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ABSTRACT 

In this paper we present a systematic study of automatic 
classification of consumer videos into a large set of diverse 
semantic concept classes, which have been carefully selected 
based on user studies and extensively annotated over 1300+ 
videos from real users. Our goals are to assess the state of the art 
of multimedia analytics (including both audio and visual analysis) 
in consumer video classification and to discover new research 
opportunities. We investigated several statistical approaches built 
upon global/local visual features, audio features, and audio-visual 
combinations. Three multi-modal fusion frameworks (ensemble, 
context fusion, and joint boosting) are also evaluated. Experiment 
results show that visual and audio models perform best for 
different sets of concepts. Both provide significant contributions 
to multimodal fusion, via expansion of the classifier pool for 
context fusion and the feature bases for feature sharing. The fused 
multimodal models are shown to significantly reduce the 
detection errors (compared to single modality models), resulting 
in a promising accuracy of 83% over diverse concepts.  To the 
best of our knowledge, this is the first work on systematic 
investigation of multimodal classification using a large-scale 
ontology and realistic video corpus. 

Categories and Subject Descriptors 
Information Search and Retrieval; Multimedia Databases; Video 
Analysis 

General Terms 
Algorithms, Management, Performance 

Keywords 
Video classification, semantic classification, consumer video 
indexing, multimedia ontology 

1. INTRODUCTION 
With the explosive growth of user generated content, there has 
been tremendous interest in developing next-generation 
technologies for organizing and indexing multimedia content 
including photos, videos, and music. One of the major efforts in 
recent years involves automatic semantic classification of media 
content into a large number of predefined concepts that are both 
relevant to practical needs and amenable to automatic detection. 
The outcomes of such classification processes are high-level 
semantic descriptors, analogous to textual terms describing 
document content, and can be very useful for developing 
powerful retrieval or filtering systems for consumer media.  

Large-scale semantic classification systems require several 
critical components. First, a large ontology is needed to define the 
list of important concepts and the relations among the concepts. 
Such ontologies may be constructed from the results of formal 
user studies or data mining of user interaction with online systems. 
Second, a large corpus consisting of realistic data are needed for 
training and testing automatic classifiers. An annotation process is 
also needed to obtain the concept labels of the defined concepts 
over the corpus. Third, signal processing and machine learning 
tools are needed to develop robust classifiers (also called models 
or concept detectors) that can be used to detect presence of each 
concept in any test data. 

Recently, developments of such large-scale semantic 
classification systems have been reported for generic classes (e.g., 
car, airplane, flower) [17] and multimedia concepts in news 
videos [15].  In the consumer media domain, only limited efforts 
have been conducted to categorize consumer photos or videos into 
a small number of classes. In a companion paper [10], we have 
described a systematic effort to establish the first large-scale 
ontology and benchmark data set for consumer video 
classification. It consists of over 100 relevant and potentially 
detectable concepts, and annotation of 25 selected concepts over a 
set of 1338 consumer videos. The availability of such large 
ontology and rigorously annotated benchmark data set brings 
about a unique opportunity for evaluating state-of-the-art machine 
learning tools and multimedia analytics in automatic semantic 
classification.  

In this paper, we present several novel statistical models and 
multimodal fusion frameworks for automatic audio-visual content 
classification. On the visual side, we investigate different 
approaches using both global and local features and ensemble 
fusion with multiple parameter sets. On the audio side, we 
develop techniques based on simple Gaussian models as well as 
advanced statistical methods such as probabilistic latent semantic 
analysis. One of our main goals is to understand the individual 
contributions of audio and visual models and find the optimal 
fusion strategies. To this end, we have developed and evaluated 
several fusion frameworks, ranging from simple weighted 
averaging, multimodal context fusion by boosted conditional 
random field, to multi-class joint boosting. 

Through extensive experiments, we have demonstrated promising 
detection accuracy of the proposed classification methods, and 
more valuably, important insights about the contributions of 
individual algorithms and modalities in detecting a diverse set of 
semantic concepts. The multimodal multi-concept classification 
system is shown to reduce the detection errors by as much as 15% 
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(in terms of equal error rate) compared to alternatives using single 
modalities only. Audio models, though not as effective as the 
visual counterpart in terms of average performance, play an 
indispensable role – several concepts exclusively rely on the 
audio models and audio models provide significant contributions 
to the performance gains in model fusion. 

We briefly review the ontology and semantic concepts for 
consumer videos in Sec. 2. Visual and audio models are described 
in Sec. 3 and 4 respectively.  We present three multimodal fusion 
frameworks in Sec. 5. Extensive experiments for performance 
evaluation and discussion of results are included in Sec. 6.  

2. SELECTION OF THE SEMANTIC 
CONCEPTS 

Our research focuses on semantic concept detection over a 
collection of consumer videos, and an ontology of concepts 
derived from user studies, both originated at the Eastman Kodak 
company [10].  The videos were shot by about 100+ participants 
in a year-long user study, using the video mode of current-
generation consumer digital cameras, which can capture videos of 
arbitrary duration at TV-quality resolution and frame rate.  The 
full ontology of over 100 concepts was developed to cover real 
consumer needs as revealed by the studies.  For our experiments, 
we further pared these down to 25 concepts that were 
simultaneously useful to users, practical both in terms of the 
anticipated viability of automatic detection and of annotator 
labeling, and sufficiently represented in the video collection.  The 
concepts fall into several broad categories including activities (e.g. 
skiing, dancing), occasions (e.g. birthday, graduation), locations 
(e.g. beach, park), or particular objects in the scene (e.g. baby, 
boat, groups of three or more people).  Most concepts were 
intrinsically visual, although some concepts, such as music and 
cheering, were primarily acoustic. 

