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ABSTRACT

This paper introduces a novel method for the solution of guitar dis-
tortion circuits based on the use of kernels. The proposed algorithm
uses a kernel regression framework to linearize the inherent nonlin-
ear dynamical systems created by such circuits and proposes data
and kernel selection algorithms well suited to learn the required re-
gression parameters. Examples are presented using the One Capac-
itor Diode Clipper and the Common-Cathode Tube Amplifier.

Index Terms— Circuit Modeling, Nonlinear Dynamical Mod-
els, Kernel Regression, Linearization

1. INTRODUCTION

The accurate digital modeling of guitar distortion circuits has been
an interest for several decades, with solutions proposed in both the
research literature and the commercial space[1][2][3][4]. Elegant
solutions to this problem have remained elusive mainly because
common distortion circuits form highly nonlinear dynamical sys-
tems which have no closed form solutions. Because of this, existing
solutions consist of either numerical methods which don’t run in a
fixed time[2][4], or relaxations of the nonlinear dynamical system
for which a closed form solution does exist, such as separation of
the nonlinearity from the dynamical system[1]. Alternatively, in this
paper we will use kernel methods to propose a linearization of the
dynamical system which will allow for a closed form solution and
an algorithm which models the circuit in fixed time using a support
vector machine.

Section 2 will review the K-Method[2], an existing nonlinear
dynamical system circuit model which will form the basis for our
derivation. Section 3 will describe the linearization of the dynam-
ical system via an injection into a high dimensional space, and the
derivation of a closed form solution. Section 4 will describe a so-
lution to the problem via kernel regression using a Support Vector
Machine. Section 5 will introduce methods for finding the proper
injection map � which performs the linearization. Section 6 will
describe our experiments and results. Finally, Section 7 will present
our conclusions.

2. CIRCUITS AS NONLINEAR DYNAMICAL SYSTEMS

There are several formulations of a circuit as a nonlinear dynam-
ical system. In this paper we will use the K-Method as our basis
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formulation[2], which is based on the Kirchhoff variables repre-
senting Voltage and Current. This defines the dynamical system as
an ordinary differential equation (ODE) of the form

ẋ = Ax+Bu+Ci (1)
i = f(Dx+Eu+ Fi) (2)
y = Lx+Mu+Ni (3)

where the vector u represents the inputs to the circuit, x represents
the states of the circuit and ẋ their first derivatives with respect to
time. In the K-Method, the state is defined as the voltages across
the capacitors and the currents through the inductors. The scalar
value y represents the output of the circuit. The vector i represents
the output currents of the nonlinear elements in the circuit, which
in guitar distortion circuits are often based on the control voltages
for the diodes, transistors and vacuum tubes in the circuit. The non-
linearity is captured by the function f(·). And finally, the matrices
A,B,C,D,E, F, L,M, and N are the linear mixing parame-
ters defined by the connections and values of the passive elements
in the circuit.

3. LINEARIZATION AND SOLUTION OF A NONLINEAR
DYNAMICAL SYSTEM

If we define the vector z := {x,u}, of length N , we can rewrite
the system of (1), (2), (3) as

ż = Ĥz + Ĉi (4)
i = f(Jz + Fi) (5)
y = Kz +Ni (6)

where Ĥ := {A,B} and an unknown component for the calcu-
lation of u̇, Ĉ is C plus a component for u̇, J := {D,E}, and
K := {L,M}. Note that this adds an undefined set of constraints
on u̇, but it doesn’t matter because we will learn them later.

Because eqn.(4) and eqn.(6) are both nonlinear functions of z
only, we can rewrite the system as pair of nonlinear functions, g(·)
and h(·)

ż = g(z) (7)
y = h(z) (8)

which replace the coefficient matrices and the nonlinearity f(·).
Now we will introduce a map�y

(·) : RN ! Y which forms an
injection into a high dimensional space Y where the nonlinear func-
tion g(·) can be replaced by the linear operator G�, and the nonlin-
ear function h(·) can be replaced by the linear operator H�[5].
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We further require that�y has an associated kernel function k
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such that k
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(y)i, the inner product between
the two vectors in high dimensional space.

Now, injecting z into Y allows us to linearize the dynamical
system by rewriting (7) and (8) as

ż� = G�z� (10)

y = H�z� (11)

for the proper choices of G�, H�, and z� = �

y

(z), the injection
of the state.

