the corresponding feature
values xk can be calculated directly 4 from the
observed signal Y and hence the segregation
weighting will be a Dirac delta at the calculated
value, x*:

P ðxjjS;YÞ ¼ dðxj & x'Þ; ð17Þ
Z

P ðxjjk; qÞ
PðxjjS;YÞ

P ðxjÞ
dxj ¼ Pðx'jk; qÞ=Pðx'Þ:

ð18Þ

The other case is that the subband correspond-
ing to x is regarded as masked under the segrega-
tion hypothesis. We can still calculate the spectral
energy x* for that band, but now we assume that
this level describes the masking signal, and the
speech feature is at some unknown value smaller
than this. In this case, we can model P(xjS,Y) as
proportional to the prior P(x) for x 6 x*, and zero
for x > x*. Thus,

P ðxjjS;YÞ ¼
F $ P ðxjÞ xj 6 x';

0 xj > x';

#
ð19Þ

Z
P ðxjjk; qÞ

P ðxjjS;YÞ
P ðxjÞ

dxj ¼
Z x'

&1
P ðxjjk; qÞ $ F dxj;

ð20Þ

where F is a normalisation constant to keep the
truncated distribution a true pdf i.e.

F ¼ 1
R x'

&1 P ðxjÞdxj
ð21Þ

In Eq. (20), the likelihood gets smaller as more
of the probability mass associated with a particu-
lar state lies in the range precluded by the masking
level upper bound; it models the !counterevidence"
(Cunningham and Cooke, 1999) against a particu-
lar state. For example, given a low x* the quieter
states will score better then more energetic ones.
Since the elemental distributions P(xjjk,q) are sim-
ple Gaussians, each integral is evaluated using the
standard error function.

Both the scaling factor F in Eq. (20) and the
evaluation of the point-likelihood in Eq. (18) re-
quire a value for the speech feature prior P(xj).
In the results reported below we have made the
very simple assumption of a uniform prior on
our cube-root compressed energy values between
zero and some fixed maximum xmax, constant
across all feature elements and intended to be lar-
ger than any actual observed value. This makes the
prior likelihood P(xj) equal a constant 1/xmax and
F = xmax/x* / 1/x*.

Using Eq. (18) for the unmasked dimensions
and Eq. (20) for the masked dimensions we can
evaluate the acoustic data likelihood (or !acoustic
match score") for a single state at a particular time
slice with Eq. (15) which becomes:

4 The observed signal Y will in general be a richer
representation than simply the subband energies that would
have formed x in the noise-free case, since it may include
information such as spectral fine-structure used to calculate
pitch cues used in low-level segregation models, etc. However,
the information in x will be completely defined given Y in the
case of a segregation hypothesis that rates the whole spectrum
as unmasked for that time slice.
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Z
P ðxjqÞ P ðxjS;YÞ

P ðxÞ dx

¼
XM

k¼1

PðkjqÞ
Y

j2SO

Pðx'j jk; qÞ $ xmax

Y

j2SM

%
Z

P ðxjjk; qÞ $
xmax

x'j
dxj; ð22Þ

where SO is the set of directly observed (not
masked) dimensions of x, SM are the remaining,
masked, dimensions, and x'j is the observed spec-
tral energy level for a particular band j. This per-
time likelihood can then be combined across all
timeslices using Eq. (12) to give the data likelihood
for an entire sequence.

In practise it has been observed that Eq. (22)
exhibits a bias towards favouring hypotheses in
which too many fragments have been labelled as
background, or alternatively towards hypotheses
in which too many fragments have been labelled
as speech. The reasons for this bias are presently
unclear, but one possibility is that is it introduced
by the uniform prior employed for P(xj). As an
approximate solution to this problem, the results
of the integrations across the masked dimensions
are scaled by a tuning parameter a shifting the rel-
ative likelihood of the missing and present dimen-
sions. Giving a a high value tunes the decoder
toward favouring hypotheses in which more frag-
ments are labelled as background, while a low
value favours hypotheses in which more fragments
are labelled as speech. Experience has shown that
the appropriate value of a depends largely on the
nature of the fragments (i.e. the segregation
model) and little on the noise type or noise level.