The Kodak video collection comprised over 1300 videos with an 
average length of 30 s.  We had annotators label each video with 
each of the concepts; for most concepts, this was done on the 
basis of keyframes taken every 10 s, although some concepts 
(particularly the acoustic ones) relied on watching and hearing the 
full video.  This resulted in labels for 5166 keyframes.   

We also experimented with gathering additional data from the 
video sharing site YouTube.  Using each of our concept terms as a 
query, we downloaded several hundred videos for each concept.  
We then manually filtered these results to discard videos that 
were not consistent with the consumer video genre (e.g. edited or 
broadcast content), resulting in 1874 videos with an average 
duration of 145 s.  The YouTube videos were then manually 
relabeled with the 25 concepts, but only at the level of entire 
videos instead of keyframes. 

More details on the video collections and labels are provided in a 
companion paper [10]. 

3. VISUAL-BASED DETECTORS 
We first define some terminology.  Let 1, , MC C denote M 

semantic concepts we want to detect, and let D  denote the set of 
training data {( , )}II y .  Each I is an image and the 

corresponding 1{ , , }My y=I I Iy  is the vector of concept labels, 

where iyI  = +1 or -1 denotes, respectively, the presence or 

absence of concept iC  in image I. 

3.1 Global Visual Features & Baseline Models 

The visual baseline model uses three attributes of color images: 
texture, color and edge.  Specifically, three types of global visual 
features are extracted: Gabor texture (GBR), Grid Color Moment 
(GCM), and Edge Direction Histogram (EDH).  These features 
have been shown effective and efficient in detecting generic 
concepts in several previous works [2], [3], [15].  The GBR 
feature is used to estimate the image properties related to 
structures and smoothness; GCM approximates the color 
distribution over different spatial areas; and EDH is used to 
capture the salient geometric cues like lines. A detailed 
description of these features can be found in [16]. 

 
Figure 1: The workflow of the visual baseline detector.  

Based on these global visual features, two types of support vector 
machine (SVM) classifiers are learned for detecting each concept: 
(1) one SVM classifier is trained over each of the three features 
individually; and (2) these features are concatenated into one 
feature vector over which a SVM classifier is trained.  Then the 
detection scores from all different SVM classifiers are averaged to 
generate the baseline visual-based concept detector.  

The SVMs are implemented using LIBSVM (Version 2.81) [1] 
with the RBF kernel.  For learning each SVM classifier, we need 
to determine the parameter setting for both the RBF kernel (γ ) 
and the SVM model (C) [1].  Here we employ a multi-parameter 
set model instead of cross-validation so that we can reduce the 
degradation of performance in the case that the distribution of the 
validation set is different from the distribution of the test set.  
Instead of choosing the best parameter set from cross-validation, 
we average the scores from the SVM models with 25 different 
sets of parameters C  and γ : 

{ }86420 2,2,2,2,2=C , { }4224 2,2,2,2,2 ++−−= kkkkkγ , 

where ( )( )2log 1/ fk ROUND D= and 
fD is the dimen-

sionality of the feature vector based on which the SVM classifier 
is built ( 2kγ =  is the recommend parameter in [1]).  The multi-
parameter set approach is applied to each of the three features 
mentioned above, as well as the aggregate feature, as shown in 



Fig. 1. Note the scores (i.e., distances to the SVM decision 
boundary) generated by each SVM are normalized before 
averaging. Various normalization strategies are described in Sec. 
5.1. 

3.2 Visual Models Using Local Features 

Complementary to the global visual features, local descriptors 
such as SIFT features [11] have been shown very useful for 
detecting specific objects.  Recently, an effective bag-of-features 
(BOF) representation [4] has been proposed for image 
classification.  In BOF images are represented by a visual 
vocabulary constructed by clustering the original SIFT descriptors 
into a set of visual tokens.  BOF provides a uniform middle-level 
representation through which the original orderless SIFT 
descriptors of an image can be mapped to a feature vector, and 
based on this feature vector the learning-based algorithms, such as 
the SVM classifier, can be applied for concept detection.  Lately, 
using the BOF representation, the Spatial Pyramid Matching 
(SPM) approach [9] and the Vocabulary-Spatial Pyramid 
Matching (VSPM) approach [7] have been developed to fuse 
information from multiple resolutions in the spatial domain and 
multiple visual vocabularies of different granularities. Promising 
performance has been obtained for detecting generic concepts like 
bike and person.  In this work, we experimented with the VSPM 
approach [7] to investigate the power of the local SIFT features in 
detecting diverse concepts in the consumer domain. 
 

3.2.1 Local SIFT Descriptor 
The 128-dimensional SIFT feature proposed in [11] has been 
proven effective in detecting objects, because it is designed to be 
invariant to relatively small spatial shift of region positions, 
which often occurs in real images. Computing the SIFT descriptor 
over the affine covariant regions results in local description 
vectors which are invariant to affine transformations of the image.  
In this work, instead of computing SIFT features over the detected 
interest points as in the traditional feature extraction algorithms 
[11], we extract SIFT features for every image patch with 16x16 
pixels over a grid with spacing of 8 pixels as in [9].  This dense 
sampling method has been shown more effective in detecting 
generic concepts [9] than the traditional method using selected 
interest points only. 
 

