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ABSTRACT

Building models of the structure in musical signals raises the
question of how to evaluate and compare different modeling ap-
proaches. One possibility is to use the model to impute deliberately-
removed patches of missing data, then to compare the model’s pre-
dictions with the part that was removed. We analyze a corpus of
popular music audio represented as beat-synchronous chroma fea-
tures, and compare imputation based on simple linear prediction
to more complex models including nearest neighbor selection and
shift-invariant probabilistic latent component analysis. Simple linear
models perform best according to Euclidean distance, despite pro-
ducing stationary results which are not musically meaningful. We
therefore investigate alternate evaluation measures and observe that
an entropy difference metric correlates better with our expectations
for musically consistent reconstructions. Under this measure, the
best-performing imputation algorithm reconstructs masked sections
by choosing the nearest neighbor to the surrounding observations
within the song. This result is consistent with the large amount of
repetition found in pop music.

Index Terms— Missing data imputation, music audio, chroma
features, entropy difference, music sequence models

1. INTRODUCTION

As with many classes of time-series data, musical signals contain
substantial amounts of complex structural information. Given the
intricate nature of this structure, unsupervised modeling of music is
a particularly alluring yet challenging task. Precise models based
on large music archives could have a great impact, not only on mu-
sicology but also in numerous commercial applications, including
recommendation systems, digital rights management, and creative
tools. We are particularly interested in models that capture local pat-
terns (or “patches”) in the data. A successful method for describing
music as a collection of patches would be useful for tasks such as
song similarity (recognizing songs with similar patterns), song seg-
mentation (labeling chorus/verse structure), and cover song recogni-
tion (identifying songs with similar high-level patterns). All of these
tasks would benefit from patch models that capture high-level mu-
sical characteristics while remaining faithful to the observed signal
data. It is unclear, however, how to evaluate the extent to which a
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model captures “musically sensible” structure. This is the question
addressed in the current work through the task of missing data impu-
tation, and via a number of metrics which are sensitive to musically
meaningful aspects of the data.

Imputation refers to the problem of filling in data items that have
been lost or deleted. Previous work on audio-related applications has
included speech denoising [1, 2], source separation [3], bandwidth
expansion [4], and model evaluation [5]. Much of this work has
focused on small deletions such as a single time-frame. The rela-
tively slowly-varying properties of music allow single-frame dele-
tions to be imputed with good accuracy based on simple extrapola-
tion. However as the amount of missing data increases, the problem
becomes significantly more challenging. We therefore focus on the
task of multi-frame imputation in which long segments of the signal
are missing. Obtaining good performance on this task requires the
use of models that effectively exploit longer-term musical structure.
The task therefore serves as a good way to more carefully evaluate
the temporal aspects of competing models.

The difficulties of multi-frame imputation of music data are il-
lustrated in Figure 1. For instance, linear prediction, which we found
to give the smallest Euclidean distances over a large test set, is used
to impute the missing data as shown in the 6th row.Visually, it is
evident that linear prediction yields an overly-smooth reconstruction
and is unable to restore any temporal evolution within the missing
section. A more musically-coherent representation demands a model
better that is able to employ long-span information, such as knowl-
edge of repetitions within a song. Unfortunately, simple measures
like Euclidean distance are not sensitive to musical coherence, and
will lead to solutions like linear prediction. In this paper, we ar-
gue for a more extensive set of metrics, able to properly evaluate a
model’s ability to predict musical sequences.

2. TASK DEFINITION

2.1. DATA AND FEATURES

We use a set of 5000 songs taken from the morecowbell.dj dataset [6],
which consists of a wide variety of (predominantly western) pop
music. The raw audio is converted to a chromagram representation
using the online Echo Nest API.1 A chromagram is similar in spirit
to a constant-Q spectrogram except that pitch content is folded into a
single octave of 12 discrete bins, each corresponding to a particular
semitone (e.g. one key on a piano).

