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ABSTRACT

We present a model-based approach to separating and transcribing
single-channel, multi-instrument polyphonic music in a semi-blind
fashion. Our system extends the non-negative matrix factorization
(NMF) algorithm [1] to incorporate constraints on the basis vectors
of the solution. In the context of music transcription, this allows us
to encode prior knowledge about the space of possible instrument
models as a parametric subspace we term “eigeninstruments”. We
evaluate our algorithm on several synthetic (MIDI) recordings con-
taining different instrument mixtures. Averaged over both sources,
we achieved a frame-level accuracy of over 68% on an excerpt of
Pachelbel’s Canon arranged for doublebass and piano and 72% on
a mixture of overlapping melodies played by flute and violin.

Index Terms— Music transcription, NMF, eigenmodels,
source separation

1. INTRODUCTION

Music transcription is the process of obtaining a symbolic descrip-
tion of the events in an audio recording. Of the possible note
event properties, pitch, onset time, duration, and volume are most
naturally associated with score transcription, but separating notes
according to the different source instruments is also important.
Accurately extracting this information from a mixture of poly-
phonic instruments is a challenging problem, particularly in the
case where we have only a single observation channel.

In this paper we present a system for separating and transcrib-
ing multi-instrument, polyphonic music. Currently, we assume
that the number of sources (instruments) in the target mixture is
known a priori, although each of these sources may be fully poly-
phonic and the degree of polyphony of each instrument is not as-
sumed to be known. Our approach is inspired by eigenvoice mod-
eling [2, 3] in that we first learn a subspace of source models and
then use this subspace as a constraint on the solution of the sources
present in the target mixture. However, rather than using princi-
pal components analysis (PCA) for the initial decomposition and
hidden Markov models for the source models, we use NMF for
both. This leads to a two-tiered NMF variant which we call Sub-
space NMF (SsNMF). We refer to the models learned during the
first stage of our decomposition as eigeninstruments to reinforce
the idea that they are a basis for the model space, despite the fact
that in this case they do not strictly conform to the definition of
eigenvectors.

This work was supported by the NSF grant IIS-0713334. Any opin-
ions, findings and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of the
sponsors.

2. BACKGROUND

Polyphonic music transcription has proven to be one of the most
challenging problems in music information retrieval. Although
techniques such as independent components analysis (ICA) can
work well when at least as many observation channels as sources
are available, effective techniques for the single-channel case re-
main elusive.

Many different approaches to transcription have been pro-
posed in the literature. Klapuri [4] estimates the notes present in
each frame using an algorithm that iteratively estimates and re-
moves the fundamental frequencies of notes present. Poliner and
Ellis [5] treat transcription as a classification problem, using sup-
port vector machines to classify individual frames as to whether
they contain particular notes or not. Recently, non-negative ma-
trix factorization (NMF) [6, 7] has become an increasingly popu-
lar technique for polyphonic transcription. When used with mag-
nitude spectra, NMF has an elegant interpretation as a basis de-
composition V = WH where the basis vectors, W , correspond
to note spectra and the weight vectors, H , give activation levels of
those notes across time. Thus, for recordings containing only one
source, H gives most of the information needed for transcription.
This basic formulation can be extended to handle n instruments by
simply interpreting the basis and weight matrices as having block
forms:

V = WH =
ˆ
W 1 W 2 · · ·W n˜

26664
H1

H2

...
Hn

37775 (1)

The difficulty in using (1) for transcription comes from the inde-
terminacy of W : without some prior knowledge, it is unclear how
to properly assign each basis column Wi to its source submatrix,
W s. 1 Clearly, if W were known a priori, the problem would be
substantially easier as we would only need to solve for H . How-
ever, in most cases we cannot assume that we will have access
to the exact W used to produce V . A more general approach is
to impose constraints on the solution space of W . We describe a
method for incorporating these constraints next.

1We use calligraphic letters to denote data tensors (stacks of matrices),
uppercase letters to denote matrices, bold lowercase to denote vectors, and
regular lowercase to denote scalars. Superscripts index submatrices (both
within matrices and within tensors) while subscripts index vectors in ma-
trices and scalars in vectors. Double-subscripts are understood to refer to
individual elements of matrices.