3.2.2 Vocabulary-Spatial Pyramid Match Kernel 
For each concept iC , the SIFT features from all the positive 
training images for this concept are first aggregated together, and 
through hierarchical clustering these SIFT features are clustered 
into L+1 sets of clusters 0 , , L

i iV V  with level 0 being the 
coarsest and level L the finest. l

iV  represents a visual 

vocabulary  comprised of ln visual tokens 
,1 ,{ , , }

l

l l l
i i i nv v=V . 

The visual vocabularies are expected to include the most 
informative visual descriptors that are characteristic of images 
sharing the same concept.  
Given the visual vocabulary at each level l

iV , the local features 

of an image are mapped to tokens in the vocabulary and counts of 
tokens are computed to form a token histogram 

,1 ,( ) ( ), ( )
l

l l l
i i i nH h hI I I⎡ ⎤= ⎣ ⎦ . In the Spatial Pyramid Match Kernel 

(SPMK) method, each image is further decomposed into 4s blocks 
in a hierarchical way (s = 0, …, S), with a separate token 
histogram ,

, ( )l s
i kH I  associated with each spatial block. 

To compute matches between two images 
pI and 

qI , histogram 

intersection is used. 

{ }4, , ,
, , , ,1 1

( , ) min ( ), ( )
s

lnl s l s l s
i p q i k j p i k j qk j

h h
= =

= ∑ ∑I I I IM . 

The final vocabulary-spatial pyramid match kernel defined by 
vocabulary l

iV  is given by weighted sum of matches at different 
spatial levels: 

,0 ,

11

( , ) ( , )
( , )

2 2

l l s
Si p q i p ql

i p q S S ss − +=
= +∑

I I I I
I I

M M
K  .              

The above measure is used to construct a kernel matrix, whose 
elements represent similarities (or distances) between all pairs of 
training images (including both positive and negative samples) for 
concept iC . Images coming from iC  are likely to share common 

visual tokens in l
iV  and thus have high matching scores in the 

kernel matrix.  The process of constructing VSPM kernels for 
multi-level vocabularies is illustrated in Fig. 2.  The VSPM 
kernels provide important complementary visual cues to the 
global visual features and are utilized in two ways for concept 
detection: (1) For each individual concept iC , the VSPM kernels 

0 , , L
i iK K  are combined with weights into an ensemble kernel:  

0

Lensemble l
i l il

w
=

= ∑K K , 

where weights lw can be heuristically determined in a way similar 
to  [6] or optimized through experimental validation.  Then the 
ensemble kernel is directly used for learning a one-vs.-all SVM 
classifier for detection of concept iC ; (2) VSPM kernels from 
different concepts are shared among different concept detectors 
through a joint boosting framework which will be described in 
detail in Section 5.3.  
 
 
 
 
 
 
 
 

Figure 2: Illustration of the kernel construction process used 
in the Vocabulary-Spatial Pyramid Match (VSPM) model. 

4. AUDIO-BASED DETECTOR 
The soundtracks of each video are described and classified by two 
techniques, single Gaussian modeling, and probabilistic latent 
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semantic analysis (pLSA) [18] of Gaussian mixture model (GMM) 
component occupancy histograms, both described below.  All 
systems start with the same basic representation of the audio, as 
25 Mel-frequency Cepstral Coefficients (MFCCs) extracted from 
frequencies up to 7 kHz over 25 ms frames every 10 ms.  Since 
each video has a different duration, it will result in a different 
number of feature vectors; these are collapsed into a single clip-
level feature vector by the two techniques described below.  
Finally, these fixed-size summary features are compared to one 
another, and this matrix of distances (comparing positive 
examples with a similar number of randomly-chosen negative 
examples) is used to train a SVM classifier for each concept.  The 
distance-to-boundary values from the SVM are taken to indicate 
the strength of relevance of the video to the concept, either for 
direct ranking or to feed into the fusion model. 

4.1 Single Gaussian Modeling 
After the initial MFCC analysis, each soundtrack is represented as 
a set of d = 25 dimensional feature vectors, where the total 
number depends on the length of the original video.   (In some 
experiments we augmented this with 25 dimensions of ‘delta 
MFCCs’ giving the local time-derivative of each component, 
which slightly improved results.) To describe the entire dataset in 
a single feature vector, we ignore the time dimension and treat the 
set as samples from a distribution in the MFCC feature space, 
which we fit with a single 25-dimensional Gaussian by measuring 
the mean and (full) covariance matrix of the data.  This approach 
is based on common practice in speaker recognition and music 
genre identification, where the distribution of cepstral features, 
ignoring time, is found to be a good basis for classification. 
To calculate the distance between two distributions, as required 
for the gram-matrix input (kernel matrix as defined in Sec. 3.2) to 
the SVM, we have tried two approaches.  One is to use the 
Kullback-Leibler (KL) divergence between the two Gaussians, 
Namely, if video clip i has a set of MFCC features denoted Xi, 
described by mean vector µi and covariance matrix Σi, then the 
KL distance between videos i and j is: 

 
The second approach simply treats the d-dimensional mean vector 
µi concatenated with the d(d+1)/2 unique values of the covariance 
matrices Σi as a point in a new (25+325 dimensional) feature 
space, normalizes each dimension by its standard deviation across 
the entire training set, then builds a gram matrix from the 
Euclidean distance between these normalized feature statistic 
vectors. 

