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A valuable goal in the � eld of Music Information
Retrieval (MIR) is to devise an automatic measure
of the similarity between two musical recordings
based only on an analysis of their audio content.
Such a tool—a quantitative measure of similarity—
can be used to build classi� cation, retrieval, brows-
ing, and recommendation systems. To develop
such a measure, however, presupposes some
ground truth, a single underlying similarity that
constitutes the desired output of the measure. Mu-
sic similarity is an elusive concept—wholly subjec-
tive, multifaceted, and a moving target—but one
that must be pursued in support of applications to
provide automatic organization of large music col-
lections.

In this article, we explore music-similarity mea-
sures in several ways, motivated by different types
of questions. We are � rst motivated by the desire
to improve automatic, acoustic-based similarity
measures. Researchers from several groups have re-
cently tried many variations of a few basic ideas,
but it remains unclear which are best-suited for a
given application. Few authors perform compari-
sons across multiple techniques, and it is impossi-
ble to compare results from different authors,
because they do not share the required common
ground: a common database and a common evalua-
tion method.

Of course, to improve any measure, we need an
evaluation methodology, a scienti� c way of deter-
mining whether one variant is better than another.
Otherwise, we are left to intuition, and nothing is

gained. In our previous work (Ellis et al. 2002), we
have examined several sources of human opinion
about music similarity, with the impetus that hu-
man opinion must be the � nal arbiter of music
similarity, because it is a subjective concept. How-
ever, as expected, there are as many opinions about
music similarity as there are people to be asked,
and so the second question is how to unify the
various sources of opinion into a single ground
truth. As we shall see, it turns out that perhaps
this is the wrong way to look at things, and so we
develop the concept of a ‘‘consensus truth’’ rather
than a single ground truth.

Finally, armed with these evaluation techniques,
we provide an example of a cross-site evaluation of
several acoustic- and subjective-based similarity
measures. We address several main research ques-
tions. Regarding the acoustic measures, which fea-
ture spaces and which modeling and comparison
methods are best? Regarding the subjective mea-
sures, which provides the best single ground truth,
that is, which agrees best on average with the other
sources?

In the process of answering these questions, we
address some of the logistical dif� culties peculiar
to our � eld, such as the legal obstacles to sharing
music between research sites. We believe this is
one of the � rst and largest cross-site evaluations in
MIR. Our work was conducted in three indepen-
dent labs (LabROSA at Columbia, MIT, and HP
Labs in Cambridge), yet by carefully specifying our
evaluation metrics, and by sharing data in the form
of derived features (which presents little threat to
copyright holders), we were able to make � ne dis-



64 Computer Music Journal

tinctions between algorithms running at each site.
We see this as a powerful paradigm that we would
like to encourage other researchers to use.

Finally, a note about the terminology used in this
article. To date, we have worked primarily with
popular music, and our vocabulary is thus slanted.
Unless noted otherwise, when we refer to ‘‘artists’’
or ‘‘musicians’’ we are referring to the performer,
not the composer (which frequently are the same
anyway). Also, when we refer to a ‘‘song,’’ we mean
a single recording of a performance of a piece of
music, not an abstract composition, and also not
necessarily vocal music.

This article is organized as follows. First we ex-
amine the concept of music similarity and review
prior work. We then describe the various algo-
rithms and data sources used in this article. Next,
we describe our evaluation methodologies in detail
and discuss issues with performing a multi-site
evaluation. Then we discuss our experiments and
results. Finally, we present conclusions and sugges-
tions for future directions.

Music Similarity

The concept of similarity has been studied many
times in � elds including psychology, information
retrieval, and epistemology. Perhaps the most fa-
mous similarity researcher is Amos Tversky, a cog-
nitive psychologist who formalized and studied
similarity, perception, and categorization. Tversky
was quick to note that human judgments of simi-
larity do not satisfy the de� nition of a Euclidean
metric, as discussed below (Tversky 1977). He also
studied the context-dependent nature of similarity
and noted the interplay between similarity and cat-
egorization. Other notable work includes Gold-
stone, Medin, and Gentner (1991) and the music
psychology literature—e.g., Deutsch (1999) and the
study of melodic similarity in Cambouropoulos
(2001).

In this article, we are essentially trying to pin a
single, quantitative measure to a concept that fun-
damentally resists such de� nition. Later, we partly
justify this approach with the idea of a consensus
truth, but in reality we are forced into the situation

out of necessity to build useful applications using
current techniques. Before proceeding, however, it
is worthwhile to examine in more detail some of
the problems that beset the idea of a coherent
quantitative measure of music similarity.

Individual Variation

That people have individual tastes and preferences
is central to the very idea of music and humanity.
By the same token, subjective judgments of the
similarity between speci� c pairs of artists are not
consistent between listeners and may vary with an
individual’s mood or evolve over time. In particu-
lar, music that holds no interest for a given subject
very frequently ‘‘sounds the same.’’

