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ABSTRACT

Large music collections, ranging from thousands to millions of
tracks, are unsuited to manual searching, motivating the develop-
ment of automatic search methods. When different musicians per-
form the same underlying song or piece, these are known as ‘cover’
versions. We describe a system that attempts to identify such a rela-
tionship between music audio recordings. To overcome variability in
tempo, we use beat tracking to describe each piece with one feature
vector per beat. To deal with variation in instrumentation, we use
12-dimensional ‘chroma’ feature vectors that collect spectral energy
supporting each semitone of the octave. To compare two recordings,
we simply cross-correlate the entire beat-by-chroma representation
for two tracks and look for sharp peaks indicating good local align-
ment between the pieces. Evaluation on several databases indicate
good performance, including best performance on an independent
international evaluation, where the system achieved a mean recipro-
cal ranking of 0.49 for true cover versions among top-10 returns.

Index Terms— Music, Database searching, Acoustic signal anal-
ysis, Dynamic programming, Correlation

1. INTRODUCTION

Immediate access to large music collections is now commonplace –
be they the thousands of songs on the MP3 player in your pocket, or
the millions of songs available at online music stores. But finding
music within such collections can be very problematic, leading to
the current interest in automatic music similarity estimation. In this
paper, we address a specific version of this problem: rather than
trying to find music whose genre, style, or instrumentation match
particular query examples, we are trying to find versions of the same
piece of music, despite the fact that they may be performed with very
different styles, instrumentation, etc. These alternate versions of the
same underlying piece of music are known as ‘cover versions’.

Cover versions will typically retain the essence of the melody
and the lyrics (for a song) but may vary greatly in other dimensions.
Indeed, in pop music, the main purpose of recording a cover version
is often to investigate a radically different interpretation of a song
(although in different recordings of classical music the variations
may be more subtle). Thus, to solve this problem, we must devise
representations and matching schemes that are robust to changes in
tempo, instrumentation, and general musical style.

[12] considered this problem for popular music with a system
that attempted to extract only the sung melody as a tempo-independent
note sequence. [11] used semitone-based chroma features (as we do)
and temporal blurring to identify alternate performances of classical
orchestral pieces. [3] presented a number of approaches to matching

sequential content (such as melody and harmony) in music record-
ings, emphasizing the weaknesses of many music similarity systems
that largely collapse signal statistics across time. This paper presents
a system drawing on all of these ideas, rendered to a working state,
and evaluated on a relatively large and realistic database.

2. OVERVIEW

Our representation has two main features: We use a beat tracker to
generate a beat-synchronous representation with one feature vector
per beat. Thus, variations in tempo are largely normalized as long
as the same number of beats is used in each phrase. The represen-
tation of each beat is a normalized chroma vector, which sums up
spectral energy into twelve bins corresponding to the twelve distinct
semitones within an octave, but attempting to remove the distinction
between different octaves. Chroma features capture both melodic in-
formation (since the melody note will typically dominate the feature)
and harmonic information (since other notes in chords will result in
secondary peaks in a given vector).

To match two tracks represented by such beat-vs-chroma matri-
ces, we simply cross-correlate the entire pieces. Although it is very
unlikely that cover versions will match beat-for-beat along the whole
duration, we found this approach more successful than trying to es-
tablish a more precise correspondance. Sub-sequences of beats with
similar tonal structure will result in local maxima at the appropriate
lags in the cross-correlation, with the size of the peak increasing both
with the degree of similarity in the chroma features, and the length
of matching sequences. Matching sequences in many cases will be
only a small portion of the total track, yet will still contribute a peak
large enough to correctly indicate the match. To distinguish between
genuine matches and incidental high cross-correlations, we apply
high-pass filtering (along time time skew dimension) to emphasize
rapid variations in the cross-correlation – i.e. particular lags at which
alignment is suddenly high despite being low at offsets only one or
two beats different. To accommodate transposition between ver-
sions (performances in different keys), we cross-correlate between
all twelve possible semitone transpositions (rotations) of the chroma
vectors. 1

3. BEAT TRACKING

Since our basic representation consists of one feature vector per beat,
we must start by identifying the beat segmentation times in the music
audio. Our system is based on the one described in [9], extended to

1More details and Matlab code are available at http://labrosa.ee.
columbia.edu/projects/coversongs/.
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Fig. 1. Excerpt showing the Mel-scale spectrogram (top pane), the
smoothed onset strength envelope (second pane), per-frame chroma
vectors (third frame), and per-beat chroma vectors (bottom frame)
for the first 20 s of the Elliot Smith track. Chosen beats are shown as
vertical divisions. Notice the extensive syncopation (strong onsets
midway between perceived beats).

use dynamic programming. The description here is brief; for more
details please see [6].