Hence, it is easy to tune the system empirically
using a small development data set.

Finally, it is instructive to compare the speech
fragment decoding approach being proposed here
with the missing data approach proposed in earlier
work (Cooke et al., 1994, 2001). Basic missing data
recognition consists of two separate steps per-
formed in sequence: first, a !present-data" mask is
calculated, based, for instance, on estimates of
the background noise level. Second, missing data
recognition is performed by searching for the most
likely speech model sequence consistent with this
evidence. By contrast, the speech fragment decod-
ing approach integrates these two steps, so that the
search includes building the present-data mask to
find the subset of features most likely to corre-
spond to a single voice, while simultaneously
building the corresponding most likely word se-
quence (Fig. 7).

2.4. Illustrative example

Fig. 8(A) shows the spectrogram of the utterance
‘‘seven five’’, to which a stationary background
noise and a series of broadband high-energy noise
bursts have been added (panel B). The initial
frames of the signal can be employed to estimate
and identify the stationary noise component, leav-
ing the unmasked speech energy and the non-sta-
tionary noise bursts as candidate !present data",
as shown in panel C. This however must be broken
up into a set of fragments to permit searching by
the speech fragment decoder.

In order to confirm that the top-down process
in the decoder is able to identify the valid speech

Speech Fragment
Decoder

time

fr
eq

eu
en

ct
y

Noisy Speech

Search
Top Down

Speech and Background Fragments

Bottom Up
Processing

Coherent Fragments

Word–sequence
Hypothesis

Speech
Models

Segregation Hypothesis
Speech/Background

Fig. 7. An overview of the speech fragment decoding system. Bottom-up processes are employed to locate !coherent fragments"
(regions of representation that are due entirely to one source) and then a top-down search with access to speech models is used to
search for the most likely combination of fragment labelling and speech model sequence.
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Fig. 8. An example of the speech fragment decoder"s operation on a single noisy utterance: Panel A shows a spectrogram of the
utterance ‘‘seven five’’. Panel B shows the same signal but after adding a two state noise source. Panel C shows the components of the
mixture that are not accounted for by the adaptive background noise model. Panel D displays a test set of perfectly coherent fragments
generated using a priori knowledge of the clean signal. Panel E shows the groups that the speech fragment decoder identifies as being
speech groups. The correct assignment is shown in panel F. Panel G plots the number of grouping hypotheses that are being considered
at each time frame.
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fragments, its performance was tested using a
small set of !ideal" coherent fragments. These can
be generated by applying a priori knowledge of
the clean speech, i.e. comparing the clean and
noisy spectrograms to mark out the exact regions
where either the speech or the noise bursts domi-
nate. The ideal fragments are simply the contigu-
ous regions which are formed by this segregation
process (see Panel D of Fig. 8).

Given these fragments, the decoder is able to
correctly recognise the utterance as ‘‘seven five’’,
using the fragments in panel E as evidence of the
speech. The correct speech/noise fragment label-
ling is shown in panel F. Comparing E and F, it
can be seen that the decoder has accepted all the
speech fragments, while correctly rejecting all the
larger fragments of noise. (Some small noise re-
gions have been included in the speech, implying
their level was consistent with the speech models.)

3. Experiments employing SNR-based fragments

The first set of experiments employ a connected
digit recognition task and compare the perform-
ance of the speech fragment decoding technique
with that of previously reported missing data tech-
niques in which the speech/background segrega-
tion is effectively decided before proceeding with
recognition (Cooke et al., 2001). The segregation
model employed has been kept extremely simple.
The coherent fragments are approximated directly
from the acoustic mixture by using a simple noise
estimation technique. The techniques presented
here serve as a useful baseline against which the
performance of more sophisticated segregation
models can be compared.

3.1. Procedure

3.1.1. Feature vectors
The experiments in this section employ TIDigit

utterances (Leonard, 1984) mixed with NOISEX
factory noise (Varga et al., 1992) at various SNRs.
NOISEX factory noise has a stationary back-
ground component but also highly unpredictable
components such as hammer blows etc. which
make it particularly disruptive for recognisers.