Multiple Dimensions

The question of the similarity between two artists
can be answered from multiple perspectives. Music
may be similar or distinct in terms of genre, mel-
ody, rhythm, tempo, geographical origin, instru-
mentation, lyric content, historical timeframe—
virtually any property that can be used to describe
music. Although these dimensions are not indepen-
dent, it is clear that different emphases will result
in different artists. The fact that both Paul Anka
and Alanis Morissette are from Canada might be of
paramount signi� cance to a Canadian cultural na-
tionalist, although another person might not � nd
their music at all similar.

Not a Metric

As discussed in Tversky (1977) and elsewhere, sub-
jective similarity often violates the de� nition of a
metric, in particular the properties of symmetry
and the triangle inequality. For example, we might
say that the 1990s Los Angeles pop musician Jason
Falkner is similar to the Beatles, but we would be
less likely to say that the Beatles are similar to Ja-
son Falkner, because the more celebrated band
serves as a prototype against which to measure.
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The triangle inequality can be violated because of
the multifaceted nature of similarity: for example,
Michael Jackson is similar to the Jackson Five, his
Motown roots, and also to Madonna. Both are huge
pop stars of the 1980s, but Madonna and the Jack-
son Five do not otherwise have much in common.

Variability and Span

Few artists are truly a single ‘‘point’’ in any imagi-
nable stylistic space but undergo changes through-
out their careers and may consciously span
multiple styles within a single album, or even a
single song. Trying to de� ne a single distance be-
tween any artist and widely ranging, long-lived mu-
sicians such as David Bowie or Sting seems
unlikely to yield satisfactory results.

Despite all of these dif� culties, techniques to au-
tomatically determine music similarity have at-
tracted much attention in recent years (Ghias et al.
1995; Foote 1997; Tzanetakis 2002; Logan and Salo-
mon 2001; Aucouturier and Pachet 2002; Ellis et al.
2002). Similarity lies at the core of the classi� ca-
tion and ranking algorithms needed to organize and
recommend music. Such algorithms could be used
in future systems to index vast audio repositories,
and thus they must rely on automatic analysis.

Prior Work

Prior work in music similarity has focused on one
of three areas: symbolic representations, acoustic
properties, and subjective or ‘‘cultural’’ informa-
tion. We describe each of these below noting in
particular their suitability for automatic systems.

Many researchers have studied the music-
similarity problem by analyzing symbolic represen-
tations such as MIDI music data, musical scores,
and the like. A related technique is to use pitch
tracking to � nd a melodic contour for each piece of
music. String-matching techniques are then used to
compare the transcriptions for each song (e.g.,
Ghias et al. 1995). However, techniques based on
MIDI or scores are limited to music for which this
data exists in electronic form, since only limited

success has been achieved for pitch tracking of ar-
bitrary polyphonic music.

Acoustic approaches analyze the music content
directly and thus can be applied to any music for
which one has the audio. Blum et al. (1999) present
an indexing system based on matching features
such as pitch, loudness, or Mel-Frequency Cepstral
Coef� cients (MFCCs; these are a compact represen-
tation of the frequency spectrum, typically com-
puted over short time windows). Foote (1997) has
designed a music indexing system based on histo-
grams of MFCC features derived from a discrimina-
tively trained vector quantizer. Tzanetakis (2002)
extracts a variety of features representing the spec-
trum, rhythm, and chord changes and concatenates
them into a single vector to determine similarity.
Logan and Salomon (2001) and Aucouturier and
Pachet (2002) model songs using local clustering of
MFCC features, then determine similarity by com-
paring the models. Berenzweig, Ellis, and Lawrence
(2003) use a suite of pattern classi� ers to map
MFCCs into an anchor space, in which probability
models are � t and compared.

With the growth of the World Wide Web, several
techniques have emerged that are based on public
data derived from subjective human opinion (Co-
hen and Fan 2000; Ellis et al. 2002). These use text
analysis or collaborative � ltering techniques to
combine data from many users to determine simi-
larity. Because they are based on human opinion,
these approaches capture many cultural and other
intangible factors that are unlikely to be obtained
from audio. The disadvantage of these techniques
is that they are only applicable to music for which
a reasonable amount of reliable online data is avail-
able. For new or undiscovered artists, an audio-
based technique may be more suitable.

Acoustic Similarity

In this section, we describe our acoustic-based sim-
ilarity measures. These are techniques for comput-
ing similarity based solely on the audio content, as
opposed to subjective measures which involve hu-
man judgments. Our techniques fall into a class of
methods commonly used in MIR that can be de-
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scribed as probabilistic feature modeling and com-
parison. Essentially, the music is transformed from
raw audio samples into a time series of feature vec-
tors, each of which captures the essential charac-
teristics of the sound over a short time interval.
The time dimension is then ignored, and the series
of feature vectors are considered to be random sam-
ples drawn from a probability distribution that rep-
resents the piece of music. Probability distributions
are much easier to handle when represented with a
parameterized class of distributions, and so for each
piece of music, the parameters of the chosen proba-
bility model are � t to the observed samples that
have been extracted from the music. Finally, pieces
of music can be compared by comparing the para-
metric models that have been � t to the audio data.