The first stage of beat tracking converts the audio into an “onset
strength” value at a 250 Hz sampling rate. This is derived by taking
the first-order difference along time in a log-magnitude 40-channel
Mel-frequency spectrogram, throwing away negative values, then
summing across frequency. Slowly-varying offsets (corresponding
to variations in gain in the original signal) are removed by a high-
pass filter at about 0.5 Hz. Then, an approximate global tempo is
estimated by autocorrelating the onset strength, applying a ‘prefer-
ence window’ which is a Gaussian on a log-time axis, and choosing
the period with the largest windowed autocorrelation as the tempo.
As discussed in section 6, we varied the center of the preference
window between 0.25 and 0.5 s – i.e. between 240 and 120 beats per
minute (BPM) – to obtain beat segments at different points in the
metrical hierarchy of the music.

We then use dynamic programming to find the set of beat times
that optimize both the onset strength at each beat (to prefer the strongest
onsets as beats) and the spacing between beats (to reflect the global
tempo parameter set in the previous stage). Dynamic programming
is an efficient way to search all possible beat sequences to optimize a
total cost that can be broken down into a local score at each beat time
(the onset strength), and a transition cost. Conventionally, the tran-
sition cost is additive, but we implemented it as a scaling window,
again a Gaussian on a log-time axis, applied to the onset strength
envelope for 0.5 . . . 2.0× the tempo period prior to the current time,
with the maximum at the target period. For every possible beat time,
the best preceding beat time is located (as the maximum of the scaled
onset strength within the window), and the cumulative score up to
that beat is calculated. Then, the largest score close to the end of the
audio is located, and the entire sequence of beats leading to that beat
time is recovered through a ‘backtrace’ table storing the predecessor
for every beat time.

Figure 1 shows an example of the beats found in the first 20 s of
“Drink Up Baby” performed by Elliott Smith. This track consists of
guitar and vocals only, and includes significant syncopation, making

it a challenge for beat tracking. The advantage of dynamic program-
ming is that it effectively searches all possible sets of beat instants,
and is guaranteed to find the best-scoring sequence up to any point.
This allows the best global beat sequence to be found, even if it in-
volves some locally-poor matching: Beats that fall during pauses or
uninflected sustained notes are spaced evenly to “bridge” between
the clearer beats on either edge.

4. CHROMA FEATURES

If the beat tracking can identify the same main pulse in different
renditions of the same piece, then representing the audio against a
time base defined by the detected beats normalizes away variations in
tempo. We choose to record a single feature vector per beat, and use
twelve element ‘chroma’ features to capture both the dominant note
(typically melody) as well as the broad harmonic accompaniment
[7, 2]. Chroma features record the intensity associated with each of
the 12 semitones (e.g. piano keys) within one octave, but all octaves
are folded together. The idea of calculating harmonic features over
beat-length segments appears to have been developed several times;
we first became aware of it in [10].

Rather than using a coarse mapping of FFT bins to the chroma
classes they overlap (which is particularly blurry at low frequencies),
we use the phase-derivative (instantaneous frequency) within each
FFT bin both to identify strong tonal components in the spectrum
(indicated by spectrally-adjacent bins with close instantaneous fre-
quencies) and to get a higher-resolution estimate of the underlying
frequency [4, 1]. (This technique to remove nontonal components
and improve frequency resolution beyond FFT bin level has similar
motivation and impact to the sinusoid-modeling-based preprocess-
ing proposed by [8], but we argue it is conceptually and computa-
tionally simpler.) We found that using only components up to 1 kHz
in our chroma features worked best. An interesting aural rendition of
the extracted information can be generated by using the 12 chroma
bins to modulate Shepard tones (mixtures of harmonics in octave
relationships only).

In an effort to avoid problems when the a piece is played slightly
out of tune, the mapping of frequencies to chroma bins is adjusted
for each piece by up to ±0.5 semitones to make the single strongest
frequency peak from a long analysis window line up exactly with a
chroma bin center. The lower panes of figure 1 show chroma features
before and after averaging into beat-length segments.

