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ABSTRACT

Large-scale cover song recognition involves calculating item-
to-item similarities that can accommodate differences in
timing and tempo, rendering simple Euclidean measures
unsuitable. Expensive solutions such as dynamic time warp-
ing do not scale to million of instances, making them inap-
propriate for commercial-scale applications. In this work,
we transform a beat-synchronous chroma matrix with a 2D
Fourier transform and show that the resulting representa-
tion has properties that fit the cover song recognition task.
We can also apply PCA to efficiently scale comparisons.
We report the best results to date on the largest available
dataset of around 18,000 cover songs amid one million
tracks, giving a mean average precision of 3.0%.

1. INTRODUCTION

Music videos are abundant on the web, and tracing the dis-
semination of a given work is a challenging task. Audio
fingerprinting [26] can be used to find an exact copy of a
given music track, but the same technology will not work
for finding novel versions of the original work, i.e. “cover
songs”. Since cover songs are typically recorded by musi-
cians other than those who originally commercialized the
track, one motivation for identifying such “covers” is to
ensure the correct handling of songwriting royalties. For
instance, on YouTube, the copyright holder of the musical
work can have the covers of her work removed, or she can
receive part of the advertising revenue from the video 1 .
Figure 1 shows how easy it is to find thousands of such cov-
ers online from the metadata alone, but many more are not
identified as covers. Another reason to study cover song
recognition is that finding and understanding transforma-
tions of a musical piece that retain its essential identity can
help us to develop intelligent audio algorithms that recog-
nize common patterns among musical excerpts.

Until recently, cover recognition was studied on a small
scale (a few hundred tracks) due in part to the scarcity of

1 http://www.youtube.com/t/faq
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Figure 1. Search result for self-identified cover songs of Lady
Gaga on YouTube on November 22nd, 2011. This simple query
produces about 35, 900 results.

generally-available databases. Most current algorithms are
based on comparisons between chroma patterns, or a re-
lated feature, using some form of dynamic time-warping
(DTW) [23]. Chromas are derived from the spectrogram
and provide a coarse approximation of the musical score
(see Section 2), which make them suitable for our task. Re-
cently, the release of the Million Song Dataset [1] (MSD),
which contains metadata and audio features (including chro-
mas) for one million songs, has spurred the investigation of
large-scale music information retrieval techniques. Linked
to this dataset, the SecondHandSongs dataset (SHS) iden-
tifies approximately eighteen thousand cover songs. The
task of finding these cover songs within one million tracks
makes it much closer to a commercial-scale application.

Very large datasets constrain the amount of computa-
tion that can be devoted to individual comparisons, making
DTW an increasingly infeasible choice. To work with mil-
lions of examples, we would ideally reduce each compari-
son to a simple operation in a low-dimensional space. Such
a space may be defined via hash codes extracted from the
signal in the spirit of fingerprinting algorithms [2]. Hash
codes can be efficiently indexed, and finding a song that
contains particular hash codes is extremely fast. Another
option is to project the entire song into a small fixed dimen-
sion space in which nearest neighbors are our candidate
covers. Nearest neighbor methods are easy to parallelize



and scale, and working with a fixed-dimensional represen-
tation (instead of a variable-length audio signal) is a great
convenience.

Disappointed by the results presented in [2], we focus
on the second option. Beat-synchronous chroma repre-
sentations form a relatively compact description that re-
tains information relevant to covers, and may be cropped
to a constant size. Unfortunately, direct comparison of
chroma patterns using common metrics is poorly behaved
[3]. Summarizing a song by extracting a few chroma patches
and comparing them with Euclidean distance gives unus-
able results. In order to obtain an efficient nearest-neighbor
algorithm, we need a representation for the chroma patches
with the following properties:

• representation vectors can be compared using a sim-
ple metric, e.g. Euclidean distance;

• representation vectors are compact, i.e. low-dimensional;
• representation must be robust to semitone rotations

(musical transpositions);
• representation should be robust to different pattern

offsets (time alignments).