In fact, this process can operate on the artist
level, the album level, or the sub-song level, in ad-
dition to the song level. In this article, we use dis-
tributions that model an entire artist’s work to get
an artist-similarity metric, rather than a song simi-
larity metric. The results of each measure are sum-
marized in a similarity matrix, a square matrix
wherein each entry gives the similarity between a
particular pair of artists. The leading diagonal is, by
de� nition, unity, which is the largest value. Some-
times a distance matrix is more convenient, in
which entries measure dissimilarity.

In this article, we examine several acoustic-based
similarity measures that use the statistical para-
digm described above. The techniques are further
described in Logan and Salomon (2001) and Beren-
zweig, Ellis, and Lawrence (2003) and are character-
ized by the features, models and distance measures
used. The next few subsections describe the vari-
ants in more detail: � rst, the feature spaces (MFCC
space and anchor space), followed by the modeling
techniques and the distance measures (Centroid
Distance, Earth Mover’s Distance, and the Asymp-
totic Likelihood Approximation).

Feature Spaces

The � rst step of audio analysis is to transform the
raw audio into a feature space, a numerical repre-
sentation in which dimensions measure different

properties of the input. A good feature space com-
pactly represents the audio, distilling important in-
formation and throwing away irrelevant noise.
Although many features have been proposed for
music analysis, such as spectral centroid, band-
width, loudness, and sharpness (McKinney and
Breebaart 2003), in this article we concentrate on
features derived from Mel-Frequency Cepstral Co-
ef� cients (MFCCs). These features, originally de-
veloped for speech-recognition systems, have been
shown to give good performance for a variety of au-
dio classi� cation tasks and are favored by a number
of groups working on audio similarity (Blum et al.
1999; Foote 1997; Tzanetakis 2002; Logan 2000; Lo-
gan and Salomon 2001; Aucouturier and Pachet
2002; Berenzweig, Ellis, and Lawrence 2003).

The Mel-Cepstrum captures the overall spectral
shape, which carries important information about
the instrumentation and its timbres, the quality of
a singer’s voice, and production effects. However,
as a purely local feature calculated over a window
of tens of milliseconds, it does not capture informa-
tion about melody, rhythm, or long-term song
structure.

We also examine features in an anchor space de-
rived from MFCC features. The anchor space tech-
nique is inspired by a folk-wisdom approach to
music similarity in which people describe artists by
statements such as, ‘‘Jeff Buckley sounds like Van
Morrison meets Led Zeppelin, but more folksy.’’
Here, musically meaningful categories and well-
known anchor artists serve as convenient reference
points for describing the music. This idea inspires
the anchor space technique, wherein classi� ers are
trained to recognize musically meaningful catego-
ries, and music is subsequently ‘‘described’’ in
terms of these categories. Once the classi� ers are
trained, the audio is presented to each classi� er,
and the outputs, representing the activation or like-
lihood of the categories, position the music in the
new space.

For this article, we used neural networks as an-
chor model classi� ers, and we used musical genres
as the anchor categories, augmented with two sup-
plemental categories. Speci� cally, we trained a
twelve-class network to discriminate between
twelve genres: grunge, college rock, country, dance
rock, electronica, metal and punk, new wave, rap,
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R&B/soul, singer/songwriter, soft rock, and trad
rock. Additionally, there were two separate neural
nets to recognize the supplemental classes: male/
female (sex of the vocalist) and low/high � delity.
Further details about the choice of anchors and the
training technique are available in Berenzweig, El-
lis, and Lawrence (2003). A system that uses anchor
space in a music-browsing application is available
online at www.playola.org.

An important point to note is that the input to
the classi� ers is a large vector consisting of � ve
frames of MFCC vectors plus deltas. This gives the
network some time-dependent information from
which it can learn about rhythm and tempo, at
least on the scale of a few hundred milliseconds.

Modeling and Comparing Distributions

Because feature vectors are computed from short
segments of audio, an entire song induces a cloud
of points in feature space. The cloud can be
thought of as samples from a distribution that char-
acterizes the song, and we can model that distribu-
tion using statistical techniques. Extending this
idea, we can conceive of a distribution in feature
space that characterizes the entire repertoire of
each artist.

We use Gaussian mixture models (GMMs) to
model these distributions, similar to the technique
presented in Logan and Salomon (2001). GMMs are
a class of probability models that are often used to
model distributions that have more than one mode,
or ‘‘hump.’’ The classic bell-shaped curve of a sin-
gle Gaussian is clearly not suited to � tting a distri-
bution with several peaks, and therefore, a
weighted mixture of Gaussians is a more powerful
modeling tool.