To produce the acoustic feature vectors the
noisy mixtures were first processed with a 24 chan-
nel auditory filterbank (Cooke, 1991) with centre
frequencies spaced linearly in ERB-rate from 50
to 8000Hz. The instantaneous Hilbert envelope
at the output of each filter was smoothed with a
first order filter with an 8ms time constant, and
sampled at a frame-rate of 10ms. Finally, cube-
root compression was applied to the energy
values.

This forms a spectro-temporal sound energy
representation that is suitable for segregation. This
representation will henceforth be referred to as an
!auditory spectrogram".

3.1.2. Fragments
The fragments were generated by the following

steps:

(1) For each noisy utterance the first 10 frames of
the auditory spectrogram are averaged to esti-
mate a stationary noise spectrum. 5

(2) The noise spectrum estimate is used to esti-
mate the local SNR for each frame and fre-
quency channel of the noisy utterance.

(3) The spectro-temporal region where the local
SNR is above 0dB is identified. This provides
a rough approximation of the speech/back-
ground segregation.
If the additive noise source were stationary
then the first three steps would provide the
correct speech/background segregation and
the speech fragment decoder technique would
not be needed. However, if the competing
noise source is non-stationary then some of
the regions that are identified as speech will
in fact be due to the noise. Hence, we now
proceed with the following steps, which allow
the speech fragment decoder technique to im-
prove on the recognition result that would
have been achieved if we had used the initial
approximation to the speech/background
segregation.

5 This technique assumes that there is a delay before the
speech source starts and hence the first frames provide a reliable
measure of the noise background.

18 J.P. Barker et al. / Speech Communication 45 (2005) 5–25



(4) The initial approximation of the speech seg-
ment is dissected by first dividing it into four
frequency bands.

(5) Each contiguous region within each of the four
subbands is defined to be a separate fragment.

(6) The set of fragments and the noisy speech rep-
resentation are passed to the speech fragment
decoder.

The fragmentation process is summarised in
Fig. 9.

3.1.3. Acoustic models
An 8-state HMM was trained for each of the

eleven words in the TIDigit corpus vocabulary
(digits !one" to !nine", plus the two pronunciations
of 0, namely !oh" and !zero"). The HMM states
have two transitions each; a self transition and a
transition to the following state. The emission dis-
tribution of each state was modelled by a mixture
of 10 Gaussian distributions each with a diagonal
covariance matrix. An additional 3-state HMM
was used to model the silence occurring before
and after each utterance, and the pauses that
may occur between digits.

The scaling constant, a, required to balance
missing and present data (see Section 2.3), was
empirically tuned by maximising recognition per-
formance on a small set of noisy utterances with

an SNR of 10dB. The value a = 0.3 was found
to give best performance. This value was then used
for all noise levels during testing.

3.2. Artificial examples

As explained above, if the background noise is
non-stationary the local SNR estimates (which
have been based on the assumption that the noise
is stationary), may be grossly inaccurate. A local
peak in noise energy can lead to a spectro-tempo-
ral region that is mistakenly labelled as having
high local SNR. This error then generates a region
in the initial estimate of the speech/background
segregation that is incorrectly identified as belong-
ing to the speech source. If this segregation is used
directly in conjunction with standard missing data
techniques then the error will lead to poor recogni-
tion performance.

Fragmenting the initial speech segregation
and applying the speech fragment decoder should
allow incorrectly assigned regions to be rejected
from the speech source, thereby producing a bet-
ter recognition hypothesis. This effect is illustrated
in Fig. 10, where the spectro-temporal signal
representation has been altered to simulate
broad-band noise bursts. These unexpected com-
ponents appear as bands in the present data
mask and hence disrupt the standard missing data

Fig. 9. A summary of the front-end processing used to generate the fragments employed in the experiments described in Section 3.
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recognition technique (!1159" is recognised as
!81o85898"). The third image in the figure shows
how the mask is now dissected before being
passed into the speech fragment decoder. The
final panel shows a backtrace of the fragments that
the speech fragment decoder marks as present in
the winning hypothesis. We see that the noise
pulse fragments have been dropped (i.e. relabelled
as !background"). Recognition performance is now
much improved (!1159" is recognised as !81159").