The last condition would allow us to match patches with-
out having to identify a universal time alignment which
is very difficult in a large set. Our candidate representa-
tion is the two-dimensional Fourier transform magnitude
(2DFTM), a simplified version of the representation used
in [18] and discussed in Subsection 3.2. The Fourier trans-
form separates patterns into different levels of detail, which
is useful for compacting energy (as in image compression
schemes such as JPEG) and for matching in Euclidean space.
Discarding the phase component provides invariance both
to transposition (rotation) in the pitch axes and skew (mis-
alignment) on the beat (time) axis. Thus, taking the 2DFTM
of a chroma patch, we obtain a transformation of chroma
features that makes Euclidean distance quite useful, even
after dimensionality reduction through PCA. Our method
encodes each track as a 50-dimensional vector and pro-
vides a large improvement over the hash code-based method
[2]. On the SHS, this approach gives the best result re-
ported so far.

The rest of this work is organized as follows: In Section
2, we present the chroma feature and its variants, its metric
issues, and the task of cover song recognition. In Section
3, we describe how we transform the chroma matrices and
look at the resulting invariance properties. Section 4 details
our experiments on large-scale cover song recognition, and
we conclude in Section 5.

2. PREVIOUS WORK

2.1 Chroma feature and distance

Chroma features were introduced as pitch-class profiles
(PCP) [9]. Many variants have been derived, including
HPCP [10] and CENS [21]; an overview can be found
in [15]. There is even evidence that chromas can be learned
from a simple similarity task [12].

Unfortunately, chroma matrices (or chroma patches, our
term for chroma matrices with a fixed number of time sam-
ples) are high-dimensional features that are difficult to com-
pare with usual metrics [3]. Previous work has experi-
mented with Euclidean distance [3, 23], cosine distance
[23], Kullback-Leibler divergence [3,22] and Itakura-Saito
divergence [22]. None of the results were fully satisfying
for the task of cover song recognition.

2.2 Cover song recognition

Cover song recognition has been widely studied in recent
years, including a specific task within MIREX since 2007
[6]. An early system is Ellis and Poliner [8] and a good
overview is in Serrà’s thesis [23]. A significant amount of
work has been done with classical music [16, 19–21] but
popular music can present a richer range of variation in
style and instrumentation.

Most cover song works were tested on a few hundred or
thousand songs, a size not comparable to commercial col-
lections (Spotify 2 claims more than 15M tracks). How-
ever, some of the work was made to scale and could be
extended to larger sets. Kurth and Müller [17] use a code-
book of CENS features to encode songs, thus creating an
index that can be searched efficiently. Casey and Slaney
[5] use locally-sensitive hashing (LSH) to quickly com-
pare chroma patches, or shingles. Yu et al. [27] also use
LSH to compare different statistics about a song. Kim and
Narayanan [16] look at chroma changes over time and sug-
gest using these changes as hash codes. Finally, our previ-
ous method [2] uses hash codes inspired by the fingerprint
system of [26], i.e., identifying peaks in the chromagram
and encode their relative positions. This was the first result
reported on the SHS.

The idea of using the magnitude of the two-dimensional
Fourier transform has been explored in [14, 18]. As with
the methods above, these were tested on a few hundreds
or thousands examples. The differences with the method
used in this work are highlighted in Subsection 3.4

3. CHROMA FEATURE AND 2DFTM

Our feature representation is the magnitude of the two-
dimensional Fourier transform of beat-aligned chroma patches.
Below, we explain how they are computed and discuss their
properties.

3.1 Chroma

We use the chroma features computed by the Echo Nest
API [7] as described in [13]. They are available as part of
the Million Song Dataset [1] and were used in [2].

A chromagram is similar in spirit to a constant-Q spec-
trogram except that pitch content is folded into a single
octave of 12 discrete bins, each corresponding to a par-
ticular semitone (e.g., one key of the octave on a piano).
For each song in the MSD, the Echo Nest analyzer gives a
chroma vector (length 12) for every music event (called

2 http://www.spotify.com
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Figure 2. Beat-aligned chroma features.

“segment”), and a segmentation of the song into beats.
Beats may span or subdivide segments. Averaging the per-
segment chroma over beat times results in a beat-synchronous
chroma feature representation similar to that used in [8].
Echo Nest chroma vectors are normalized to have the largest
value in each column equal to 1.

