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Abstract
Large music collections, ranging from thousands to mil-

lions of tracks, are unsuited to manual searching, motivat-
ing the development of automatic search methods. When
two musical groups perform the same underlying song or
piece, these are known as ‘cover’ versions. We describe a
system that attempts to identify such a relationship between
music audio recordings. To overcome variability in tempo,
we use beat-tracking to describe each piece with one feature
vector per beat. To deal with variation in instrumentation,
we use 12-dimensional chroma feature vectors that collect
spectral energy supporting each semitone of the octave. To
compare two recordings, we simply cross-correlate the en-
tire beat-by-chroma representation for two tracks and look
for sharp peaks indicating good local alignment between the
pieces. Evaluation on a small set of 15 pairs of pop music
cover versions identified within the USPOP2002 collection
achieves a performance of around 60% correct.
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1. Introduction
Immediate access to large music collections is now com-
monplace – be they the thousands of songs on the MP3
player in your pocket, or the millions of songs available at
online music stores. But finding music within such collec-
tions can be very problematic, leading to the current inter-
est in automatic music similarity estimation. In this paper,
we address a slightly different problem: rather than trying
to find music whose genre, style, or instrumentation match
particular query examples, we are trying to find versions of
the same piece of music, despite the fact that they may be
performed with very different styles, instrumentation, etc.
These alternate versions of the same underlying piece of
music are known as ‘cover versions’.

Cover versions will typically retain the essence of the
melody and the lyrics (for a song) but may vary greatly in
other dimensions. Indeed, in pop music, the main purpose of
recording a cover version is typically to investigate a more-
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or-less radically different interpretation of a song (although
in different recordings of classical music the variations may
be more subtle). Thus, to solve this problem, we must de-
vise representations and matching schemes that are robust
to changes in tempo, instrumentation, and general musical
style.

2. Overview
Our representation has two main features: We use a beat
tracker to generate a beat-synchronous representation with
one feature vector per beat. Thus, variations in tempo are
largely normalized as long as the same number of beats is
used in each phrase. The representation of each beat is a
normalized chroma vector, which sums up spectral energy
into twelve bins corresponding to the twelve distinct semi-
tones within an octave, but attempting to remove any dis-
tinction between different octaves. Chroma features cap-
ture both melodic information (since the melody note will
typically dominate the feature) and harmonic information
(since other notes in chords will result in secondary peaks
in a given vector).

To match two tracks represented by such beat-vs-chroma
matrices, we simply cross-correlate the entire pieces. Long
sequences of beats with similar tonal structure will result in
local maxima at the appropriate lags in the cross-correlation,
with the size of the peak increasing both with the degree of
similarity in the chroma features, and the length of match-
ing sequences. To distinguish between genuine matches
and incidental high cross-correlations, we emphasize rapid
variations in the cross-correlation (i.e. particular lags at
which alignment is high despite being low at neighboring
lags) through high-pass filtering. To accommodate transpo-
sition between versions (performances in different keys), we
cross-correlate between all twelve possible semitone trans-
positions of the chroma vectors.

3. Beat tracking
Our beat-tracker is based on the description of Jehan [5].
A log-magnitude 40-channel Mel-frequency spectrogram is
calculated for 8 kHz downsampled mono versions of the
original recording with a 32 ms window and 8 ms hop be-
tween frames. The first-order difference along time in each
frequency channel is half-wave rectified (to leave only on-
set information) then summed across frequency. This “on-
set envelope” is high-pass filtered with a 3 dB point at 0.01
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Global period determination - All Along the Watchtower / Dave Matthews Band

Figure 1. Autocorrelation of the first 90 s of a piece, used to choose the global target tempo. The Gaussian weighting window
is shown overlaid, and the chosen period (27 samples = 278 bpm) is shown by a vertical line.

rad/samp to remove d.c. offset, and the first 90 s of the piece
are autocorrelated out to a lag of 128 points (1.024 s). This
autocorrelation is windowed with a Gaussian in log-period
centered on 240 bpm, with a half-width of 1.5 octaves. Then
the shortest lag that is a local maximum with a value at least
0.4 times the largest maximum in the windowed autocorre-
lation is taken as the global target period. This favors the
multiple of the basic beat of the piece that is closest to 240
bpm i.e. closer to the tatum (shortest melody note duration)
than what would be the notated tempo of the piece. Figure
1 shows an example of the global autocorrelation

The onset envelope is then filtered by a periodicity en-
hancing smoothing window composed of cos8 at the global
target period, Hann-windowed out to ±3 periods. Beats
are then chosen as the local maxima of this enhanced on-
set function within each beat-length window centered one
beat on from the last marked beat. However, if no maxima
reaches 0.25 of the magnitude of the last-picked maxima,
the default predicted beat position is used instead, and the
search continues forward. This allows the tracker to con-
tinue through short stretches of weak or absent beat.

4. Chroma features
To the extent that the beat tracking can identify the same
main pulse in different renditions of the same piece, repre-
senting the audio against a time base defined by the detected
beats normalizes away variations in tempo. We choose to
record a single feature vector per beat, and use twelve ele-
ment ‘chroma’ features to capture both the dominant note
(typically melody) as well as the broad harmonic accom-
paniment [4, 1]. The idea of calculating harmonic features
over beat-length segments appears to have been developed
several times; we first became aware of it in [6].