Music naturally evolves over a time scale expressed in beats, so
instead of the fixed-length frames commonly used in other audio pro-
cessing, we form beat-aligned chroma by resampling a chromagram

1http://developer.echonest.com



to make each chroma (column) vector span a single beat. This repre-
sentation has been successfully used for cover song recognition [7],
segmentation [8], and in our previous work on patch modeling [6].
Loudness variation is removed by normalizing each column to have
a maximum value of one.

2.2. ALGORITHMS

To better understand the multi-beat imputation task, we present sev-
eral benchmark algorithms of varying sophistication. While the sim-
pler algorithms cannot be expected to provide high-quality impu-
tations, their relative performance is of interest. Simple methods
include filling the missing chroma bins with draws from a uniform
[0, 1) distribution (Figure 1, 3rd row), or using a beat picked at ran-
dom from elsewhere in the song, or using the average of all remain-
ing beats.

Our first trained model uses a linear transform to predict the next
beat from the previous N beats. As it explicitly learns to minimize
Euclidean distance on the remaining data, this method performs very
well under certain metrics (see Figure 1). From our experiments,
N = 1 or N = 2 works best.

Nearest neighbor (1NN) is a promising technique given the rep-
etitious structure of songs. By looking at the beats near to the miss-
ing data, we can impute a reconstruction by spotting and copying a
similar neighborhood. Note that instead of using the remaining part
of the song, one could also use a codebook constructed from other
songs, which could involve kNN with k > 1.

The algorithms mentioned so far rely on low-level information
which is unlikely be sufficient for a fully satisfactory multi-frame
imputation. Therefore, we also try shift-invariant probabilistic latent
component analysis (SIPLCA) [4, 8], which is able to capture more
subtle temporal dependencies. SIPLCA extracts template chroma
patches that are consistently repeated throughout a song. Missing
data is imputed by identifying templates consistent with the features
neighboring the missing segment. In the case of missing segments
longer than the identified templates, our imputation algorithm uti-
lizes a hierarchical reconstruction scheme, whose detailed explana-
tion is beyond the scope of this paper. SIPLCA for imputation is
ongoing research and we refer the interested reader to our code for
the moment.

2.3. EVALUATION METRICS

Euclidean distance is a natural first choice for evaluating reconstruc-
tion and encoding tasks. However, as can be seen in Figure 1, al-
gorithms which minimize this metric do not necessarily capture all
of the relevant data statistics. In particular, the solution is overly
smooth and longer-term temporal patterns are poorly reconstructed.

Clearly, the simplicity of the model is largely responsible for
these issues. However, inherent in the Euclidean distance criterion
is a preference for smooth solutions. To see why, consider the toy
example of Figure 2b. We approximate the original one-dimensional
signal, a square wave (solid line), by two signals: a translated iden-
tical square wave (dot-dashed line), and a constant signal (dashed
line). The first signal has an average reconstruction error of 0.50
using Euclidean distance. The second signal has an average error of
only 0.25, despite the fact that it does not appear to reflect the overall
shape of the original data.

The class of Minkowski distances are given by the form dp =
|x1 − x2|p, of which the Euclidean is a special case (p = 2). In
general, as p → 0 the resulting distance measures penalize small
values more heavily. This has the effect of favoring “sharper” data

sequences and is illustrated in Figure 2a. The greyed rectangle rep-
resents the case where a reconstruction is considered valid (error
equals 0 if it is between some δ of the original and wrong other-
wise (error equals 1). The Minkowski distance approximates this
case when both δ → 0 and p→ 0. In the experiments described be-
low, we consider p = 0.5 and p = 2. With p = 0.5, on the example
of Figure 2b, the translated square wave is now favored (with a re-
construction error of 0.5) to the second signal whose reconstruction
error is now 0.71.