Training mixture models—in other words, � tting
the parameters to the observed data—is not as sim-
ple as training a single Gaussian, which only en-
tails computing the mean and variance of the data.
In fact, iterative procedures must be used to con-
verge to a solution that maximizes the likelihood
of the observed data. Several such procedures are
commonly used. K-means clustering assigns data
points to the nearest cluster, recomputes the clus-

ter centers, and reiterates. The expectation maxi-
mization (EM) algorithm is more powerful than
K-means, but similar, except data points are given
soft (partial) assignments to the clusters.

In this work, two methods of training the Gaus-
sian mixture models were used: simple K-means
clustering of the data points to form clusters that
were then each � t with a Gaussian component, and
standard expectation-maximization (EM) re-
estimation of the GMM parameters initialized from
the K-means clustering. Although unconventional,
the use of K-means to train GMMs without a sub-
sequent stage of EM re-estimation was discovered
to be both ef� cient and useful for song-level simi-
larity measurement in previous work (Logan and
Salomon 2001).

The parameters for these models are the mean,
covariance, and weight of each cluster. In some ex-
periments, we used a single covariance to describe
all the clusters. This is sometimes referred to as a
pooled covariance in the � eld of speech recogni-
tion; in contrast, an independent covariance model
estimates separate covariance matrices for each
cluster, allowing each to take on an individual
shape in feature space, but requiring many more
parameters to be estimated from the data.

Having � t models to the data, we calculate simi-
larity by comparing the models. The Kullback-
Leibler (KL)-divergence or relative entropy is the
natural way to de� ne distance between probability
distributions. However, for GMMs, no closed form
for the KL-divergence is known. We explore several
alternatives and approximations: the centroid dis-
tance (Euclidean distance between the overall
means); the earth-mover’s distance (EMD; see Rub-
ner, Tomasi, and Guibas 1998), which calculates
the cost of moving probability mass between mix-
ture components to make them equivalent; and the
asymptotic likelihood approximation (ALA) to the
KL-divergence between GMMs (Vasconcelos 2001),
which segments feature space and assumes only
one Gaussian component dominates in each region.
Another possibility would be to compute the likeli-
hood of one model given points sampled from the
second (Aucouturier and Pachet 2002), but as this
is very computationally expensive for large datasets
it was not attempted. Computationally, the cen-

http://www.playola.org
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troid distance is the cheapest of our methods and
the EMD the most expensive.

Subjective Similarity Measures

Whereas acoustic-based techniques can be fully au-
tomated, subjective music-similarity measures are
derived from sources of human opinion, for in-
stance by mining the World Wide Web. Although
these methods cannot always be used on new mu-
sic because they require observations of human in-
teraction with the music, they can uncover subtle
relationships that may be dif� cult to detect from
the audio signal (for example bands that represent
the same subculture, are in� uenced by one an-
other, or even physically look alike).

Subjective measures are also valuable as a ‘‘san-
ity check’’ against which to evaluate acoustic-
based measures; even a sparse ground truth can
help validate a more comprehensive acoustic mea-
sure. Like the acoustic measures, subjective simi-
larity information can also be represented as a
similarity matrix, where the values in each row
give the relative similarity between every artist and
one target. This section describes several sources of
human opinion about music similarity and how to
convert them into a useful similarity measure.

Survey

The most straightforward way to gather human
similarity judgments is to explicitly ask for them
in a survey. We have previously constructed a Web
site, musicseer.com, to conduct such a survey (Ellis
et al. 2002). We de� ned a set of some 400 popular
artists (described in a subsequent section), then pre-
sented subjects with a list of 10 artists (a1, . . . ,a10),
and a single target artist at, and asked ‘‘Which of
these artists is most similar to the target artist?’’
We interpret each response to mean that the cho-
sen artist ac is more similar to the target artist at

than any of the other artists in the list only if those
artists are known to the subject, which we can in-
fer by seeing if the subject has ever selected the art-
ists in any context.

Ideally, the survey would provide enough data to
derive a full similarity matrix, for example by
counting how many times users selected artist ai

being most similar to artist aj. However, even with
the 22,000 responses collected, the coverage of our
modest artist set is relatively sparse: only around
7.5% of all our artist pairs were directly compared,
and only 1.7% of artist pairs were ever chosen as
most similar. We constructed this sparse similarity
matrix by populating each row with the number of
times a given artist was chosen as most similar to a
target as a proportion of the trials in which it could
have been chosen. This heuristic worked quite well
for our data.

Expert Opinion

Rather than surveying the masses, we can ask a
few experts. Several music-related online services
contain music taxonomies and articles containing
similarity data. The All Music Guide
(www.allmusic.com) is such a service in which pro-
fessional editors write brief descriptions of a large
number of popular musical artists, often including
a list of similar artists. We extracted the ‘‘similar
artists’’ lists from the All Music Guide for the 400
artists in our set, discarding any artists from out-
side the set, resulting in an average of 5.4 similar
artists per list (so 1.35% of artist pairs had direct
links). Twenty-six of our artists had no neighbors
from within the set.