4.2 Probabilistic Latent Semantic Analysis 

The Gaussian modeling assumes that different activities are 
associated with different sounds whose average spectral shape, as 
calculated by the cepstral feature statistics, will be sufficient to 
discriminate categories.  However, a more realistic assumption is 
that each soundtrack will consist of many different sounds that 
may occur in different proportions even for the same category, 
leading to variation in the global statistics.  If, however, we could 
decompose the soundtrack into separate descriptions of those 
specific sounds, we might find that the particular palette of sounds, 
but not necessarily their exact proportions, would be a more 
useful indicator of the content.  Some kinds of sounds (e.g. 
background noise) may be common to all classes, whereas some 
sound classes (e.g. a baby’s cry) might be very specific to 
particular classes of video.   

To build a model better able to capture this idea, we first trained a 
large Gaussian mixture model, comprising M = 256 Gaussian 
components, on a subset of MFCC frames chosen randomly from 
the entire training set.  (The number of mixtures was optimized in 
pilot experiments.)  These 256 mixtures are considered as 
anonymous sound classes from which each individual soundtrack 
is assembled – the analogues of words in document modeling. 
Then, we classify every MFCC frame in a given soundtrack to 
one of the mixture components, and describe the overall 
soundtrack with a histogram of how often each of the 256 
Gaussians was chosen when quantizing the original representation.  
Note that this representation also ignores temporal structure, but it 

 
Figure 3: Illustration of the calculation of audio features as the pLSA weights describing the histogram of GMM 
component utilizations. Top left shows the formation of the global GMM; bottom left shows the formation of the topic 
profiles, p(g|z); top right shows the analysis of each clip into topic weights by matching each histogram to a 
combination of topic profiles, and bottom left shows the final classification by SVM. 



is able to distinguish between nearby points in cepstral space, 
depending on how densely that part of feature space is 
represented in the entire database, and thus how many Gaussian 
components it received in the original model. The idea of using 
histograms of acoustic tokens to represent the entire soundtrack is 
also similar to that in using visual token histograms for image 
representation (Sec. 3.2). 

We could use this histogram directly, but to remove redundant 
structure and to give a more compact description, we go on to 
explain the histogram with probabilistic Latent Semantic Analysis 
(pLSA) [18].  This approach, originally developed to generalize 
the distributions of individual words in documents on different 
topics, models the histogram as a mixture of a smaller number of 
‘topic’ histograms, giving each document a compact 
representation in terms of a small number of topic weights.  The 
individual topics are defined automatically to maximize the 
ability of the reduced-dimension model to match the original set 
of histograms.  During training, the topic definitions are driven to 
a local optimum by using the EM algorithm.  Specifically, the 
histogram representation gives the probability p(g|c) that a 
particular component, g, will be used in clip c as the sum of the 
distribution of components for topic z, p(g|z), weighted by the 
specific contributions of each topic to clip c, p(z|c), i.e. 

 
The topic profiles p(g|z) (which are shared between all clips), and 
the per-clip topic weights p(z|c), are optimized by EM.  The 
number of distinct topics determines how accurately the 
individual distributions can be matched, but also provides a way 
to smooth over irrelevant minor variations in the use of certain 
Gaussians.  We tuned it empirically on the development data, and 
found that around 160 topics was the best number for our task.  
Representing a test item similarly involves finding the best set of 
weights to match the observed histogram as a combination of the 
topic profiles; we match in the sense of minimizing the KL 
distance, which requires an iterative solution.  Finally, each clip is 
represented by its vector of topic weights, and the SVM’s gram 
matrix (referred to as kernel audioK in Section 5.3) is calculated as 
the Mahalanobis (i.e. covariance-normalized Euclidean) distance 
in that 160-dimensional space.  The process of pLSA feature 
extraction is illustrated in Fig. 3. 

5. FUSION OF AUDIO-VISUAL 
FEATURES AND MODELS 
Semantic concepts are usually defined by both visual and audio 
characteristics.  For example, “dancing” is usually accompanied 
with background “music”.  It can be expected that by combining 
the audio and visual features and corresponding models, better 
performance can be obtained than using any single modality.  In 
the section, we develop three fusion strategies for combining 
audio and visual features and models. 

5.1 Ensemble Fusion 
One intuitive strategy to fuse the audio-based and visual-based 
detection results is ensemble fusion, which typically combines 
independent detection scores by weighted sum along with some 
normalization procedures to adjust the raw scores before fusion. 

For normalization, we utilize z-score Eqn.(1), sigmoid Eqn.(2), 
and sigmoid after normalization with z-score (sigmoid2)  Eqn.(3). 

   ( ) ( ) /f x x µ σ= −                                       (1) 

( ) ( )1/ 1 expf x x= + −⎡ ⎤⎣ ⎦
                                   (2) 

( ) ( )1/ 1 exp , ( ) /f x v v x µ σ= + − = −⎡ ⎤⎣ ⎦
                     (3) 

where x is the raw score, µ  and σ  are mean and standard 
deviation respectively. 
Such ensemble fusion method has been applied to combining the 
SVM models using different parameters and features (as 
illustrated in Fig. 1). Here, we extend the fusion process to 
include audio models, using optimal weights that are determined 
by maximizing the performance of the fused model over a 
separate validation data set. The cross-modal fusion architecture 
is shown in Fig. 4. 

 

Figure 4: Ensemble fusion of audio and visual models. 