Looking at the differences between the original data and the im-
puted values, it appears that we need to encourage sparsity in our
solutions. Entropy is a natural measure of the sparsity of a distri-
bution and therefore it makes sense to consider related metrics. We
examined the (symmetric) Kullback-Leibler divergence, (approxi-
mate) conditional entropy [9], Jensen difference [10], and the nor-
malize difference entropy (D-ENT) [11]. The Jensen difference of
two distribution x1 and x2 is given by

J(x1, x2) = H
“x1 + x2

2

”
− H(x1) +H(x2)

2

whereH(x) denotes the entropy of x. For D-ENT, we build a 10-bin
histogram of feature values, and compute the difference of entropy
for each bin between the original distribution and its approximation:

D-ENT(b1,b2) =
1

10

10X
i=1

log2 b1,i − log2 b2,i

log2 b1,i

where b1 is the set of bins for x1. Note that D-ENT is not symmetric.
In our experiments, we set the first vector to be the original features.
Also, the position of the different values does not matter.

Another idea to measure the “sharpness” of a reconstruction
compared to the original using the first-order difference of the fea-
ture vectors across time. We compute the delta difference by sum-
ming the absolute value of the delta, then taking the absolutec differ-
ence. Once again, the position of the delta values does not matter.

We explained above why Euclidean distance can justify disap-
pointing reconstructions. At the same time, we do not argue that we
should ignore or replace it. Euclidean distance measures reconstruc-
tion in a fundamental way. We believe we need a combination of
measures to quantify the quality of music patterns, Euclidean dis-
tance being one of them. In the next section, we investigate which
measures behave in a similar way, thus helping us to decide which
ones are useful.

3. EXPERIMENTS

As we mentioned in Section 2.3, there exist numerous metrics to
evaluate the reconstruction of a signal. Euclidean distance is a natu-
ral first choice, but it does not necessarily reward musical structure.
In order to justify our set of reported measures, we computed the
statistical similarity between a number of distance metrics. We use
Pearson’s correlation which is defined as:

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY

Note that −1 ≤ ρX,Y ≤ 1, and an absolute value close to 1 means
high correlation. We compute ρX,Y for all pairs of error measures
using the results obtained by the three imputation methods described
in Subsection 2.2 on a two multi-frame imputation task. The results
are shown in Table 1. Note that we experimented with a number of
other distance metrics, including symmetric Kullback-Leibler diver-
gence, conditional entropy, and cosine distance. Although we do not



Euclidean d1/2 Jensen Delta diff. D-ENT

Euclidean 1
d1/2 0.90 1
Jensen 0.84 0.71 1
Delta diff. 0.45 0.52 0.38 1
D-ENT 0.12 0.27 0.20 0.52 1

Table 1: Pearson correlation between measures computed using the
full dataset with several imputation schemes and amounts of missing
data. Correlation is symmetric.

include detailed results due to lack of space, all of these metrics were
highly correlated with Euclidean distance.

It is worth pointing out that the delta difference and D-ENT met-
rics differ from the rest in that they compare patches in a holistic
manner. This stands in contrast to the other measures which work in
a point-by-point fashion. Additionally, these two metrics measure a
fundamentally different quality of the patch data in that they assess
patch “granularity” as opposed to individual chroma bin levels.

We take a closer look at the divergence between two of the mea-
sures (Eucliean and D-ENT) in Figure 3. This shows the perfor-
mance of three methods for different numbers of missing beats. As
we can see from Table 1, they have a low empirical correlation of
0.12. The nearest neighbor (NN) method creates a reconstruction
with a granularity similar to the original for all mask sizes. This
implies that D-ENT is approximately constant throughout the songs
and imputation using NN can easily preserve this characteristic. Tthe
linear transform successfully learns to minimize the Euclidean dis-
tance. However, as is the case with D-ENT, the linear transform
results in a substantial amount of smoothing (see the 6th row of Fig-
ure 1). The average reconstruction has the same D-ENT as the linear
transform which is consistent with Figure 1. However, due to less
smoothing (or perhaps less intelligent smoothing), it does not do as
well in terms of Euclidean distance.

Figure 4 shows another example of imputation using different
algorithms. The algorithms are ordered according to Euclidean dis-
tance. However, we can see that in this case, delta difference would
have ranked NN first, followed by SIPLCA whose reconstructions
seem more faithful to the original.