We can now discretize the system using the reverse Euler inte-
gration rule,
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This allows us to derive a discrete linear dynamical system in
Y ,
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or simply as the one step update rule

y
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4. SOLUTION VIA KERNEL REGRESSION

Now, using a change of variables we can rewrite equation (15) as a
linear regression problem in Y .

y

n

= �Ẑ
�T
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n�1 (16)

where Ẑ
�

is a matrix whose rows are training examples of z� and
� is a set of weights on those training examples learned by a support
vector regressor[6]. In fact this can be rearranged to write the classic
SVR formulation
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Ẑ
�T

is the training point z�
i

in Y , the offset (commonly b) is inte-
grated into the dimension of z�, and l is the total number of training
points. By using our kernel function k
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We can use a similar procedure to find the unknown x

d

n

repre-
senting each dimension d 2 D of x

n

. To do this, we define a map
from the original state space of z into a new high dimensional space
X

d,  x
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where zd

i

is the ith training point, stored in the i

th row of the train-
ing data matrix Zd

This will allow us to solve our dynamical equation by running
D update equations of the form (20) and one solution equation of
the form (18) for each point n.

5. FINDING �

This linearization of the dynamical system is dependent on our abil-
ity to find a set of maps �y

(·), x

d
(·) under which the nonlin-

ear functions g(·), h(·) can be represented by the linear operators
G,H . While this concept has solid theoretical support and has
been developed for certain categories of kernels[5], the selection of
the map and its associated kernel function is potentially very diffi-
cult and its existence is not guaranteed.

In common practice, kernels with a low number of parameters
are used, and kernel selection is achieved by a grid search over the
kernel parameters. However, there are several existing kernel selec-
tion methods which attempt to use a more intelligent algorithm to
make an optimal kernel choice. Two of these methods include gradi-
ent descent over the kernel parameters[7] and learning the weights
on a linear combination of basis kernels[8]. In this work we will
experiment with both methods. First we try gradient descent on the
parameters of the Mahalanobis Kernel[9], which is a generalization
of the popular Gaussian RBF kernel, whose individual dimensions
each have their own kernel parameter, �

i

. It is defined by
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where x

i

, y

i

is the i

th dimension of x,y and �

i

is the i

th element
of the kernel parameter �.

Secondly, on the intuition that the nonlinear circuits that we
are dealing with are essentially distortions of the inherently linear
dynamical systems formed by linear circuits, we will form a kernel
which is a linear combination of a linear kernel and a gaussian RBF.
This creates the kernel equation

k(x,y) = ↵xTy + (1� ↵)exp(��kx� yk2) (22)
with kernel parameters ↵ and �.

Furthermore, instead of finding a set of maps which form a
G,H that precisely linearizes g(x�), h(x�); 8x� 2 Y , we will
relax the problem to one of finding a set of maps which form a
G,H which closely approximates g(·), h(·) over the domain of z.
To do so, we need a measurement to describe how close our ap-
proximation is, an estimate for the domain of z, and the best choice
for the kernel parameters which create our map. All three of these
issues are addressed by our proposed Add The Worst algorithm.

The proposed algorithm, described in Algorithm 1, initializes a
working set with the extrema of the training data in order to reliably
cover the system domain. Then it repeatedly finds support vector
regressors for the output y

n

and current state x
n

, finds the testing
points with the greatest prediction error, and moves these points
from the testing set to the working set. It also re-estimates the idea
kernel parameters in each step. This results in a kernel map and as-
sociated training data set which form operators G,H which closely
approximate g(·), h(·) over a reasonable estimate of the domain of
z.
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end

Algorithm 1: Add The Worst Algorithm for Training Data and
Kernel Selection
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Figure 1: Schematic of a One Capacitor Diode Clipper.

6. EXPERIMENTS

To determine the success of our algorithm, we tested the proposed
method using two common nonlinear guitar sub-circuits, the One-
Capacitor Diode Clipper, and the Common-Cathode Tube Ampli-
fier.

6.1. One Capacitor Diode Clipper

The One-Capacitor Diode Clipper is shown in Fig.1. It is an essen-
tial nonlinear audio circuit used in everything from guitar distortion
pedals[10] to analog synthesizer filters[11]. It is essentially an RC
lowpass filter with a pair of diodes across the capacitor. The diodes
limit the output voltage swing to the respective diode’s turn on volt-
age by shunting current around the capacitor whenever either diode
is conducting. Because diodes smoothly lower their resistance in
proportion to the voltage across them, the result is a soft saturation
which is considered sonically pleasing.

