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ABSTRACT

Automatic detection of different types of acoustic events is an inter-
esting problem in soundtrack processing. Typical approaches to the
problem use short-term spectral features to describe the audio sig-
nal, with additional modeling on top to take temporal context into
account. We propose an approach to detecting and modeling acous-
tic events that directly describes temporal context, using convolutive
non-negative matrix factorization (NMF). NMF is useful for finding
parts-based decompositions of data; here it is used to discover a set
of spectro-temporal patch bases that best describe the data, with
the patches corresponding to event-like structures. We derive fea-
tures from the activations of these patch bases, and perform event
detection on a database consisting of 16 classes of meeting-room
acoustic events. We compare our approach with a baseline using
standard short-term mel frequency cepstral coefficient (MFCC) fea-
tures. We demonstrate that the event-based system is more robust in
the presence of added noise than the MFCC-based system, and that
a combination of the two systems performs even better than either
individually.

Index Terms— Acoustic signal processing, acoustic event de-
tection, acoustic event classification, non-negative matrix factoriza-
tion

1. INTRODUCTION

Detection and classification of acoustic events is important in a
number of applications. In particular, we are motivated to exam-
ine this problem in the context of automatically finding and tagging
events that occur in an unconstrained environmental audio stream,
such as the soundtrack of a YouTube video.

Standard approaches to acoustic event detection utilize se-
quences of feature vectors that each capture spectral information
over a very short time window, e.g., 30 ms. Additional modeling of
temporal structure, for example a hidden Markov model (HMM),
may then be used to reincorporate the temporal context that has
been lost. In contrast, we are interested in taking advantage of
temporal context directly when detecting and comparing acoustic
events, rather than trying to describe events only by the statistics of
their component frames. Intuitively, we would think of an acoustic
event as something that is defined by both its spectral energy and its
characteristic temporal shape.

This work was supported Eastman Kodak Corp., by the National
Geospatial Intelligence Agency, and by the IARPA Aladdin program.

In [1] we explore an approach to discovering and comparing
acoustic events with their temporal context. We do this by extract-
ing spectro-temporal patches around “transient” points that exhibit a
large increase in spectral energy. However, this method can be very
sensitive to the parameters of the transient detector, and therefore
have poor robustness to environmental factors. The extracted fea-
tures also suffer because there is no separation between an event’s
energy and the background noise floor, which will also be captured
in the surrounding spectro-temporal patch.

To address these problems, we present an algorithm based on
non-negative matrix factorization (NMF). NMF is an algorithm for
describing data as the product of a set of bases and a set of acti-
vations, both of which are non-negative; it was first described in
its current form in [2]. It is useful for finding parts-based decom-
positions of data; since all components are non-negative, each basis
contributes only additively to the whole. This promotes a solution in
which high-energy foreground events and constant low-level back-
ground energy may be described by different bases, and therefore
separated in the feature representation.

Most applications of NMF to audio processing decompose
spectral magnitude frames (e.g., columns of a spectrogram), and
have each NMF bases consist of a single short time frame [3]. Since
we are interested in learning bases that correspond to entire events,
we use the convolutive formulation of NMF [4, 5]. In this version,
bases consist of spectro-temporal patches of a number of spectral
frames stacked together. The pattern described by each frame is
then activated as a whole to contribute to the reconstruction of the
data. Additionally we would like to ensure some level of sparsity
in the activations of these bases. This is in order to encourage the
bases to learn more foreground event patterns and fewer patterns
that mimic the background, which would be activated non-sparsely
over large segments of the data.

This NMF algorithm allows us both to locate transients in time,
and to build a dictionary of event-patch codewords, within a single
optimization framework, avoiding the separate transient detection
and patch clustering of our earlier approach.

2. EVENT DETECTION WITH CONVOLUTIVE NMF

Our algorithm for the detection of acoustic events is as follows. We
downsample all data to 12 kHz, and take a standard STFT or spec-
trogram of the entire signal, using 32 ms frames and 16 ms hops.
We warp the frequency axis to mel-frequency as though we were
taking MFCC features, using 30 mel-frequency bands from 0 to 6
kHz. We then concatenate all training data spectrograms and per-
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form convolutive NMF across the entire set of training data, using
20 basis patches which are each 32 frames wide (approximately 500
ms). This produces a set of basis patches W and a set of basis acti-
vations H . In our experiments we use the implementation of sparse
convolutive NMF described in [4], with KL divergence as the ob-
jective and a sparsity parameter λ = 1. For testing, we then use the
fixed set of learned patch bases and perform NMF to find the corre-
sponding activation values for the test files. An example set of 20
patch bases learned from training data is shown in figure 1. Figure 2
shows an example event (’door knock’) and the activation patterns
of the three bases that contributed the most energy in representing
it. It also shows the event as reconstructed by NMF using the full set
of bases. Note that the activations appear to occur somewhat before
the onset of energy; this is because the patch activation is placed at
the left-hand edge of the 500 ms patch.