Empirically, we found improved results from raising the
highest values relative to the lowest ones by a power-law
expansion. We believe this accentuates the main patterns
in the signal. Figure 2 illustrates the stages in converting
segment-aligned chroma features and their loudness to cre-
ate beat-aligned chroma features for our task.
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Figure 3. Examples of images and the corresponding 2DFTMs.
FT images have the low-frequency values in the center.

3.2 Magnitude of the 2D Fourier Transform

Taking the two-dimensional Fourier transform is a com-
mon task in digital image processing where it is useful for
denoising and compression, among other things [11]. As
illustrated in the examples of Figure 3, a single point in the
2D Fourier transform corresponds to a sinusoidal grid of a
particular period and orientation in the image (transform)
domain; more complex images are built up out of multiple
sinusoid grids.

We skip the definition of the 2D Fourier transform and
its magnitude since it is widely known. Note that for visu-
alization purposes, the bins are shifted so that the center of
the axis system is in the middle of the image. 3 In that rep-
resentation, the transformed image is symmetrical about
the origin. Figure 4 gives an example of the transform ap-
plied to the chroma patch from Figure 2.

Figure 4. 2DFTM over a beat-synchronous chroma patch. Bins
have been shifted so the maximum energy is in the center and
magnitude values have been raised to the power 0.5 for visual-
ization purposes. In the 2DFTM, the darker columns at −9 and
+9 arise from the near-periodicity at 8 beats in the original beat-
chroma patch. This results in energy around column 75/8 ≈ 9 in
the transform domain (for a 75-column 2DFT). 4

3.3 Rotation invariance

Analyzing nearest neighbors or clusters of chroma patches
helps understand the properties of a given representation.
Quantizing the chroma vector can be a useful step in an al-
gorithm [20], but it can also be a goal on its own with the
hope of seeing meaningful music patterns emerge [4]. The
use of the 2DFTM introduces an interesting invariance, not
only in key as in [4], but also in time, since small time
shifts within a large patch correspond primarily to phase
shifts in the Fourier components, with only slight changes
in magnitude arising from edge effects. Figure 5 shows, for
a randomly-chosen chroma patch at the top-left of the fig-
ure, the nearest neighbors obtained from the 2DFTM rep-
resentation. For visualization purposes, we used 16-beat
patches for this experiment. The result is noisy, but we see
a clear square wave pattern that is repeated with different
onsets in the first three neighbors.

3.4 Comparison with Similar Previous Approaches

Our method resembles those of [14,18], but some steps are
simplified in view of the size of the collection at hand. In
[14], instead of beat-aligned chromagrams, the authors use
two-dimensional autocorrelation, then, for each semitone,
take 17 samples spaced logarithmically in time (to normal-
ize tempo) building a 12x17 feature matrix for each song.

3 fftshift in MATLAB, scipy.fftpack.fftshift in Python
4 Corrected 2013-02-27.
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Figure 5. Neighbors of the upper left patch using 2DFTM rep-
resentation (including raising values to power 1.96). The square
signal shape, shifted in time, is visible in the first two neighbors
(upper right, middle left) and partially in the middle right neigh-
bor.

Autocorrelation is the Fourier transform of the Fourier Trans-
form magnitude we use.

Compared to [18], we do not extract melodic lines, and
we represent each track with an aggregate patch rather than
storing many overlapping patches. We use PCA as the do-
main for comparison to improve generalization. Marolt de-
scribes time-shift invariance of the 2DFTM as an issue, but
for us it is the main attraction. We found 75 beat patches
to be most useful compared to the optimum at 32 in [18],
perhaps because of PCA. A main emphasis of his work is
the use of LSH, but reducing each track to a single pat-
tern makes such indexing unneccessary, even for our much
larger database.

4. COVER SONG RECOGNITION

Our goal is to find cover songs among mostly western pop
music. The experiments are conducted on the Second-
HandSongs dataset (SHS). The SHS was created by match-
ing the MSD with the online database 5 that aggregates
user-submitted cover songs. The SHS training set contains
12, 960 cover songs from 4, 128 cliques (musical works),
and the testing set has 5, 236 tracks in 726 cliques. Note
that we use the term “cover” in a wide sense. For instance,
two songs derived from the same original work are consid-
ered covers of one another.