As in Ellis et al. (2002), we convert these descrip-
tions of the immediate neighborhood of each artist
into a similarity matrix by computing the path
length between each artist in the graph where
nodes are artists and there is an edge between two
artists if the All Music Guide editors consider
them similar. Our construction is symmetric, be-
cause links between artists were treated as non-
directional. We call this the Erdös measure, after
the technique used among mathematicians to
gauge their relationship to Paul Erdös. This extends
the similarity measure to cover 87.4% of artist
pairs.

http://www.allmusic.com
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Playlist Co-Occurrence

Another source of human opinion about music
similarity is human-authored playlists, such as
those selected for a mixed tape or compilation CD.
Our assumption is that songs co-occurring in the
same playlist will, on average, be more similar than
two randomly chosen songs. This assumption is
suspect for many types of playlists, but as we will
see it proves useful. The Web is a rich source for
such playlists. In particular, we gathered around
29,000 playlists from The Art of the Mix
(www.artofthemix.org), a Web site that serves as a
repository and community center for playlist hob-
byists.

To convert this data into a similarity matrix, we
begin with the normalized playlist co-occurrence
matrix, where entry (i,j) represents the joint proba-
bility that artist ai and aj occur in the same play-
list. However, this probability is in� uenced by
overall artist popularity, which should not affect a
similarity measure. Therefore, we use a normalized
conditional probability matrix instead: entry (i,j) of
the normalized conditional probability matrix C is
the conditional probability p(ai |aj) divided by the
prior probability p(ai). Because

p(a |a ) p(a ,a )i j i jc 4 4ij p(a ) p(a )p(a )i i j

this is an appropriate normalization of the joint
probability. Note that the expected logarithm of
this measure is the mutual information I(ai;aj) be-
tween artist ai and aj.

Using the playlists gathered from Art of the Mix,
we constructed a similarity matrix with 51.4%
coverage for our artist set (i.e., more than half of
the matrix cells were nonzero).

User Collections

Similar to user-authored playlists, individual music
collections are another source of music similarity
often available on the Internet. Mirroring the ideas
underlying collaborative � ltering, we assume that
artists co-occurring in someone’s collection have a
better-than-average chance of being similar, which

increases with the number of co-occurrences ob-
served.

We retrieved user collection data from OpenNap,
a popular music-sharing service, although we were
careful not download any audio � les. After discard-
ing artists not in our data set, we were left with
about 176,000 user-to-artist relations from about
3,200 user collections. To turn this data into a sim-
ilarity matrix, we used the same normalized condi-
tional probability technique for playlists as
described above. This returned a similarity matrix
with nonzero values for 95.6% of the artist pairs.

‘‘Webtext’’

A rich source of information resides in text docu-
ments that describe or discuss music. Using tech-
niques from the IR community, we derived
artist-similarity measures from documents re-
turned from Web searches (Whitman and Lawrence
2002). The best-performing similarity matrix from
that study, which measures document similarity
based on frequency bigram phrases, is used here.
This matrix has essentially full coverage.

Evaluation Methods

In this section, we describe our evaluation method-
ology. First, a caveat: any evaluation system inher-
ently assumes some idea of ground truth against
which the candidate is evaluated. Although simi-
larity is inherently subjective, thus there is no au-
thoritative ground truth, we can tentatively treat
the subjective data described above as if it were
ground truth. This approach is partly justi� ed be-
cause the data are derived from human choices, but
more importantly, we later leverage the diversity of
sources to examine how well the sources agree
with each other.

We present several techniques for evaluating a
similarity measure. The � rst technique is a general
method for evaluating one similarity matrix given
another as a reference ground truth. Then we pres-
ent two techniques speci� cally designed for using
the survey data as ground truth.

http://www.artofthemix.org
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Evaluation Against a Reference Similarity Matrix

If we are given one similarity metric as ground
truth, how can we calculate the agreement
achieved by other similarity matrices? We use an
approach inspired by practice in text information
retrieval (Breese, Heckerman, and Kadie 1998).
Each matrix row is sorted into decreasing similarity
and treated as the results of a query for the corre-
sponding target artist. The top N ‘‘hits’’ from the
reference matrix de� ne the ground truth, with ex-
ponentially decaying weights so that the top hit
has weight 1, the second hit has weight ar, the next
(ar)2 etc. (We consider only N hits to minimize is-
sues arising from similarity information sparsity.)
The candidate matrix ‘‘query’’ is scored by sum-
ming the weights of the hits by another exponen-
tially decaying factor, so that a ground-truth hit
placed at rank r is scaled by (ac)r. Formally, we de-
� ne the Top-N Ranking Agreement Score for row
i as:

N
kr rs 4 (a ) (a )i o r c

r 4 1

where kr is the ranking according to the candidate
measure of the rth-ranked hit under the ground
truth. The parameters ac and ar govern how sensi-
tive the metric is to ordering under the candidate
and reference measures, respectively. We used the
values ar 4 0.51/3 and ac 4 (ar)2 to emphasize the
position of the top few ground-truth hits. With
N 4 10 and these values of ar and ac, the optimal
score—achieved when the top ten ground truth hits
are the same, and in the same order as, the top ten
from the candidate matrix—is 0.999. Finally, the
overall score for the experimental similarity mea-
sure is the average of the normalized row scores

N1
S 4 oS /Si maxN i

where Sm ax is the optimal score. Thus a larger rank
agreement score is better, with 1.0 indicating per-
fect agreement.