5. MATCHING

From the processing so far, we have each recording represented by a
matrix of 12 chroma dimensions by however many beats are detected
in the entire piece. We expect cover versions to have long stretches
(verses, choruses, etc.) that match reasonably well, although we can-
not expect these to occur in exactly the same places, in absolute or
relative terms, in the two versions, for instance due to minor errors in
the beat tracking, or as a result of variations in the structure (number
of verses etc.). We initially experimented with chopping one piece
up into multiple fragments and looking for the best cross-correlation
of each fragment in the test piece, but in addition to being very slow
it was difficult to choose the best length of fragment size. In the
end, the simpler approach of cross-correlating the entirety of the two
feature matrices gave better results. Although this is unable to re-
ward the situation when multiple fragments align but at different rel-
ative alignments, it does have the nice property of rewarding both a
good correlation between the chroma vectors and a long sequence of
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Fig. 2. Illustration of cover song matching. Top two panes are beat-
chroma matrices for two versions of “Between the Bars”. Third pane
is two-dimensional cross correlation for all possible chroma rota-
tions out to ±500 beats skew. Bottom pane shows slice through the
cross-correlation at +2 semitones (indicated by line), plus result of
high-pass filtering to emphasize only peaks that result from precise
beat alignment. Note the subpeaks at around 290 beats relative to
the main peak, resulting from structural repetition in the song.

aligned beats, since the overall peak correlation is a product of both
of these. Chroma vectors are intrinsically non-negative; we scaled
them to have unit norm at each time slice. The cross-correlation is
further normalized by the length of the shorter segment, so the corre-
lation results are bounded to lie between zero and one. We perform
the cross-correlation twelve times, once for each possible relative
rotation (transposition) of the two feature matrices.

We observed, however, a number of spurious large correlations
from relatively long stretches dominated by a single chroma bin; this
occurs in many tracks. We found that genuine matches were indi-
cated not only by cross-correlations of large magnitudes, but that
these large values occurred in narrow local maxima in the cross-
correlations that fell off rapidly as the relative alignment changed
from its best value. To emphasize these sharp local maxima, we
choose the transposition that gives the largest peak correlation then
high-pass filter that cross-correlation function with a 3 dB point at
0.1 rad/sample. The ‘distance’ value measured between two pieces
is simply the reciprocal of the peak value of this high-pass filtered
cross-correlation; matching tracks typically score below 20, whereas
unrelated tracks are usually above 50.

Matching will fail if the feature extraction is based on beats with
different relations to the music i.e. if one version tracks twice as
many beats per song phrase. To accommodate this, we experimented
with including two representations of each track, the original plus
one using double the beat length (i.e. around 120 bpm) as reported
in our experiments below.

Figure 2 shows these stages in the matching of the Elliott Smith
track to a cover version recorded live by Glen Phillips. The top
two panes shows the normalized, beat-synchronous IF-based chroma
feature matrices for both tracks (which have tempos about 2% dif-
ferent). The third pane shows the raw cross-correlation for relative

timings of −500 . . . 500 beats, and all 12 possible relative chroma
skews. The bottom panel shows the slice through this cross-correlation
matrix for the most favorable relative tuning (Phillips transposed up
2 semitones) both before and after high-pass filtering; it is clear that
filtering removes the triangular baseline correlation but preserves the
sharp peak at around +20 beats indicating the match between the
versions. (The Phillips version includes some audience noise at the
start of the track, which causes this delay.) Note that the beat track-
ing in the live version is far from perfect, but the matching succeeds
anyway.

6. EVALUATION

We have developed and evaluated this system on three databases: a
small development set of contemporary pop music, a larger collec-
tion of pop music covers including live versions, and as part of the
independent international 2006 MIREX evaluation.

6.1. Development set

We developed the system on set of 15 pairs of pop-music tracks that
were versions of the same song by different artists. They were ex-
tracted from the uspop2002 dataset by making a list of all tracks
from the total set of 8764 tracks that had the duplicate names (yield-
ing about 600 tracks), then listening to each pair to see if they were
in fact the same piece; about 20% were. We stopped after we had
found 15 pairs. Interestingly, it was often hard to tell if two tracks
were the same until the verse began, at which point the lyrics quickly
indicated matching tracks.

We made two lists of tracks, each containing one of the two ver-
sions of each track. In the evaluation, each track in the first list was
compared to every track in the second list; the track that was most
similar was reported as the cover version. Thus, the task was to
identify the cover version knowing that one exists, rather than decid-
ing if two songs were similar enough to be considered covers. Our
best system (over variations in parameters such as filter breakpoints
for the chroma features and matching) correctly identified 10 of 15
tracks; typical performance varied between 6 and 9 correct (where
guessing would give one). Four of the pairs were clearly difficult for
our representation and were almost never correctly identified.

6.2. Test set

To get a finer-grained sense of the performance, and to make a test
that was independent of our development set, we identified a collec-
tion of 94 pairs from among our personal music collections. Many
of these consisted of comparing live performances of pieces with
the studio recordings by the same band; however, these live versions
often showed significant stylistic variations. Table 1 lists the per-
formance on this test set of several variants of our algorithm. We
see that using the instantaneous-frequency-based chroma features is
critical to the discriminability of the representation, but that using
multiple tempo candidates was not successful, indicating that the
“dominant” tempo is consistently chosen across different versions,
for the most part. Biasing towards a lower tempo (120 bpm) has a
slight negative impact on accuracy, but this may be acceptable given
the smaller and more efficient representation.