Fig. 11 shows a further example with a different
pattern of artificial noise—a series of chirps—im-
posed upon the same utterance. Again, noise con-

taminated fragments are mostly placed into the
background by the decoder.

3.3. Results with real noise

The examples discussed in the previous section
were artificial and the background intrusions in
the data mask were very distinct. The experiments
in this section test the technique with speech mixed
with factory noise taken from the NOISEX corpus
(Varga et al., 1992).

Fig. 12 compares the performance of the speech
fragment decoding technique with that of a recog-

Fig. 10. An example of the speech fragment decoder system performance when applied to data corrupted by artificial transients (see
text).
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niser using the stationary SNR-based speech/back-
ground segregation in conjunction with missing
data techniques.

It can be seen that speech fragment decoding
provides a significant improvement at the lower
SNRs, e.g. at 5dB recognition accuracy is im-
proved from 70.1% to 78.1%—a word-error rate
reduction from 29.9% to 21.9%, or 26.7% relative.

Also shown on the graph are results using a
traditional MFCC system with 13 cepstral co-
efficients, deltas and accelerations, and cepstral
mean normalisation (labelled MFCC + CMN).
This demonstrates that the speech fragment decod-
ing technique is providing an improvement over a
missing data system that is already robust by the
standards of traditional techniques.

3.4. Discussion

The results in Fig. 12 labelled !a priori" show the
performance achieved using missing data tech-
niques if prior knowledge of the noise is used to
create a perfect local SNR mask. Even using the
speech fragment decoding technique results fall
far short of this upper limit as the noise level rises
above 10dB SNR.

One possible cause of this this significant per-
formance gap is that the fragments supplied to
the speech fragment decoder are not sufficiently

coherent. In this work we have used a simple set
of fragments generated by aggregating high energy
regions in the SNR mask. If the noise and speech
sources occupy adjoining spectro-temporal regions
this technique will not be able to separate them.
This is evident is Figs. 10 and 11 where, as a result
of both noise and speech being mixed in the
same fragment, much clean speech energy has been

Fig. 11. Another example of the speech fragment decoding for data corrupted with artificial chirps.
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Fig. 12. Recognition results for a baseline MFCC system, a
missing data system, and the speech fragment decoder system.
The !a priori" line represents results that are potentially
achievable if the speech can be perfectly segregated from the
noise.
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removed from the masks and some of the noise en-
ergy has survived.

The artificial examples highlight that the success
of the system is strongly dependent on the quality
of the segregation model. By producing incoherent
fragments, the segregation model limits the per-
formance of the recogniser as it has effectively
made hard decisions that cannot be undone at a
later stage. Of course, the coherence of the frag-
ments can be easily increased by splitting them
into smaller and smaller pieces. At the extreme
each fragment may contain a single spectro-tem-
poral pixel which by definition must be coherent.
However, over zealous fragmentation also has
undesirable consequences. First, it greatly in-
creases the size of the segregation search space
and hence increases the computational cost of
the decoding process. Second, it weakens the con-
straints imposed by the segregation model. If there
are a very large number of small fragments, the de-
coder is more able to construct spurious speech
descriptions by piecing together spectro-temporal
pieces from the collection of sound sources
present.

4. Discussion

In this paper we have laid the foundation for a
statistical approach to computational auditory
scene analysis. In the sections that follow, we dis-
cuss some of the issues that have arisen with our
current implementation and suggest some possible
future research directions.