One issue with this measure arises from the han-
dling of ties. Because much of the subjective infor-
mation is based on counts, ranking ties are not
uncommon (an extreme case being the 26 ‘‘discon-

nected’’ artists in the expert measure, who must be
treated as uniformly dissimilar to all artists). We
handle this by calculating an average score over
multiple random permutations of the equivalently-
ranked entities; owing to the interaction with the
top-N selection, a closed-form solution has eluded
us. The number of repetitions was based on empiri-
cal observations of the variation in successive esti-
mates to obtain a stable estimate of the underlying
mean.

Evaluation Against Survey Data

The similarity data collected using our Web-based
survey can be argued to be a good independent
measure of ground-truth artist similarity, because
users were explicitly asked to indicate similarity.
However, the coverage of the similarity matrix de-
rived from the survey data is only about 1.7%,
which makes it undesirable to use as a ground-
truth reference as described in the previous section.
Instead, we can compare the individual user judg-
ments from the survey directly to the metric we
wish to evaluate. That is, we ask the similarity
metric the same questions that we asked the users
and compute an average agreement score.

We used two variants of this idea. The � rst, aver-
age response rank, determines the average rank of
the artists chosen from the list of ten presented in
the survey according to the experimental metric.
For example, if the experimental metric agrees per-
fectly with the human subject, then the ranking of
the chosen artist will be � rst in every case, whereas
a random ordering of the artists would produce an
average ranking of 5.5. In practice, the ideal score
of 1.0 is not possible, because survey subjects did
not always agree on artist similarity; therefore, a
ceiling exists corresponding to the single, consis-
tent metric that optimally matches the survey
data. For our data, this was estimated to give a
score of 2.13.

The second approach is simply to count how
many times the similarity measure agrees with the
user about the � rst-place (most similar) artist from
the list. This proportion, called � rst-place agree-
ment, has the advantage that it can be viewed as
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the average of a set of independent binomial
(binary-valued) trials, meaning that we can use a
standard statistical signi� cance test to con� rm that
certain variations in values for this measure arise
from genuine differences in performance, rather
than random variations in the measure. Our esti-
mate of the best possible � rst-place agreement with
the survey data was 53.5%.

Multi-Site Evaluation Procedures

To compare results between research sites, it is
necessary to have a common database and a com-
mon evaluation method. Using the evaluation
techniques described above, we had to share data
between centers. However, we encounter legal re-
strictions when attempting to share copyrighted
music. Although efforts are underway to procure a
database of music that is free for use in the music
information retrieval community (Downie 2002),
negotiations can be slow, and for certain types of
research it is not necessary to have the full audio.
For our purposes, it suf� ces to share the MFCC fea-
tures derived from the audio, since all of the
acoustic-based similarity measures we use begin
with computing the MFCCs. Similarly, other re-
searchers wanting to experiment with different
techniques need only share the front-end features.

Because our audio experiments were conducted
at two sites, a level of discipline was required when
setting up the data. We shared MFCC features
rather than raw audio, both to save bandwidth and
to avoid copyright problems, as mentioned. This
had the added advantage of ensuring both sites
started with the same features when conducting
experiments. Duplicated tests on a small subset of
the data were used to verify the equivalence of our
processing and scoring schemes.

We believe that this technique of establishing
common feature-calculation tools, then sharing
common feature sets, could be useful for future
cross-group collaborations and should be seriously
considered by those proposing evaluations, and we
would be interested in sharing our derived features.

We have compiled a relatively large dataset from
audio and online sources. The dataset covers 400

artists chosen to have the maximal overlap of the
user collection (OpenNap) and playlist (The Art of
the Mix) data. We had previously purchased audio
corresponding to the most popular OpenNap artists
and had also used these artists to construct the sur-
vey data. For each artist, our database contains au-
dio, survey responses, expert opinions from All
Music Guide, playlist information, OpenNap col-
lection data, and Webtext data.

The audio data consists of 707 albums and 8,772
songs, for an average of 22 songs per artist. The spe-
ci� c track listings for this database, which we refer
to as ‘‘uspop2002,’’ are available online at
www.ee.columbia.edu/;dpwe/research/musicsim.

Experiments and Results

A number of experiments were conducted to an-
swer the following questions about acoustic- and
subjective-based similarity measures. First, is an-
chor space better for measuring similarity than
MFCC space? Second, which method of modeling
and comparing feature distributions is best? Third,
which subjective similarity measure provides the
best ground truth, e.g., in terms of agreeing best, on
average, with the other measures?