5.2 Audio-Visual BCRF (AVBCRF) 
In all of the approaches mentioned above, each concept is 
detected independently from each other in the one-vs.-all manner.  
However, semantic concepts do not occur in isolation -- knowing 
the information about certain concepts (e.g. “person”) of an image 
is expected to help detection of other concepts (e.g. “wedding”).  
Based on this idea, in the following two subsections, we propose 
to use context-based concept detection methods for multimodal 
fusion by taking into account the inter-conceptual relationships.  
Specifically, two algorithms are developed under two different 
fusion frameworks: (1) an Audio-Visual Boosted Conditional 
Random Field (AVBCRF) method where a two-stage Context-
Based Concept Fusion (CBCF) framework is utilized; (2) an 
Audio-Visual Joint Boosting (AVJB) algorithm where both audio-
based and visual-based kernels are combined to train multi-class 
concept detectors jointly.  The former can be categorized as late 
fusion since it combines prediction results from models that have 
been trained separately. On the contrary, the latter is considered 
as an early fusion approach as it utilizes kernels derived from 
individual concepts in order to learn joint models for detecting 
multiple concepts simultaneously. In addition, on the visual side, 
CBCF fuses baseline models using global features, while AVJB 
further explores the potential benefits of local visual features. We 
will introduce AVBCRF in this subsection, and the AVJB 
algorithm will be described in the next subsection. 

The Boosted Conditional Random Field (BCRF) algorithm is 
proposed in [8] as an efficient context-based fusion method for 
improving concept detection performance.  Specifically, the 
relationships between different concepts are modeled by a 
Conditional Random Field (CRF), where each node represents a 
concept and the edges between nodes represent the pairwise 

Fused Normalized 
Visual Model  

(Fig. 1)

Normalized 
Audio Model

×WV 

×WA 

+ Fused  
AV model



relationships between concepts.  This BCRF algorithm has a two-
layer framework (as shown in Fig. 5).  In the first layer, 
independent visual-based concept detectors are applied to get a set 
of initial posterior probabilities of concept labels on a given 
image.  Then in the second layer the detection results of each 
individual concept are updated through a context-based model by 
considering the detection confidence of the other concepts. Here 
we extend BCRF to include models using both visual and audio 
modalities. 

 
Figure 5: The context-based concept fusion framework based 

on Boosted Conditional Random Field. 

For each image I, the input observations are the initial posterior 
probabilities 

, ,[ , ]vis aio=I I Ih h h , including the visual-based 

independent detection results 1
, , ,{ , , }M

vis vis vish h=I I Ih  as well as 

the audio-based independent detection results 
1

, , ,{ , , }M
aio aio aioh h=I I Ih .  Then these inputs are fed into the CRF 

to get the improved posterior probabilities ( | )P Iy I through 
inference based on the inter-conceptual relationships.  After 
inference the belief ibI  on each node iC  is used to approximate 

the posterior probability: ( 1| ) ( 1)i iP y bI II= ± ≈ ± .  The aim of 
CRF modeling is to minimize the total loss J for all concepts over 
all the training data (D): 

(1 ) / 2 (1 ) / 2
1

( 1) ( 1)
i iM y yi i

i
J b b+ −

∈ =
= − + −∏ ∏ I I

I II D
.      (4) 

Eqn.(4) is an intuitive function: the minimizer of J favors those 
posteriors closest to training labels.  
To avoid the difficulty of designing potential functions in CRF, 
the Boosted CRF framework developed in [14] is incorporated 
and generalized to optimize the logarithm of Eqn.(4): 

{ }( ) / 2
1

,
arg m in{ log } arg m in log

i i i

i i i

M y F G
i

b F G
J e − +

∈ =
= ∑ ∑ I I I

I I I
I D

 (5) 

in an iterative boosting process by finding the optimal iFI  and iGI , 

where iFI  and iGI  are additive models: 

    ( ) ( )1 1
( ),   ( )T Ti i i i

t t
F T f t G T g t

= =
= =∑ ∑I I I I

, 

( )if tI
 is a discriminant function (e.g. SVM or logistic) with input 

hI as the feature, and ( )ig tI
 is a discriminant function (e.g. SVM 

in our algorithm) with the current belief ( )ib tI
 as the feature in 

iteration t.  Both ( )if tI
 and ( )ig tI

 can be considered weak 
classifiers learned by the standard boosting procedure, but over 

different features. The contributions from other concept scores to 
detection of a specific concept are explored in each iteration since 
the whole set of concept detection scores are used as input to the 
classifiers in each iteration. More details about the formula 
derivation can be found in [8], [14].  