We believe the NMF algorithm captures a relevant set of event-
like patches, but we still need a reasonable way to represent the
(continuous) activation patterns of these bases as discrete event-like
features. In order to do this, we use a sliding window of 1 s, with
hops of 250 ms. Within this window, we summarize the local basis
activation pattern by taking the log of the maximum of each activa-
tion dimension, producing a set of 20 features per window. These
activation values are pre-normalized such that each basis has a max-
imum activation of 1 over the entire dataset.

In order to perform event detection with these features, we use a
simple HMM. The dataset we use for evaluation (described in sec-
tion 5) labels specific time intervals as containing acoustic events
of a given class. Our HMM consists of a single state for each of
the 16 classes and a 17th state for the background. The observation
matrix is trained using the interval labels of the training data, with
the simple assumption that the observations for each event class can
be modeled as a single Gaussian. The transition matrix is trained on
the stream of labels, which in practice prohibits direct transitions
between two classes other than background (since the training data
has no overlap or adjacency between different classes). A stream
of predicted labels is produced for each test file and scored as ex-
plained in section 6. Finally, in order to produce a reliable event
stream, events shorter than 6 frames are removed.

3. BASELINE MFCC EVENT DETECTOR

In order to evaluate our algorithm, we compare it with a baseline
which has a similar HMM structure, but that employs a standard
set of short-term MFCC features. We extract MFCC features from
all data (25 ms frames with 10 ms hops, 40 mel-frequency bands)
and retain 25 coefficients as features. We feed this into an HMM,
trained in the same way described above. Again, we use a single
state for each class, plus a background state, and observations are
modeled as a single Gaussian for each class. We generate a series
of predicted labels at the frame level, as above.

Because the MFCC frame spacing is much shorter than the
NMF system’s frame spacing (10 ms vs. 250 ms), we need to post-
process the predicted label stream to evaluate it fairly. We first use
a median filter across 250 frames (2.5 sec), and then we remove any
remaining events that are less than 100 frames long. Both these pa-
rameters were selected to optimize performance on clean test data.

4. COMBINED SYSTEM

Since we have built two event detectors based on different sets of
features, we were interested to see if they could be combined in
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Figure 1: 20 NMF patch bases learned on training data.

a complementary way to produce better performance. We did this
by taking the two predicted event streams and requiring that they
both agree on a predicted event label for some overlapping period
of time. If this is true, then we consider that predicted event to ex-
tend to the entire period of time that either system has predicted
the event. This yields a combined prediction event stream that can
be evaluated alongside the two individual systems. Requiring both
component systems to agree tends to reduce insertions while in-
creasing deletions; however, it turns out that insertions were the
dominant problem in noise, so this approach can be beneficial.

5. DATABASE

In order to focus on the task of detecting specific acoustic events
other than speech, we tested our approaches on the FBK-Irst
database of isolated meeting-room acoustic events [6]. This is a
dataset which was originally collected under the CHIL (Computer
in the Human Interaction Loop) project. Event detection and clas-
sification using data of this type has been extensively examined by
Temko and others [7].

The data we used consisted of 9 sessions, each around 7 min-
utes long. Each session was recorded by multiple microphones,
although we only use one channel in our experiments. This is be-
cause we would like to develop algorithms that will also work on
less controlled data, such as video soundtracks which would only
have one or two channels available.

The database contains 16 semantic classes of acoustic events:
door knock; door open; door slam; steps; chair moving; cough;
paper wrapping; falling object; laugh; keyboard clicking; key jingle;
spoon, cup jingle; phone ring; phone vibration; MIMIO pen buzz;
and applause. Each session contains around 4 repetitions of each of
the 16 classes of events, so there are around 36 examples of each
event in the database. Approximately 50 repetitions per event class
were recorded.