Although it risks circularity to de� ne the best
ground truth as the measure that agrees best with
the others, we argue that because the various mea-
sures are constructed from diverse data sources and
methods, any correlation between them should re-
� ect a true underlying consensus among the people
who generated the data. A measure consistent with
all these sources must approach a ‘‘consensus
truth,’’ even if no absolute ground truth actually
exists.

Acoustic Similarity Measures

We � rst compare the acoustic-based similarity
measures, examining artist models trained on
MFCC and anchor space features. Each model is
trained using features calculated from the available
audio for that artist. Our MFCC features are 20-
dimensional and are computed using 32-msec

http://www.ee.columbia.edu/%7Edpwe/research/musicsim
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Table 1. Average response rank and �rst-place agreement percentages for various similarity schemes
based on MFCC features. Lower values are better for average response rank, and larger percentages are
better for �rst-place agreement

Independent Pooled

#mix c0? ALA EMD ALA Cntrd EMD

EM 8 y 4.76 / 16% 4.46 / 20% 4.72 / 17% 4.66 / 20% 4.30 / 21%
8 n – 4.37 / 22% – – 4.23 / 22%

16 n – 4.37 / 22% – – 4.21 / 21%
K-means 8 y – 4.64 / 18% – – 4.30 / 22%

8 n 4.70 / 16% 4.30 / 22% 4.76 / 17% 4.37 / 20% 4.28 / 21%
16 y – 4.75 / 18% – – 4.25 / 22%
16 n 4.58 / 18% 4.25 / 22% 4.75 / 17% 4.37 / 20% 4.20 / 22%
32 n – – 4.73 / 17% 4.37 / 20% 4.15 / 23%
64 n – – 4.73 / 17% 4.37 / 20% 4.14 / 23%

Optimal 2.13 / 53.5%
Random 5.50 / 11.4%

frames overlapped by 16 msec. The anchor space
features have 14 dimensions where each dimension
represents the posterior probability of a pre-learned
acoustic class given the observed audio as described
in the section ‘‘Acoustic Similarity’’ above.

In a preliminary experiment, we performed di-
mensionality reduction on the MFCC space by tak-
ing the � rst 14 dimensions of a PCA analysis and
compared results with the original 20-dimensional
MFCC space. There was no appreciable difference
in results, con� rming that any difference between
the anchor-based and MFCC-based models is not
owing to the difference in dimensionality.

Table 1 shows results for similarity measures
based on MFCC space, in which we compare the
effect of varying the distribution models and the
distribution similarity method. For the GMM dis-
tribution models, we vary the number of mixtures,
use pooled or independent variance models, and
train using either plain K-means, or K-means fol-
lowed by EM re-estimation. Distributions are com-
pared using centroid distance, ALA, or EMD (as
described in the section ‘‘Modeling and Comparing
Distributions’’). We also compare the effect of in-
cluding or excluding the � rst cepstral coef� cient,
c0, which measures the overall intensity of a signal.

Table 1 shows the average response rank and � rst-
place agreement percentage for each approach.

From this table, we see that the different training
techniques for GMMs give comparable perfor-
mance and that more mixture components help up
to a point. Pooling the data to train the covariance
matrices is useful, as has been shown in speech
recognition, because it allows for more robust co-
variance parameter estimates. Omitting the � rst
cepstral coef� cient gives better results, possibly be-
cause similarity is more related to spectral shape
than overall signal energy, although this improve-
ment is less pronounced when pooled covariances
are used. The best system is one that uses pooled
covariances and ignores c0. Models trained with the
simpler K-means procedure appear to perform as
well as GMMs and thus are preferred.

A similar table was constructed for anchor-space-
based methods, which revealed that full, indepen-
dent covariance using all 14 dimensions was the
best-performing method. Curiously, while the ALA
distance measure performed poorly on MFCC-based
models, it performed competitively with EMD on
anchor-space models. We are still investigating the
cause; perhaps it is because the assumptions be-
hind the asymptotic likelihood approximation do
not hold in MFCC space.
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Table 2. Best-in-class comparison of anchor versus
MFCC-based measures (average response rank /
� rst-place agreement percentage)

#mix

MFCC

EMD

Anchor

ALA

8 4.28 / 21.3% 4.25 / 20.2%
16 4.20 / 22.2% 4.20 / 19.8%

The MFCC system uses K-means training, pooled diagonal covar-
iance matrices, and excludes c0. The anchor-spacesystem uses EM
training, independent full covariance matrices, and includes c0.

The comparison of the best-performing MFCC
and anchor-space models is shown in Table 2. We
see that both have similar performance under these
metrics, despite the prior information encoded in
the anchors.