5.3 Audio-Visual Joint Boosting (AVJB)  
In this section, we will introduce a systematic early fusion 
framework to combine the audio-based and visual-based 
features/kernels for training multi-class concept detectors.  
Instead of training independent detectors based on visual features 
and audio features separately, the visual features/kernels and 
audio features/kernels can be used together to learn concept 
detectors at the first place.  To this end, we adopt the joint 
boosting and kernel sharing framework developed in [7] which 
utilizes a two-stage framework: (1) the kernel construction stage; 
and (2) the kernel selection and sharing stage.  In the first stage, 
concept-specific features/kernels such as the VSPM kernels 
described in Sec. 3.2.2, are constructed to capture the most 
representative characteristics of the visual content for each 
concept individually.  Note local visual features (e.g., SIFT-based 
visual tokens) are used here. Then in the second stage, these 
kernels are shared by different concepts through a joint boosting 
algorithm which can automatically select the optimal kernels from 
the kernel pool to learn a multi-class concept detector jointly.  
This two-stage framework can be directly generalized to 
incorporate audio-based kernels.  That is, in the first stage, based 
on acoustic analysis various features/kernels can be constructed 
(such as the audio vocabulary and kernel described in Sec. 4.2), 
and these kernels can be added into the rich kernel pool together 
with all the visual-based kernels, and in the second stage the 
optimal subset of kernels are selected and shared through the joint 
boosting learning algorithm. 
The process of joint boosting is illustrated in Fig. 6.  By sharing 
good kernels among different concept detectors, individual 
concepts can be enhanced by incorporating the descriptive power 
from other concepts.  Also by sharing the common detectors 
among concepts, required kernels and training samples for 
detecting individual concepts will be reduced [7], [13].  
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Figure 6: Illustration of kernel and classifier sharing using 
joint boosting. A kernel pool K is shared by different 
detectors. First, using kernel K*(1) a binary classifier is used 
to separate C1 and C2 from the background. Then using K*(2) 
a binary classifier further picks out C1. 

In Section 3.2.2 we obtained L+1 concept-specific VSPM kernels 
0 , , L
i iK K  for each concept Ci corresponding to the multi-

resolution visual vocabularies 0 , , L
i iV V .  In addition, in Section 



4.2 we have the audio-based kernel audioK .  Then the joint 
boosting framework from [7] can be directly adopted here for 
sharing visual and audio based kernels for concept detection.    
Specifically, during each iteration t, we select the optimal kernel 
K*(t) and the optimal subset of concepts S*(t) to share the optimal 
kernel.  Then a binary classifier is trained using kernel K*(t) 
which tries to separate concepts in subset S*(t) from the 
background (for the other concepts not in S*(t), a prediction kc

i(t) 
is given based on the prior).  After that, we calculate the training 
error of this binary classifier and re-weight the training samples 
similar to the Real AdaBoost algorithm.  Finally all weak 
classifiers from all iterations are fused together to generate the 
multi-class concept detector.  

6. EXPERIMENTS  
In this section, we evaluate the performance of features, models, 
and fusion methods described earlier. We conduct extensive 
experiments using the Kodak benchmark video set described in 
Section 1. Among the 25 concepts annotated over the video set, 
we use 21 visual-dominated concepts to evaluate the performance 
of visual methods and impact of incorporating additional methods 
based on audio features. Audio-based methods are also evaluated 
by using three additional audio-dominated concepts (singing, 
music, and cheer). In the discussion following each experiment, 
we highlight main findings and important insights in italic text. 

6.1 Experimental Setup & Performance 
Metrics 

Each concept detection algorithm is evaluated in five runs and the 
average performances over all runs are reported.  The data sets in 
the runs are generated as follows: the entire data set D is 
randomly split to 5 subsets D1, …, D5.  By rotating these 5 subsets, 
we generate the training set, validation set, and test set for each 
run.  That is, for run 1, training set = {D1,D2}, validation set = D3, 
test set = {D4,D5}.  Then we switch one subset for run 2, where 
training set ={D2,D3}, validation set = D4, test set = {D5,D1}.  
Similarly, we can keep switching to generate the data sets for run 
3, run 4, and run 5.  For each run, all algorithms are trained over 
the training set and evaluated over the test set, except for the 
AVBCRF algorithm in which the validation set is used to learn 
the joint boosting model that fuses individual detectors learned 
using the training set separately. 
The average precision (AP) and mean average precision (MAP) 
are used as performance metrics.  AP is related to multi-point 
average precision value of a precision-recall curve.  AP is an 
official performance metric used by TRECVID [12].  To calculate 
AP for concept Ci we first rank the test data according to the 
classification posteriors of concept Ci . Then from top to bottom, 
the precision after each positive sample is calculated.  These 
precision values are averaged over the total number of positive 
samples for Ci .  AP favors highly ranked positive samples and 
combines precision and recall values in a balanced way.  MAP is 
the average of per-concept APs across all concepts. To help 
readers compare performance, in some cases, we also report the 
detection accuracy based on Equal Error Rate (EER). 

6.2 Performance Comparison and Discussions 

6.2.1 Baseline Approaches 
Visual Baseline 

First, we evaluate the visual baseline detector with multiple 
parameter sets described in Sec. 3.1.  For score normalization, we 
used sigmod which was shown to outperform other options. Fig. 7 
shows the performance when different numbers of SVMs with 
distinct parameter settings are fused.  “Top(n)” denotes the fused 
model that computes average of detection scores from n detectors 
that achieve top performance over the validation set.  The 
objective here is to study the effect of varying the number of 
models during ensemble fusion. Intuitively, the more models used 
in fusion the more stable the fused performance will be when 
testing over unseen data set. Such conjecture has been confirmed 
in our experiments – Top25 gives the best MAP performance as 
well as good APs over different concepts.  On the other hand, APs 
of Top1 are not stable across different concepts and the MAP is 
the worse among all compared methods.  This indicates that in our 
data sets the distribution of the validation set is quite different 
from that of the test set, and the conventional method optimizing 
a single set of parameters by cross-validation suffers from over 
fitting.  In comparison, the multi-parameter set model can get 
relatively stable performance in such case.  Based on this 
observation, in the following experiments, the “Top25” results are 
used and referred to as the visual-based baseline detection results. 
Fig. 7 also shows the AP of random guess, which is proportional 
to the number of positive samples of each concept.  