4.1. Improvements to fragment generation

The fragments in the current system rely on a
very simple and crude model—mainly that energy
below an estimate !noise floor" is to be ignored,
and the remainder can be divided up according
to some simple heuristics. It is likely that more
powerful fragmentation techniques will result in
significant performance gains. In general, one
can imagine a two-phase process in which cues
for auditory grouping (as listed, for example, in
Bregman, 1990, and Table 1 of Cooke and Ellis,
2001) are applied to aggregate auditory filter out-

puts across time and frequency, followed by the
application of segregation principles which serve
to split the newly-formed regions. In contrast with
earlier approaches to grouping and segregation,
such a strategy can afford to be conservative in
its application of grouping principles, since some
of the work of aggregation can be left to the de-
coder. In fact, since any groups formed at this
stage cannot later be split, it is essential that
any hard-and-fast decisions are based on reliable
cues for grouping. In practice, this can be
achieved both by adopting more stringent criteria
for incorporation of time-frequency regions into
groups and by weakening criteria for the splitting
of groups.

For instance, within the regions currently
marked as !voiced", subband periodicity measures
could indicate whether frequency channels appear
to be excited by a single voice, or whether multiple
pitches suggest the division of the spectrum into
multiple voices (as in Brown and Cooke, 1994).
Sudden increases in energy within a single frag-
ment should also precipitate a division, on the
basis that this is strong evidence of a new sound
source appearing.

The application of stricter grouping criteria
may appear to result in a loss of valuable informa-
tion about which regions are likely to belong to-
gether. However, we show in the following
section that such information can be employed
during the decoding stage.

4.2. Statistical versus ruled-based segregation
models

The speech fragment decoding theory is ex-
pressed in terms of a statistical segregation model.
However, the primitive grouping principles de-
scribed in the previous section have tended to be
modelled by essentially rule-based systems and
have previously lacked a clear statistical footing.
Psychoacousticians have set out to look for group-
ing rules using reductionist approaches—essen-
tially by studying the percepts generated by
highly simplified acoustic stimuli. Rule-based
models that rely on a small sets of parameters
can be hand tuned to fit such empirical psycho-
acoustic data.
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An alternative approach, is to build a statistical
segregation model from labelled noisy data. Labels
can be attached to the noisy acoustic data if the
contributions of the individual sources are known
prior to mixing. A corpus of synthetic sound
scenes could be used to achieve this aim.

4.3. Between-fragment grouping

Psychoacoustic experiments provide evidence
that weak grouping effects may exist between the
tightly bound local spectro-temporal fragments.
For example, a sequence of tonal elements are more
likely to be perceived as emanating from the same
sound source if they have similar frequencies (Van
Noorden, 1975). These grouping effects may allow
a fragment to have an influence on the evolving
source interpretation that spans over a considerable
temporal window. However, such between-frag-
ment grouping effects have a probabilistic nature
and their influence can be overcome by learned
patterns, such as musical melody (Hartmann and
Johnson, 1991) or speech (Culling andDarwin, 1993).

Between-fragment grouping effects may be best
modelled as soft biases rather than hard and fast
rules. One approach would be to estimate prior
probabilities of the segregation hypotheses accord-
ing to various distance measures between the frag-
ments composing the sources that the segregation
describes. A suitable distance measure may be
based on the similarity of a vector of fragment
properties such as mean frequency, spectral shape,
spatial location, mean energy. The posterior prob-
ability of pairs of fragments belonging to the same
source given their properties could then be learnt
using training data employing a priori fragments
similar to those used in Section 2.4. Such probabil-
ities could be added into the segregation model by
appropriately adjusting the scores for each evolv-
ing segregation hypotheses as each new fragment
is considered by the decoding process.

When including long term between-fragment
grouping probabilities into the segregation model
some care has to be taken with the speech fragment
decoding algorithm to ensure that the Markov
property is preserved and that the segregation/
word-sequence search remains admissible. In the
version of the algorithm described in Section 2.2,

decisions about the best labelling of a fragment
are made at the instant at which the fragment off-
sets. However, allowing for between-fragment ef-
fects, it is not possible to know at this time point
how the labelling of the present fragment will influ-
ence the labelling of fragments occurring in the fu-
ture. This problem can be overcome by first
limiting the temporal extent of the between-frag-
ment grouping effects to a fixed number of frames,
say T,6 and second, delaying the decision over how
to label a given fragment until the decoder has
passed the offset of the fragment by T frames.