2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 18-21, 2009, New Paltz, NY

3. SUBSPACE NMF

3.1. Eigeninstruments

Assume that we have a set of m instrument modelsM for use in
training. In our case, each modelMj ∈ M consists of p pitch-
specific magnitude spectra, each with f frequency bins. Our first
goal is to decomposeM into a set of r instrument model basesW
(an f -by-p-by-r tensor) and an r-by-m matrix of weights C, such
that the jth modelMj can be approximated as:

Mj ≈
rX
a

WaCaj (2)

When the rank of the decomposition r is equal to m, the re-
construction is perfect. In practice this decomposition is accom-
plished by concatenating each model’s p vectors together into a
“supervector” (each of which can be thought of as a point in (pf)-
dimensional space) and then stacking these supervectors together
to form a (pf)-by-m parameter matrix Θ. This parameter matrix
can then be decomposed using regular NMF:

Θ ≈ ΩC (3)

where Ω is the (pf)-by-r matrix of basis vectors, which is just
W in stacked (supervector) form. Although in theory one could
use other decomposition techniques such as PCA for this step, our
model parameters correspond to magnitude spectra and therefore
the non-negativity constraint of NMF seems natural. It is also use-
ful to have nonnegative bases foor the NMF in the next stage.

A new instrument model W s can now be represented in terms
of this basis using coefficient vector b:

W s =

rX
a

Waba (4)

3.2. Update Equations

Once we have solved for the model basisW , we can approximate
the magnitude STFT V of a mixture of n unknown instruments as:

V ≈ R =

nX
s

W sHs =
nX
s

rX
a

WaBasH
s (5)

This approximation is illustrated in Figure 1. We solve for B
and H in a similar fashion to Lee and Seung [1]. We use the I-
divergence of the reconstruction R from the original data V as the
basis of our objective function:

D(V ||R) =
X
i,j

Vij log
Vij

Rij
− Vij + Rij (6)

This quantity is difficult to optimize directly due to the log-of-sum
terms. Following Lee and Seung, we use Jensen’s inequality to
upper-bound the divergence function with an auxillary cost func-
tion. This cost function can then be minimized by taking partial
derivatives, setting to 0, and solving for Bas. This results in the
following update equation for Bas:

Bas ← B′
as

P
ij Vij

WaHP
sa WaB′

asHP
ij(WaH)ij

(7)
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Figure 1: Illustration of the SsNMF decomposition of a spectro-
gram. The spectrogram is formed as the sum of several different
instruments, each with its own set of per-note templates W s and
activations Hs. Each W s, however, is formed as the weighted
sum of a common eigeninstrument basisW collapsed via a vector
of instrument-specific parameters Bs.

Once we have solved for Bas, we can use the result with the
previously obtained model basisW to obtain W s as in (4). This
is done for each source s and the results are combined into W =ˆ
W 1 W 2 · · ·W n

˜
. The update for H is basically the same as Lee

and Seung’s algorithm except that, as with W , we interpret it in
block form such that the first p rows correspond to H1, the next p
to H2, and so on:

Hij ← H ′
ij

P
k Wki

Vkj

(WH)kjP
l Wli

(8)

The complete SsNMF algorithm is therefore:

1. CalculateW from the set of training models,M
2. Initialize parameters matrices B and H randomly

3. Update B using (7)

4. Solve for W s for s = 1..n as in (4)

5. Combine models: W =
ˆ
W 1 W 2 · · ·W n

˜
6. Update H using (8)

7. If the algorithm has not converged, goto 3

4. EVALUATION

We conducted several two-instrument transcription experiments in
order to test the efficacy of our technique. Due to the scarcity of
accurately transcribed and aligned audio and score data, and also
to provide easier, more consistent data, we used recordings syn-
thesized from MIDI. We do, however, select different instruments
to train our eigenistrument models than the ones used in testing.