From the above results, we found that in general frequent 
concepts enjoy higher detection accuracy. However, other factors 
such as concept definition specificity and content consistency are 
also important. For example, concepts like “sunset”, “parade”, 
“sports”, “beach” and “boat”, though infrequent (# of positive 
samples < 100), can be detected with high accuracy. On the other 
hand, some frequent concepts like “group of 3” and “one person” 
have much lower accuracy. This confirms that careful choices 
and definitions of concepts play a critical role in developing 
robust semantic classification systems. 
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 Figure 7: Performance of visual baseline detectors fusing 
varying numbers of models with different parameter sets 

Audio Baseline 

Fig. 8 shows the results of the three different audio-based 
approaches (single Gaussians with either KL or Mahalanobis 
distance measure, or the pLSA modeling of GMM component 
histograms).  We see that all three approaches perform roughly 



the same, with different models doing best for individual concepts.  
There is also a wide variation in performance depending on the 
concept, which is to be expected since different labels will be 
more or less evident in the soundtrack.  However, the main 
determinant of performance of audio-based classifiers appears to 
be the prior likelihood of that label, suggesting that a large 
amount of training data is the most important ingredient for a 
successful classifier.  For example, although the infrequent classes 
“wedding”, “museum”, and “parade” have APs similar to more 
common classes “cheer” and “one person”, their variation is much 
larger among the 5-fold cross-validation. Such a relationship 
between the frequency and the performance variance was also 
found in the visual detectors. Though not shown in Fig. 7 (due to 
space limit in the graph), the infrequent concepts (“boat”, 
“parade”, and “ski”) have  accuracy similar to common concepts 
(“one person”, “shows”, and “sports”), but much larger 
performance variance among cross validation. Since different 
approaches have similar performances, in the following 
experiments, the single Gaussian with KL distance measure is 
used as the audio-based baseline detector. 

Since most of the selected concepts are dominated by the visual 
cues, the results show the visual-based models as expected 
achieve higher accuracy than the audio models for most concepts. 
However, audio models also provide significant benefits. For 
example, concepts like “music”, “singing”, and “cheer” can be 
detected by audio models only due to the nature of the concepts. 
Even for some visually dominated concepts (like “museum” and 
“animal”), audio methods were found to be more reliable than 
visual counterparts. The soundtracks of video clips from these 
concepts provide rather consistent audio features for classification. 
This also suggests these two concepts may need to be refined to 
be more specific so that the corresponding visual content may be 
more consistent (e.g., “animal” refined to “dog” and “cat” etc).  

 
Figure 8: Performance of audio-based classifiers on Kodak 
data using MFCC+delta-MFCC base features.  Labels are 
sorted by prior probability (guessing).  Error bars indicate 
standard deviation over 5-fold cross-validation testing. 

6.2.2 Audio-Visual Fusion Approaches 
Ensemble Fusion 
We evaluate different normalization strategies used in ensemble 
fusion described in Section 5.1. Specifically, we compare 
normalization methods based on z-score, sigmoid, or sigmoid 2 
(i.e., z-score followed by sigmoid). Additionally, we test two 
different score fusion methods – uniform average and weighted 
average.  
We found uniform averaging between audio and visual baseline 
models does not perform as well as visual models alone.  This is 

reasonable as most of the selected concepts have stronger cues 
from visual appearances than audio attributes; thus equal 
weighting is not expected to be the best option. This is indeed 
confirmed in results shown in Fig. 9, which compares weighted 
audio-visual combination with different normalization strategies. 
Among different score normalization strategies, the z-score 
method performs best, outperforming the visual-only model by 
4% in MAP. The improvement is especially significant for several 
concepts, “dance”, “parade” and “show”, with 6% - 24% gains in 
terms of AP. Note the optimal weights for combining audio and 
visual models are determined through validation, and thus vary 
across different concepts. For most concepts, the visual models 
dominate, with the visual weight ranging from 0.6 to 1. 
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Figure 9: Comparison of weighted fusion of audio and visual 
models with different score normalization processes.   

The above results show that with simple weighted averaging 
schemes, audio and visual models can be combined to improve 
the concept detection accuracy. However, additional care is 
needed to determine the appropriate weights and score 
normalization strategies. 

Audio-Visual Boosted CRF & Audio-Visual Joint Boosting 

Fig. 10 shows the per-concept AP of different audio-visual fusion 
algorithms, where “AVBCRF + baseline” corresponds to the 
method that computes average of the posteriors from AVBCRF 
and the visual baseline, and “AVJB + baseline” corresponds to the 
method that computes average of the posteriors from AVJB and 
the visual baseline. “ALL” corresponds to the method that we 
average the posteriors from AVBCRF, AVJB, and the visual 
baseline model.  From our previous experiences [3], combining 
the advanced algorithms (e.g. AVBCRF and AVJB) with the 
visual baseline usually gives better performance than using these 
advanced algorithms alone.  For comparison, the best performing 
ensemble fusion method (weighted combination of audio and 
visual based detection scores with z-score normalization) is also 
shown in the figure. 