Rather than using a coarse mapping of FFT bins to the
chroma classes they overlap (which is particularly blurry at
low frequencies), we use the phase-derivative within each
FFT bin both to identify strong tonal components in the
spectrum (indicated by spectrally-adjacent bins with close
instantaneous frequencies) and to get a higher-resolution es-
timate of the underlying frequency [2]. We found that us-
ing only components up to 1 kHz in our chroma features

worked best. Figure 2 shows an example of the chroma fea-
tures alongside the beat-tracked mel spectrum of the frag-
ment they describe.

5. Matching
From the processing so far, we have each recording repre-
sented by a matrix of 12 chroma dimensions by however
many beats are detected in the entire piece. We expect cover
versions to have long stretches (verses, choruses, etc.) that
match reasonably well, although we don’t particularly ex-
pect these to occur in exactly the same places, absolutely or
relatively, in the two versions. We initially experimented
with chopping one piece up into multiple fragments and
looking for the best cross-correlation of each fragment in the
test piece, but in addition to being very slow it was difficult
to choose the best length of fragment size. In the end, the
simpler approach of cross-correlating the entirety of the two
matrices gave us the best results. Although this is unable
to reward the situation when multiple fragments align but at
different relative alignments, it does have the nice property
of rewarding both a good correlation between the chroma
vectors and a long sequence of aligned beats, since the over-
all peak correlation is a product of both of these. Chroma
vectors are intrinsically non-negative; we scaled them to
have unit norm at each time slice. The cross-correlation is
further normalized by the length of the shorter segment, so
the correlation results are bounded to lie between zero and
one. We perform the cross-correlation twelve times, once
for each possible relative rotation (transposition) of the two
feature matrices.

We observed, however, a number of spurious large corre-
lations from relatively long stretches dominated by a single
chroma bin; this occurs in many tracks. We found that gen-
uine matches were indicated not only by absolutely large
cross-correlations but also by sharp local maxima in cross-
correlations that fell off rapidly as the relative alignment
changes from its best value. To emphasize these sharp local
maxima, we choose the transposition that gives the largest
peak correlation then high-pass filter that cross-correlation
function with a 3 dB point at 0.1 rad/sample. The ‘dis-
tance’ reported for the evaluation is simply the reciprocal
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Figure 2. Excerpt showing the Mel-scale spectrogram (top pane), the periodicity-enhanced onset envelope (middle pane, with
chosen beat instants indicated), and the unnormalized per-beat chroma feature vectors (bottom pane).

of the peak value of this high-pass filtered cross-correlation;
matching tracks typically score below 20, whereas unrelated
tracks are usually above 50.

Matching will fail if the feature extraction is based on
beats with different relations to the music i.e. if one version
tracks twice as many beats per song phrase. To accommo-
date this, we experimented with including two representa-
tions of each track, the original plus one using double the
beat length (i.e. around 120 bpm) but this did not offer any
advantage in our experiments.

6. Evaluation
We developed the system on set of 15 pairs of pop-music
tracks that were alternate versions of the same song. They
were extracted from the USPOP2002 dataset [3] by making
a list of all tracks from the total set of 8764 tracks that had
the same name, then listening to each pair to see if they were
in fact the same piece; about 20% were. We stopped after
we had found 15 pairs. Interestingly, it was often hard to tell
if two tracks were the same until the verse began, at which
point the lyrics quickly indicated matching tracks.

We made two lists of tracks, each containing one of the
two versions of each track. In the evaluation, each track in
the A list was compared to every track in the B list, and
called a cover version of the track that it was most similar
to; thus, the task was to identify the cover version know-
ing that one exists, rather than deciding if two songs were

similar enough to be considered covers. Our best system
(over variations in parameters such as filter breakpoints for
the chroma features and matching) correctly identified 10
of 15 tracks; typical performance varied between 6 and 9
correct (where guessing would give one). Four of the pairs
were clearly difficult for our representation and were almost
never correctly identified. The test set is detailed in table 1.

7. Conclusions

Identifying cover tracks is an interesting new direction for
content-based search of music audio databases. However,
it is much more computationally expensive than the time-
insensitive feature-distribution models typically used in genre
and artist classification: our initial experiments took up to
30 s to compare each pair of tracks, making search in large
databases completely intractible; we managed to speed this
up by a factor of 100, but this still limits the size of database
that we can afford to search by such direct means.

Our plan is to use these techniques to identify a dictio-
nary of smaller fragments that can provide the most efficient
coverage of large music databases. These can then be used
as (possibly redundant) ‘index terms’ to permit the use of
more rapid indexing schemes, as well as potentially reveal-
ing interesting repeated motifs and shared structure within
music collections.



Table 1. Cover version test set from uspop2002, along with typical system performance.
Title “A” artist “B” artist comments

Abracadabra Steve Miller Band Sugar Ray easy
Addicted to Love Robert Palmer Tina Turner hard

All Along the Watchtower Dave Matthews Band Jimi Hendrix hard
America Paul Simon (live) Simon and Garfunkel

Before You Accuse Me Creedence Clearwater Revival Eric Clapton
Blue Collar Man REO Speedwagon Styx easy

Caroline No Beach Boys Brian Wilson (live) easy
Cecilia Paul Simon (live) Simon and Garfunkel very hard

Claudette Everly Brothers Roy Orbison easy
Cocaine Eric Clapton Nazareth

Come Together Aerosmith Beatles easy
Day Tripper Beatles Cheap Trick easy

Faith George Michael Limp Bizkit
God Only Knows Beach Boys Brian Wilson (live) hard
Gold Dust Woman Fleetwood Mac Sheryl Crow easy
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