6.3. MIREX Evaluation

MIREX (Music Information Retrieval Evaluation eXchange) is an
international effort to develop formal, common evaluation standards



Table 1. Performance on 94-pair test set. Accuracy is the proportion
of time that the correct cover version was returned as most simi-
lar to a query, and Mean Reciprocal Rank (MRR) reflects the rank
of the first correct response in ordered returns. “Standard” uses IF-
based chroma features and a single tempo biased towards 240 bpm.
“P-Chroma” uses a chroma feature based on peak-picking in the
spectrum without further spectral resolution improvement (similar
to [8]). “Two-Tempos” employs two representations of each song
are used, corresponding to the two most likely tempos for the piece,
with the overall similarity based on the best pair. “120 BPM” bi-
ases the tempo detector towards a slower rate of 120 BPM, leading
to smaller (but more blurred) representations.

System Accuracy MRR
Standard 59% 0.63
P-Chroma 29% 0.40
Two-Tempos 35% 0.50
120 BPM 51% 0.53

for music information retrieval. For the first time in 2006 there was
an evaluation for cover song identification, which operated by hav-
ing participants submit working code to the organizers at UIUC, who
then independently applied the algorithms to their secret test set of
11 versions for each of 30 songs spanning “a variety of genres (e.g.,
classical, jazz, gospel, rock, folk-rock, etc.)”. For each of the 330
test songs, the top 10 most similar tracks were examined. Evaluation
was in terms of the total number of correct cover tracks returned (out
of a theoretical maximum of 3300), the mean reciprocal rank (MRR)
of the first correct cover version (between 0 and 1, with larger bet-
ter) as well as some other metrics. Submissions included 4 systems
specific to cover song detection, and 4 general music similarity sys-
tems (aimed at capturing a listener’s judgment of similarity between
pieces of music).

Our system (an earlier version of Standard from table 1) identi-
fied 761 cover songs and had an MRR of 0.49. The next best per-
forming system identified 365 covers with an MRR of 0.22. Signif-
icance testing confirmed that our system was significantly superior
to the others, with none of the remainder differing significantly from
one another [5].

7. CONCLUSIONS

Identifying cover tracks is an interesting new direction for content-
based search of music audio databases. However, it is much more
computationally expensive than the time-insensitive feature-distribution
models typically used in genre and artist classification: our initial
experiments took up to 30 s to compare each pair of tracks, mak-
ing search in large databases completely intractable; we managed
to speed this up by a factor of 100, but this still limits the size of
database that we can afford to search by such direct means.

Our plan is to use these techniques to identify a dictionary of
smaller fragments that can provide the most efficient coverage of
large music databases. These can then be used as (possibly redun-
dant) ‘index terms’ to permit the use of more rapid indexing schemes,
as well as potentially revealing interesting repeated motifs and shared
structure within music collections.

8. ACKNOWLEDGMENTS

This work was supported by the Columbia Academic Quality Fund,
and by the National Science Foundation (NSF) under Grant No. IIS-
0238301. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. Portions of this paper ap-
peared in the system description abstracts for the MIREX-06 contest.

9. REFERENCES

[1] T. Abe and M. Honda. Sinusoidal model based on instanta-
neous frequency attractors. IEEE Tr. Audio, Speech and Lang.
Proc., 14(4):1292–1300, 2006.

[2] M. A. Bartsch and G. H. Wakefield. To catch a chorus: Using
chroma-based representations for audio thumbnailing. In Proc.
IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics, Mohonk, New York, October 2001.

[3] M. Casey and M. Slaney. The importance of sequences in mu-
sical similarity. In Proc. ICASSP-06, pages V–5–8, Toulouse,
2006.

[4] F. J. Charpentier. Pitch detection using the short-term phase
spectrum. In Proc. ICASSP-86, pages 113–116, Tokyo, 1986.

[5] J. S. Downie, K. West, E. Pampalk, and P. Lamere.
Mirex2006 audio cover song evaluation, 2006.
http://www.music-ir.org/mirex2006/index.php/
Audio Cover Song Identification Results.

[6] D. Ellis. Beat tracking with dynamic programming. In MIREX
2006 Audio Beat Tracking Contest system description, 2006.

[7] T. Fujishima. Realtime chord recognition of musical sound:
A system using common lisp music. In Proc. ICMC, pages
464–467, Beijing, 1999.
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