The One-Capacitor Diode Clipper has one state dimension
which is the voltage across the capacitor C. When discretized,
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Figure 2: Comparison of our Algorithm to LTSpice Simulation of a
One Capacitor Diode Clipper with Guitar Input.
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Figure 3: Schematic of a Common-Cathode Tube Amplifier.

it is equivalent to the previous output y
n�1. For the purposes of

this experiment we synthesized the circuit using Linear Technolo-
gies LTSpiceIV’s model of a 1N4001 signal diode, and with passive
component values of R

i

= 2k⌦ and C = 0.047µF . We used the
Add The Worst algorithm with 5 seconds of recorded guitar to train
a 50, 100, 300, and 500 point model, using the linear-rbf kernel
from (22). In order to reduce the likelihood of errors introduced by
digital aliasing, we used a sample rate of 384kHz for all tests. We
then tested the models with 9 seconds of a different guitar record-
ing, calculating a normalized mean squared error for each. nMSE
was defined as

nMSE = 10 ⇤ log10

 
(ŷ�y)2

ŷ

2

!
(23)

where y is the synthesized output and ŷ is the oracle output, gener-
ated by LTSpiceIV. The results are located in Table 1. A sample of
the results is shown in Fig.2.

6.2. Common-Cathode Tube Amplifier

The Common-Cathode Tube Amplifier stage is an inverting voltage
amplifier similar to the common emitter transistor circuit. It is a
common stage in many guitar amplifiers and is valued for its over-
driven sound which results in asymmetrical clipping. For the pur-
poses of this experiment we modeled the circuit in LTSpice IV. The
version we are modeling is shown in Fig.3 and includes a DC block-
ing capacitor C

i

for the input and a bypass capacitor C
b

around the
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Figure 4: Comparison of our Algorithm to LTSpice Simulation of a
Common-Cathode Tube Amplifier with Guitar Input.

Circuit 50 Pt. 100 Pt. 300 Pt. 500 Pt.
OCDC -15.35 dB -19.83 dB -25.77 dB -35.45 dB
CCT -12.37 dB -25.56 dB -23.88 dB -34.38 dB

Table 1: nMSE of guitar signal for two synthesized circuits

bias resistor R
b

, as well as explicitly modeling the triode’s grid re-
sistance R

g

and Miller capacitance C

f

. Our model will therefore
include an input voltage V

i

, an output voltage V

o

and three state
voltages, one for each of the three capacitors in the circuit. The tube
itself is a Koren model of a 12AX7 tube[12]. The passive element
values as referenced in Fig.3 are: C

i

= 47µF,R

i

= 1M⌦, R

g

=

70k⌦, C

f

= 2.5pF,R

p

= 100k⌦, C

b

= 25µF,R

b

= 1.5k⌦.
We used the proposed algorithm to learn regression models uti-

lizing 50, 100, 300, and 500 points for each of 3 states and the
output, each of which used the Mahalanobis kernel from equation
(21) whose parameters were learned via gradient descent[7]. The
Add The Worst algorithm was run on a selection of 5 seconds of
guitar recordings of the input, output, and each of the 3 states. For
each SVM the training points were chosen and the kernel parame-
ters were learned. We then tested the simulation by feeding it both
a 9 second recording of a different guitar playing a different song.
The normalized mean squared error was calculated and tabulated in
Table 1. A sample of the output from the guitar test can be seen in
Fig.4.

Audio examples for both the One Capacitor Diode Clip-
per and the Common-Cathode Tube Amplifier can be found at
http://labrosa.ee.columbia.edu/projects/nlds/.

7. CONCLUSIONS

Although guitar distortion circuits tend to produce not easily
tractable nonlinear dynamical systems, we’ve shown that the appli-
cation of kernels can transform these systems into easily solvable
linear dynamical systems, and solved in a regression framework.
We’ve also suggested some methods for choosing the proper kernel
to linearize these systems and confirmed via experimentation that
these linearized dynamical systems can closely approximate the un-
derlying nonlinear dynamical system.

Though the application of kernel regression to guitar circuits is
novel, and the application of kernels to general nonlinear dynamical
systems has been examined only briefly[13][14], kernel regression
itself has been extensively studied and kernel selection is an active
research area. Existing or new methods of kernel selection would
be applicable to this work and could have the potential to improve
its results. Also, much work in kernel and SVM regression has
been done developing new constraints to add to the inherent SVM
optimization problem, a technique which may prove useful here.

Because of the white box nature of this problem, we have broad
capacity to derive more constraints based on knowledge of both the
circuit elements and structure.
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