Note that the delay in fragment labelling deci-
sions necessitated by between-fragment grouping
effects will mean that there are on average more ac-
tive hypotheses at any instant. The growth in the
number of hypotheses will in general be an expo-
nential function of the length of the delay which,
in turn, has to be the same duration as the extent of
the temporal influence between fragments. Conse-
quently, there is a trade-off between the temporal
extent of the between-fragment grouping influ-
ences and the size of the segregation search space
(and hence computational cost of the decoding
procedure).

4.4. Approximating P(X)

In Eq. (12), we factored the ratio of the likeli-
hood of the speech features conditioned on segre-
gation and mask to their prior values by
essentially assuming their values were independent
at each time step i, i.e. we took:

PðX jS;YÞ
P ðXÞ ¼

Y

i

PðxijS;YÞ
P ðxiÞ

: ð23Þ

This independence assumption is certainly
incorrect, but difficult to avoid in practical sys-
tems. We note, however, that depending on how
P(xijS,Y)/P(xi) is calculated, the ratio may be rea-
sonable even when the numerator and denomina-
tor include systematic error factors, as long as
those factors are similar.

6 That is to say that between-fragment grouping probabil-
ities are included for interactions between the fragment that is
ending and each fragment that overlaps a window that extends
back T frames before the fragment ended.
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A second weak point is our model for the prior
distribution of individual speech feature elements
at a single time frame, P(xj), as uniform between
zero and some global constant xmax. It would be
relatively simple to improve this, e.g. by using indi-
vidual single-Gaussian models of the prior distri-
bution of features in each dimension. Since this
applies only to the clean speech features X rather
than to the unpredictable noisy observations Y,
we already have the training data we need.

4.5. Three-way labelling of time-frequency cells

Although the primary purpose of the current
system is to decide which time-frequency pixels
can be used as evidence for the target voice, we
note that there is actually a three-way classifica-
tion occurring, firstly between stationary back-
ground and foreground (by the initial noise
estimation stage), then of the foreground energy
into speech and non-speech fragments (by the
decoding process). This special status of the sta-
tionary background is not strictly necessary—
those regions could be included in the search,
and would presumably always be labelled as
non-speech—but it may reveal something more
profound about sound perception in general. Just
as it is convenient and efficient to identify and dis-
card the !background roar" as the first processing
stage in this system, perhaps biological auditory
systems perform an analogous process of system-
atically ignoring energy below a slowly varying
threshold.

4.6. Computational complexity

In the Aurora experiments, the number of frag-
ments per utterance often exceeded 100. However,
as illustrated in Fig. 8(G), the maximum number
of simultaneous fragments was never greater than
10 and the average number of hypotheses per
frame computed over the full test set was below
4. Although the decoder is evaluating on average
roughly four times as many hypotheses as a stand-
ard missing data decoder, much of the probability
calculation may be shared between hypotheses and
hence the computational load is increased by a
much smaller factor.

4.7. Decoding multiple sources

A natural future extension would be to search
for fits across multiple simultaneous models, possi-
bly permitting the recognition of both voices in
simultaneous speech. This resembles the ideas of
HMM decomposition (Varga and Moore, 1990;
Gales and Young, 1993). However, because each
!coherent fragment" is assumed to correspond to
only a single source, the likelihood evaluation is
greatly simplified. The arguments about the rela-
tionship between large, coherent fragments and
search efficiency remain unchanged.

5. Conclusion

We have presented a statistical foundation to
computational auditory scene analysis, and devel-
oped from this framework an approach to recog-
nising speech in the presence of other sound
sources that combines (i) a bottom up processing
stage to produce a set of source fragments, with
(ii) a top-down search which, given models of
clean speech, uses missing data recognition tech-
niques to find the most likely combination of
source speech/background labelling and speech
model sequence. Preliminary ASR experiments
show that the system can produce recognition per-
formance improvements even with a simplistic
implementation of the bottom-up processing. We
believe that through the application of more
sophisticated CASA-style sound source organisa-
tion techniques, we will be able to improve the
quality of the fragments fed to the top-down
search and further improve the performance of
the system.
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