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ABSTRACT

We discuss Echoprint, an open source and open data music
identification service available to anyone. Echoprint is effi-
cient and speedy and works by generating dozens of hashes
a second from input audio (microphone or files) and then
matching those hashes in a large scale inverted index for
queries. We discuss the signal code generator and the server
component. 1

1. MUSIC FINGERPRINTING

“Fingerprinting” of audio files [1,2,4] is becoming a neces-
sary feature for any large scale music understanding service
or system. Online music stores want to resolve existing user
catalog against their cloud storage to save bandwidth. Music
indexing tools want to adjust poor metadata.

Last year we presented the Echo Nest Musical Finger-
print (ENMFP) [1], which was based on the detailed anal-
ysis of musical audio performed by the Echo Nest Analyze
service [3]: fingerprints were based on the chroma vectors
of several successive segments. While effective for match-
ing different encodings of the same track, ENMFP could not
handle more drastic spectral distortions such as are encoun-
tered in over-the-air (OTA) recordings. Also, since it relied
on the output of the Analyze processing, it was computation-
ally expensive if Analyze had not already been performed.

Echoprint is designed to resolve these shortcomings. It
dispenses with the chroma features, relying only on the tim-
ing of successive beat-like events, a feature that remains ro-
bust under a wide range of channels and noise conditions. It
also uses its own onset detection scheme which is far sim-
pler than the one in Analyze, while remaining sufficient for
the fingerprinting task.

1 Ellis and Porter are paid consultants to The Echo Nest.
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In the next section we present more detail on how fin-
gerprint codes are generated from the source audio. In the
following section, we describe the indexing and matching
scheme in the server. Finally, we present some results.

2. GENERATING CODES FROM AUDIO

To achieve greater robustness to the kind of spectral modifi-
cations and noise encountered in OTA recordings, Echoprint
relies only on the relative timing between success beat-like
onsets detected in the audio. Onset detection is performed
independently in 8 frequency bands, corresponding to the
lowest 8 bands in the MPEG-Audio 32 band filterbank (hence,
nominally spanning 0 to 5512.5 Hz). The magnitude of
the complex band-pass signal in each band is compared to
an exponentially-decaying threshold, and an onset recorded
when the signal exceeds the threshold, at which point the
threshold is increased to 1.05 × the new signal peak. An
adaptive algorithm takes a target “inter-onset-interval” (IOI),
and decreases the threshold decay rate when actual IOIs are
shorter, or increases the rate of decay if they are longer.
The target onset rate for Echoprint is 1 onset per second per
band.

Pairs of successive IOIs in each band, quantized into units
of 23.2 ms, are combined to make a hash. To provide robust-
ness against spurious or missed onsets, each onset is consid-
ered along with its four successors. Six different hashes (IOI
pairs) are created by choosing all possible pairs of succeed-
ing onsets from the four.

Thus, the overall hash rate is approximately 8 (bands) ×
1 (onset per second) × 6 (hashes per onset) ≈ 48 hashes/sec.
Since onsets are approximately one second apart, the quan-
tized IOIs are of the order of 1/.0232 = 43, or around 5-6
bits, and a pair of onsets constitutes around 12 bits of in-
formation. This is combined with the 3 bit band index to
generate the raw hash, which is then stored along with the
time it occurs within the file.

To improve robustness against varyiable OTA channel
characteristics, the signal is “whitened” prior to the analysis
above. A 40-pole LPC filter is estimated from the autocor-
relation of 1 sec blocks of the signal, smoothed with an 8
sec decay constant. The inverse (FIR) filter is applied to the



signal to achieve whitening. Thus, any strong, stationary
resonances in the signal arising from speaker, microphone,
or room in an OTA scenario will be moderated by a match-
ing zero.

3. MATCHING QUERY CODES TO SONGS

We have a database of known tracks, with each track T con-
sisting of an ID and metadata (artist, album, track name).
Performing a match involves taking an unknown audio query
Q and finding the corresponding track in the reference database.

To build the database, each track is split into 60 second
segments, with adjacent sections overlapping by 30 seconds.
This helps to remove bias introduced when longer songs
provide more matches for a set of query hashes.

The codes for a 60 second segment are represented as
terms of a document D in an inverted index. The combina-
tion of the unique track ID plus the segment number is used
as the document ID. Our underlying data store uses Apache
Solr with a custom query handler to provide a fast lookup of
a code query to list of document IDs.

A 30 second query has about 800 hash keys. The query
server returns the documents with the most matches of each
code term in the query. In practice we find that there is rarely
one document with significantly more matches than all other
documents in the index, however, the top matches (we use
15) in this metric will contain the actual match if it exists.
We compute a histogram of all time offset t differences per
matching key in the result set. We then use the total of the
top two histogram buckets to inform the “true score.” This
allows us to ensure that the codes occur in order even if Q is
from a different section of the song and thus has a different
absolute time offset.

All possible documents are ordered by their true score. If
more than one document from the same track are in the list,
we remove all but the document with the highest score. The
top document in the list is returned as a positive match if its
true score is significantly higher than the score of all other
documents in the result list. If the gap between the top two
results is insignificant then no match is returned.

4. DATABASE SCALING AND EVALUATION

ENMFP [1] quickly grew to over 30 million tracks within a
matter of months and Echoprint will also see a strong growth
pattern given that the data will come from outside sources.
We engineered the database layer of Echoprint to handle
hundreds of millions of tracks by splitting apart the index
(the inverted Solr-backed document store) and the storage
layer. The index takes roughly 5 gigabytes of disk space
per 100,000 tracks, while the storage requires 15 gigabytes.
Queries can be executed in practice in 100 milliseconds af-
ter computing the code string for a signal, which on current
hardware takes under a tenth of a second.

To evaluate Echoprint we built a suite of tools that would
test various permutations of queries. We use a test set of
100,000 tracks alongside a set of 2,000 tracks that are known
to be not in the set of 100,000. We compute queries on
audio pulled from selections of the audio files, for exam-
ple, 30 seconds from the middle, downsampled to 96kHz or
decoded using various MP3 decoders or had their volume
adjusted. This lets us compute metrics such as the num-
ber of false positives fp (the wrong song was identified),
false negatives fn (the query was not matched to the cor-
rect track), false accept fa (a known non-database query
was matched to a track,) true positive tp and true negative
tn. Using these measures we compute a probability of error
P (E) that weights the size of the database (100,000 as D)
and the size of the known-non-database tracks (2,000 as N )
with the false reject rate Rr and the false accept rate Ra:

P (E) = ((
D

D +N
) ∗Rr) + ((

N

D +N
) ∗Ra) (1)

where

Rr =
fp+ fn

tp+ fp+ fn
(2)

Ra =
fa

fa+ tn
(3)

We have published results 2 of various P (E):
Manipulation P (E)
30 second WAV file 0.0109
60 second WAV file 0.0030
60 second recompressed MP3 file 0.0136
30 second recompressed MP3 file 0.0163
30 second recompressed MP3 file at 96kbps 0.0260
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