Table 2 shows the results of 15-beat imputation using 5000
songs. The linear transform is a clear winner based on Euclidean
distance. As before, nearest neighbor’s strength is to preserve the
texture of the original patch as can be seen from the D-ENT score.
We do not present all possible results (different numbers of missing
beats, other error measures, etc.) due to space constraints, but given
many of the other measures’ high correlations to Euclidean distance,
the differences are generally small.

4. CONCLUSION

We investigate the task of multi-frame imputation as a method for
evaluating models of music sequences. Key to this evaluation is the
definition of appropriate performance metrics. Experimental results
over a data set of thousands of songs demonstrate that many stan-
dard metrics for comparing feature sequences, including Euclidean
distance and Kullback-Leibler divergence, do not reliably measure
the ability of an imputation algorithm to produce musically con-
sistent reconstructions. We therefore propose to complement Eu-
clidean distance with a measure of the entropy difference between

method Euclidean delta diff. D-ENT

random 0.168 0.135 0.252
average 0.079 0.180 0.430
1NN 0.072 0.028 0.123
lin. trans. 0.056 0.170 0.479
SIPLCA 0.060 0.149 0.395

Table 2: Results on 15 missing beats by different methods on 5000
songs and measured using Euclidean distance, delta difference, and
D-ENT.

the original features and their reconstruction. The proposed measure
more consistently predicts an algorithm’s ability to produce musi-
cally coherent reconstructions that are consistent with the original
signal. The best performing imputation algorithm according to Eu-
clidean distance often produces poor reconstructions, preferring to
reuse a single sustained chord. The same linear prediction model
performs poorly under the proposed measures, while more sophisti-
cated sequence-based models show significantly better performance.

Given an appropriate framework for evaluating music sequence
models, we intend to shift our focus to the exploration of more so-
phisticated sequential imputation algorithms in the future, including
hidden Markov models and SIPLCA. Our goal is to encourage re-
searchers to further explore this task. We have therefore made the
code and data to reproduce these results available online.2
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RANDOM, eucl. = 0.1495, delta diff. = 0.0739, D-ENT = 0.1525

1NN, eucl. = 0.1102, delta diff. = 0.0646, D-ENT = 0.1790

AVERAGE, eucl. = 0.0926, delta diff. = 0.2577, D-ENT = 0.6388

LIN. TRANS., eucl. = 0.0763, delta diff. = 0.2484, D-ENT = 0.5079

0 30 60 94

SIPLCA, eucl. = 0.0486, delta diff. = 0.1661, D-ENT = 0.3606

Fig. 1: 15-beat imputation example. Rows are (1) original data,
(2) masked data, (3) random reconstruction, (4) nearest-neighbor re-
construction, (5) reconstruction using average of nearby beats, (6)
reconstruction using linear transform of one previous beat, and (7)
SIPLCA (see Section 2.2 for algorithmic details). Note that only
excerpts are shown.
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Fig. 2: (a) Effect of different measures on one-dimensional data.
(b) Reconstruction error between a square wave and two approxi-
mations, a square wave translated by a quarter of the period, and
the average function. Average error between original and translated
wave is always 0.5 for any Minkowski measure dp on [0, 1]. For the
average function, the errors are 0.25, 0.5 and 0.71 for d2, d1 and
d1/2 respectively.
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Fig. 3: Reconstruction error as a function of imputation algorithm
and number of masked beats. The error metrics shown are D-ENT
and Euclidean distance. In all cases, Euclidean distance increases
with the number of masked beats. Lower left is better.
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1NN, eucl. = 0.0928, delta diff. = 0.0409, D-ENT = 0.0820

SIPLCA, eucl. = 0.0717, delta diff. = 0.1181, D-ENT = 0.4272
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Fig. 4: 20 beats imputation example, rows are 1) original 2) original
masked, then reconstruction using same algorithms as Fig 1 (except
random).