4.1 Method

We will represent each song by a vector of fixed-length,
defining a point in Euclidean space. The closer two feature
vectors lie in this space, the more likely the songs are cov-
ers. The steps to compute this feature vector for a song are
summarized as follows:

1. obtain chroma from the MSD
2. resample onto beat grid
3. apply power-law expansion

5 www.secondhandsongs.com

4. extract FFT patches and keep magnitude
5. take the median
6. apply PCA

The first step is done using the code provided with the
MSD. One can also call The Echo Nest API [7] if start-
ing from audio (see Subsection 4.4). Beat estimation is
also provided in the MSD, and the second step is mostly
a linear scaling. The third step, in which we enhance the
contrast between strong and weak chroma bins by raising
the values to an exponent, was determined to be useful in
our experiments. In the fourth step, we take the 2DFTM as
shown in Figure 4 for every 75-beat long chroma patch. In
the fifth step we keep the median, within each bin, across
all the transformed patches. Finally, in the sixth step, we
use PCA to reduce the dimensionality. PCA is done with-
out normalization, the data is simply centered to zero and
rotated. In our experiments PCA was computed on 250K
songs that were not identified as covers (i.e., in neither the
SHS train or test sets).

Many of the parameters above were chosen empirically.
We do not present the list of parameters we tried for lack
of space and the little interest they carry. Simply note that
the following parameters were chosen based on their abil-
ity to identify 500 train covers (see Subsection 4.3, first
experiment):

• patches of size 75 beats, we tried number of beats
ranging from 8 to 100;

• median as opposed to average;
• raising to the power 1.96, we tried values between

0.25 and 3.0.

The number of PCs we keep after PCA is also a parameter,
but choosing the best one is more difficult. The number of
PCs is a trade-off between accuracy and feature vector size
(and hence speed). We believe 50 is the “best” trade-off,
but we report results for other numbers of PCs. Still re-
garding PCA, since we use chroma patches of 75 beats, we
have 12 × 75 = 900 principal components. Note that half
of the components (450) are redundant due to the symme-
try in the 2DFTM, and have a variance of zero associated
to them.

4.2 Reference methods

We compare our algorithm to other methods, at different
scales depending on the speed of the algorithm. We start
with our previous work [2], the only reported result on the
SHS to our knowledge. Also taken from that work, we
report again a comparison with the method from [8].

We also test a DTW-based method based on [24] using
code from S. Ravuri 6 . This is more of a sanity check than
a full comparison; the authors in [24] used up to 36 semi-
tones instead of the 12 we possess, we did not re-estimate
the DTW parameters, etc. It is likely that the full system
from [24] outperforms our method, the problem being the
execution time which is prohibitive on a large scale. In our

6 http://infiniteseriousness.weebly.com/
cover-song-detection.html



implementation, each DTW comparison takes on the order
of 10 ms. One query on the MSD would therefore take
about 2.7 hours. Thus we do this comparison only on our
500 binary queries.

Finally, we compare with pitch histograms, a feature
that was suggested for music identification in [25]. The
pitch histogram of a song is the sum of the energy in the
12 semitones normalized to one. In our case, we compute
it from beat-aligned chroma features. This feature is not
powerful enough to perform cover recognition on its own,
but it gives an idea of how much more information our
method can encode in a ∼ 10-dimensional feature.

4.3 Experiments

Method accuracy
random 50.0%
pitch hist. 73.6%
correlation 76.6%
DTW 80.0%
jcodes 1 [2] 79.8%
jcodes 2 [2] 77.4%
2DFTM (full) 82.0%
2DFTM (200 PC) 82.2%
2DFTM (50 PC) 82.2%
2DFTM (10 PC) 79.6%
2DFTM (1 PC) 66.2%

Table 1. Results on 500 binary tasks. PC is the number of
principal components we retain after PCA. Empirically, 50
PC appear to be the best trade-off between accuracy and
size.