Comparing Ground Truth Measures

Now we turn to a comparison of the acoustic and
subjective measures. We take the best-performing
approaches in each feature-space class (MFCC and
anchor space, limiting both to 16 GMM compo-
nents for parity) and evaluate them against each of
the subjective measures. At the same time, we
evaluate each of the subjective measures against
each other. The results are presented in Table 3.
Rows represent similarity measures being evalu-
ated, and the columns give results treating each of
our � ve subjective similarity metrics as ground
truth. Top-N ranking agreement scores are com-
puted as described in the section ‘‘Evaluation
Against a Reference Similarity Matrix.’’

The means down each column, excluding the
self-reference diagonal, are also shown (denoted
‘‘mean*’’). The column means can be taken as a
measure of how well each measure approaches
ground truth by agreeing with all the data. By this
standard, the survey-derived similarity matrix is
best, but its very sparse coverage makes it less use-

ful. The user collection (‘‘opennap’’) data has the
second-highest mean*, including particularly high
agreement with the survey metric, as can be seen
when the Top-N ranking agreements are plotted as
an image in Figure 1. Thus, we consider the user
collections as the best single source of a ground
truth based on this evidence, with the survey’s (and
hence the � rst-place agreement metric’s) providing
reliable data also. (Interestingly, the collection data
does less well agreeing with the survey data when
measured by the � rst-place agreement percentage;
we infer that it is doing better at matching further
down the rankings.)

The natural asymmetry of Table 3 exists because
ac ? ar, and the diagonal is less than one because of
the randomized tiebreakers necessary owing to the

Table 3. First-place agreement percentages (with survey data) and Top-N ranking agreement scores
(against each candidate’s ground truth) for acoustic and subjective similarity measures

1stplace Survey Expert Playlist Collection Webtext

Random 11.8% 0.015 0.020 0.015 0.017 0.012
Anchor 19.8% 0.092 0.095 0.117 0.097 0.041
MFCC 22.2% 0.112 0.099 0.142 0.116 0.046
Survey 53.5% 0.874 0.249 0.204 0.331 0.121
Expert 27.9% 0.267 0.710 0.193 0.182 0.077
Playlist 26.5% 0.222 0.186 0.985 0.226 0.075
Collection 23.2% 0.355 0.179 0.224 0.993 0.083
Webtext 18.5% 0.131 0.082 0.077 0.087 0.997

mean* 0.197 0.148 0.160 0.173 0.074

The mean* rows represent the means of each ground-truth column, excluding the bolded ‘‘cheating’’ diagonal and the ‘‘random’’ row.
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sparsity of the sources. If we calculate a symmetric
agreement score for each pair of sources by averag-
ing the two asymmetric numbers, some interesting
results emerge. The best-agreeing pair is the survey
and the collection data, which is somewhat surpris-
ing given the very different nature of data sources:
explicit user judgments in the survey and co-
occurrence of artists in user collections. Less sur-
prising is the agreement between the survey and
expert sources, which both come from explicit
judgments by humans, and between the collection
and the playlist sources, which both are derived
from co-occurrence data.

We mentioned that a key advantage of the � rst-
place agreement measure was that it allowed the
use of established statistical signi� cance tests. Us-
ing a one-tailed test under a binomial assumption,
� rst-place agreements differing by more than about
1% are signi� cant at the 5% level for this data

(10,884 trials). Thus, all the subjective measures
show signi� cantly different results, although differ-
ences among the variants in modeling schemes
from Tables 1 and 2 are at the edge of signi� cance.

Conclusions and Future Work

Returning to the three questions posed in the previ-
ous section, based on the results shown above, we
draw several conclusions. First, MFCC and anchor
space achieve comparable results on the survey
data. Second, K-means training is comparable to
EM training. Using pooled, diagonal covariance ma-
trices is bene� cial for MFCC space, but in general
the best modeling scheme and comparison method
depend on the feature space being modeled. Third,
the measure derived from co-occurrence in per-
sonal music collections is the most useful ground

Figure 1. Top-N ranking
agreement scores from
Table 3 plotted as a
grayscale image.
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truth, although some way of combining the infor-
mation from different source warrants investiga-
tion since they are providing different information.

The work covered by this article suggests many
directions for future research. Although the acous-
tic measures achieved respectable performance,
there is still much room for improvement. One
glaring weakness of our current features is their
failure to capture any temporal structure informa-
tion, although it is interesting to see what can be
achieved based on this limited representation.

Based on our cross-site experience, we feel that
this work points the way to practical music-
similarity system evaluations that can even be car-
ried out on the same database, and that the serious
obstacles to sharing or distributing large music col-
lections can be avoided by transferring only derived
features (which should also reduce bandwidth re-
quirements). To this end, we have set up a web site
giving full details of our ground truth and evalua-
tion data (www.ee.columbia.edu/;dpwe/research/
musicsim). We will also share the MFCC features
for the 8,772 tracks we used in this work by burn-
ing DVDs to send to interested researchers. We are
also interested in proposals for other features that
it would be valuable to calculate for this data set.
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