The data labels consist of short intervals that contain instances
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Figure 2: Example of a ’door knock’, the top 3 bases used to repre-
sent it, and a reconstruction of the event.

of the labeled sound. The events of different classes do not overlap
with each other.

In our experiments, we use two folds of the data. In each fold,
the data split is 6 training files and 3 test files. For efficiency rea-
sons, in the NMF algorithm only 3 of the training files are used to
actually learn the patch bases; the remaining 3 are added back in
and used to train the HMM and learn the observation distributions.

6. EXPERIMENT AND METRIC

We are interested in examining the ability of our NMF algorithm to
discover acoustic events in the quiet meeting room environment in
which this data was recorded, but also in the midst of noisy environ-
ments. Our hope is that the additive nature of the NMF algorithm
will allow it to represent acoustic events that occur in noise more
consistently than standard MFCC features, which will be corrupted
by added noise.

In order to test this idea, we performed all experiments with
varying levels of additive noise. The noise added was a short clip
of background chatter and activity recorded in a cafeteria. For each
noise level, the test data was left clean while this noise clip was
added to the training data at the specified SNR.

For evaluation we use the acoustic event error rate (AEER) that
was used in CHIL evaluations for the event detection task, as de-
scribed in [7]. This is defined as: AEER = 100(D + I + S)/N ,
where D is the number of deletions, I the number of insertions, S
the number of substitutions, and N the total number of events that
occur in the ground truth labels.

To evaluate a stream of predicted labels, it is broken into pre-
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Figure 3: Acoustic event error rate results in noise.

dicted events. A predicted event is any string of consecutive frames
with the same label. If the center of a predicted event (of the correct
class) falls anywhere within the true event’s label interval, then it
is considered a correctly predicted event. Any predicted event that
does not fall within a true event of the same class is considered an
insertion or substitution; we count these errors together. Any true
event that does not have a (correctly) predicted event fall within it
is considered a deletion.

7. RESULTS

Figure 3 shows the performance of the three algorithms under the
AEER metric. Table 1 breaks these results down into deletions,
insertions, and again the overall AEER for each algorithm. Each
system has been tuned (by balancing insertions and deletions) to
optimize its performance at 30 dB SNR (nearly clean noise condi-
tions). In clean conditions, the MFCC-based system performs much
better than the event-based one, and about the same as the combi-
nation of the two.

We then examine how each system breaks down in the presence
of added noise. All three systems produce deletions at a roughly
comparable rate as noise increases. The MFCC-based system pro-
duces a large number of insertions in high noise conditions, while
the NMF-based system largely does not (insertion and deletion rates
for NMF stay roughly balanced). The combination system achieves
even better performance as the noise level increases. This is mostly
true because it is limiting the number of insertions by requiring that
the two systems agree on events.

8. DISCUSSION AND CONCLUSIONS

Despite the relative crudeness of our NMF-based features, we
demonstrate that these type of large-scale event features can be us-
able in the detection and classification of acoustic events. Although
our system is not competitive with a conventional short-frame-based
system in clean conditions, it proves useful when the test data is
even slightly more noisy than the training data. Features based on
NMF basis activations seem to be fairly robust under moderate noise
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SNR (dB)
10 15 20 25 30

Deletions
MFCC 41 28 17 13 13
NMF 55 40 32 26 22
Combined 54 41 27 21 18

Insertions
MFCC 133 105 91 29 6
NMF 43 50 29 22 18
Combined 33 32 15 9 3

AEER
MFCC 282 216 175 68 30
NMF 158 147 100 77 64
Combined 140 118 69 48 34

Table 1: Average number of deletions and insertions contributing to
AEER.

conditions (i.e. both systems using NMF features do not degrade
much between 30 and 20 dB SNR). The MFCC-based system, on
the other hand, performs much more poorly under moderate noise
conditions. Presumably this is because the MFCC features are be-
ing corrupted by background noise while the NMF-based system is
allowing prominent events to be represented by the same bases as
they would have in the clean test data. This would therefore yield
feature descriptions that are theoretically more constant as the back-
ground noise increases.

Since our interest in event detection extends to varied types of
data and recording conditions, it is important for an algorithm to
be able to detect similar events that occur in the midst of different
types of noise. Event modeling based on convolutive NMF bases
seems promising for developing noise-robust of the type necessary
to detect acoustic events in all types of unconstrained videos and
other audio data.
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