We follow the methodology of [2] where the parame-
ters are first tuned on a subset of 500 binary tasks created
within the SHS training set (we use the same 500 queries).
The goal is: Given a query song A and two songs B and
C, find which of B or C is a cover of A. The result is the
percentage of trials where the algorithm succeeds. We then
present the results testing on the training set, mostly as a
sanity check. Finally, we report result on the SHS test set
using the full MSD.

In [2], the main reported result was the average rank of
a known cover given a query. For instance, on 1M songs,
picking at random would give 500K. We again report this
measure to permit comparison, but for practical purposes
this number may be misleading since it is dominated by
the most difficult covers, of which there will always be a
number, and hides differences in performance near the top
of the ranking. We now prefer to report results in terms of
mean average precision (meanAP), which puts emphasis
on results that rank high, i.e., the covers that are in the top
k results. present the recall curves for a few algorithms
(see Figure 6).

As we see in Table 3, the method based on our 2DFTM
representation provides a significant improvement over the
method in [2] for both measures. In particular, based on
meanAP, many more covers are ranked in the first few hun-
dred results, which makes it much more valuable in a com-
mercial system. Note that a second, slower step could be
applied to the top k results, k being 1K or 10k, similar to

Method average rank mean AP
pitch hist. 4, 032.9 0.01851
2DFTM (full) 3, 096.7 0.08912
2DFTM (200 PC) 3, 005.1 0.09475
2DFTM (50 PC) 2,939.8 0.07759
2DFTM (10 PC) 3, 229.3 0.02649
2DFTM (1 PC) 4, 499.1 0.00186

Table 2. Results on the training set (12, 960 songs). For
average rank, lower is better. For meanAP, higher is better.

Method average rank mean AP
random 500, 000 ∼ 0.00001
pitch hist. 268, 063 0.00162
jcodes 2 308, 370 0.00213
2DFTM (200 PC) 180, 304 0.02954
2DFTM (50 PC) 173,117 0.01999
2DFTM (10 PC) 190, 023 0.00294
2DFTM (1 PC) 289, 853 0.00003

Table 3. Results on 1M songs. For average rank, lower is
better. For meanAP, higher is better.

the progressive refinement in [27]. A good candidate for
this second step would be the full system of [24].
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songs for different systems. Legend is in order from best (upper
left corner) to worst.

Using the system with 50 principal components, Figure
6 shows us that more than half of the covers are ranked in
the top 100k and more than a quarter of them are in the top
10k. For 112 queries, the first song returned was a known
cover. We ignore here the songs that might have ranked
second or third after other known covers. This includes the
pairs (Hayley Westenra, Kate Bush) performing “Wuther-
ing Heights” and (The Boomtown Rats, G4) performing “I
don’t like Mondays”, matches considered easy in [2].

In terms of speed, with a 50-dimensional vector per
song, ranking all one million for all 1, 726 test covers in
Python took 1h 46min on a machine with plenty of RAM.
This is around 3-4 seconds per query without any optimiza-
tion or parallelization. Compared to the 2.7 hours of the
DTW method, that is a ∼ 2, 500x speedup.

4.4 Out of collection data

Using audio as the query input with the SHS is a chal-
lenge, beat-synchronous features relies on a consistent beat
tracker. Fortunately, The Echo Nest provides an open API
which will convert any uploaded audio into the format pro-
vided in the Million Song Dataset. We experimented with
this using cover songs found on YouTube. For instance,
the song “Summertime” by Ella Fitzgerald and Louis Arm-



strong 7 was correctly associated with a cover version by
Joshua Redman (first match). The Ella Fitzgerald and
Louis Armstrong version present in the SHS was found at
rank 9. The fact that this was not the first match might
be explained by the lower audio quality on YouTube, or it
could be a different version.

5. CONCLUSION

The 2DFTM allows us to pose the search for cover songs
as estimating an Euclidean distance. We show that this rep-
resentation exhibits some nice properties and improves the
state-of-the-art on large-scale cover song recognition. Fur-
thermore, obtaining good results using patches of 75 beats
suggests an easy way to include more time dependency in
the harmonic representation. Future work will look into
the usefulness of this representation for other tasks, such
as music tagging and segmentation. Finally, all our code is
available online 8 .
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