By combining visual baseline detectors and audio baseline 
detectors through context fusion, the AVBCRF algorithm 
improves the performance by more than 10% when it is fused 
with the visual baseline.  The improvements over many concepts 
are significant, e.g. 40% over “animal”, 51% over “baby”, 228% 
over “museum”, 35% over “dancing”, and 21% over “parade””.  
These results confirm the power of incorporating inter-concept 
relations into the context fusion model. Our experiments also 
show that context fusion among visual models only does not 
provide performance gain on the average. Only when the audio 



models are incorporated into the context fusion, clear 
performance gain is achieved. This is interesting and important – 
the audio models provide non-trivial complementary benefits in 
addition to the visual models.  
Compared to straightforward weighted averaging over audio and 
visual models for each concept, the AVBCRF context fusion 
method shows more consistent improvement over the diverse set 
of concepts. Most importantly, it avoids the problem of large 
performance degradation by weighted average model over a few 
concepts (“sunset” and “museum”), when models from one 
modality are significantly worse than the others. In other words, 
by fusing multimodal models over a large pool of concepts, the 
stability of the detectors can be greatly improved. 

Fig. 11 gives an example of the top 20 detected video clips for the 
“parade” concept (ranked based on the detection scores in 
descending order) using both AVBCRF and visual based baseline.  
Many irrelevant videos (marked by red rectangular) are included 
in the top result when using only visual based baselines.  This is 
because most of these irrelevant videos contains crowd in the 
outdoor scene and the visual appearances are similar to those of 
“parade” images.  By using AVBCRF, such irrelevant videos are 
removed largely because of the help from the audio models.  
Parade scenes are usually accompanied with noisy sound from the 
crowd and loud music associated with the parade.  The visual 
appearances plus audio together can distinguish “parade” videos 
more effectively than only using a single type of features. 
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Figure 10: comparison of different audio-visual fusion 
algorithms. 

AVJB does not  result in improved performance when it is applied 
alone or combined with the visual baseline.  This indicates that 
the use of local features and feature sharing in AVJB is not as 
effective as the exploration of inter-concept context modeling in 
AVBRCF. However, AVJB does provide complementary benefits 
– by combining AVJB with AVBCRF and visual baseline, we 
achieved further improvements over many concepts, e.g. 10% 
over “animal”, 12% over “baby”, 7% over “beach”, 7% over 
“crowd”, 7% over “one person”, etc.  It is interesting to see that 
most concepts benefiting from feature sharing (AVJB) overlap 
with concepts benefiting from context fusion (AVBCRF). More 
research is needed to gain deeper understanding of the mechanism 
underlying this phenomenon, and develop techniques that may 
automatically discover such concepts.  
Analysis of the results from the AVJB models also allows us to  

investigate the relative contributions of features extracted from 
images of individual concepts, and how they are shared across 
classifiers of multiple concepts. Fig. 12 shows the frequency of 
individual kernels used by the AVJB algorithm in simultaneously 
detecting 21 concepts through 200 iterations.  Only 25 out of the 
total 64 kernels (3 visual-based kernels for each concept and 1 
audio kernel for all concepts) are selected by the feature selection  
/sharing procedures.  It’s surprising to see that single audio kernel 
turns out to be the most frequently used kernel, more than any 
other kernels constructed from visual features (described in Sec. 
3.2.2). This again confirms the importance of multimodal fusion – 
despite the lower accuracy achieved by the audio models (com-
pared to their visual counterparts), the underlying audio features 
play an important role in developing multimodal fusion models.  

Top 20 video clips detected by visual baseline model 

 
Top 20 video clips detected by AVBCRF + visual baseline 

 
Figure 11: Top 20 video clips from the “parade” concept. The 
irrelevant videos are marked by red rectangles. Video clips 
are ranked based on the detection scores in descending order.  

The feature selection and sharing processes used in AVJB are 
useful in pruning the feature pool in order to make the models 
more compact. Kernels learned from “birthday”, “museum”, and 
“picnic” are discarded because of their relatively poor quality.  
Images from these concepts have highly diverse visual content 
and thus the learned visual vocabularies and associated kernels 
can not capture meaningful characteristics of these concepts.  
To allow comparison with other classification systems, we also 
measure the detection accuracy using a common metric, Equal 
Error Rate (EER). EER values of the visual model, audio model, 
the final fused model (“AV ALL” shown in Fig. 10) are shown  in 
Fig. 13. It can be seen that the proposed fusion framework is 
effective, reducing the overall error rates from 0.2 (using visual 
models alone) to 0.17 – a 15% improvement. It is also 
encouraging to see that with sound approaches of audio-visual 
content analytics and machine learning, a satisfactory accuracy of 



83% can be achieved in detecting the diverse set of semantic 
concepts over consumer videos. 

Figure 12: Frequency of kernels used by the AVJB algorithm 
throughout 200 iterations. 
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Figure 13: EER comparison of different algorithms. 
 
7. CONCLUSIONS 
We develop new methods and assess the state of the art in 
automatic classification of consumer videos into a large set of 
semantic concepts. Experiments of 24 diverse concepts over 
1300+ videos from real users reveal several important findings – 
specificity of concept definitions and numbers of training samples 
play important roles in determining the detector performance; 
both audio and visual features contribute significantly to the 
robust detection performance; inter-concept context fusion is 
more effective than the use of complex local features; and most 
importantly a satisfactory detection accuracy as high as 83% over 
diverse semantic concepts is demonstrated. The results confirm 
the feasibility of semantic classification of consumer videos and 
suggest novel ideas for further improvements. One important area 
is to incorporate other contextual information such as user profile 
and social relations. Another direction is to explore advanced 
frameworks that model the synchronization and the temporal 
evolution among audio and visual features of temporal events.  
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