A set of 30 instruments, selected to be representative of a wide
range of likely instrument types, was used in our experiments. In
each experiment, the two instrument types used in the test mixture
were excluded from the training set, leaving 28 models from which
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to learnW . Each of the instrument models consisted of 42 pitches,
ranging from E2 to A5. Models were created by synthesizing each
note at a sampling rate of 8kHz using timidity. For the training
data, the EAW instrument patch set was used for synthesis, while
for test data the Fluidsynth R3 soundfont set was used. This pro-
vided additional assurance that training and testing datasets were
well-separated. Next, the average spectrum of each note in each in-
strument in the training set was determined. This was done using
a 512-point STFT with 64ms Hamming window and 16ms hop.
These spectra were then stacked together to form the training mod-
els,M. For both experiments, we used a rank of 25 when learning
the eigeninstrument models. This value was chosen empirically.

4.1. Metrics

In order to quantify our results, we use a set of frame-based metrics
proposed by [5]. The metrics consist of a total error measure which
is comprised of three more specific types of error:

• Etot: total error summed over time (i.e. Esub+Emiss+Efa)
• Esub: the substitution error rate
• Emiss: the error rate due to missed notes
• Efa: the error rate due to false alarms
• Acc: the percentage of correctly classified time-pitch cells

These metrics require a binary decision for each element Hs
ij

as to whether the note represented by row i is on or off at the time
represented by column j. We use an edge-detection and threshold-
ing method to convert each Hs into a binary pianoroll representa-
tion that can be compared with the original score.

4.2. Experiments

The first experiment consisted of a four-bar excerpt from Pachel-
bel’s Canon synthesized using doublebass for the lower voice and
piano for the upper voice. We used the same parameters as in
model construction for the STFT, and the SsNMF algorithm was
then run until convergence using randomly initialized parameters.

Figure 2 shows the pianoroll representation of the score (blue
denotes times when doublebass notes are sounding while green
denotes piano notes) and the H1 and H2 matrices learned by the
algorithm. We can see that the algorithm has done a fairly good
job of separating and transcribing the two sources, despite having
no explicit information (other than the number of sources) about
the instruments contained in the mixture. Table 1 gives the values
of the metrics after post-processing H1 and H2. Most of the er-
ror seems to be due to misclassfications, although the piano part
has a relatively high false-alarm error rate which we can see from
Figure 2 is likely due to cross-source contamination. It is also in-
teresting to look at the inferred eigeninstrument weights B as this
gives some indication of how much of the separation performance
is due to the algorithm finding distinct regions of model space for
each of the sources. These are shown in Figure 3.

The second experiment was designed to probe the abilities
of the algorithm to handle mixtures containing sources not well-
separated in frequency. We created a four-bar segment (see Fig-
ure 4 for score) containing two voices that occupied a narrow,
common range. The melodies were designed to contain the same
notes at a few points in time to examine the system’s performance
in these cases. The mixture was synthesized in the same way as
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Figure 2: Pianoroll and raw transcription results of Pachelbel’s
Canon.

Doublebass Piano
Etot 0.24 0.39
Esub 0.06 0.08
Emiss 0.12 0.10
Efa 0.06 0.20
Acc 0.73 0.64

Table 1: Evaluation metrics for Pachelbel’s Canon.

Pachelbel’s Canon, but violin and flute were used for the instru-
ments as these seemed more appropriate for the range, as well
as having quite distinct timbres. The raw transcription results are
shown in Figure 5 while the binary metrics are given in Table 2.

While we might have expected the performance to be worse
for this experiment, this is not case. As we can see from the met-
rics and by visual inspection of H1 and H2, the algorithm has
performed remarkably well on this example. The reason for this
surprise could be partly due to random initialization (although in
our experience the algorithm is not overly sensitive to initial pa-
rameter settings) or the register of the voices. A more signifi-
cant factor, however, is likely to be the match between the simple
single-spectrum-per-note instrument model we use, and the actual
instrument timbres. Additional experiments seem to confirm this
theory: running the same experiment, but using doublebass and pi-

Violin Flute
Etot 0.52 0.10
Esub 0.04 0.01
Emiss 0.28 0.08
Efa 0.21 0.01
Acc 0.55 0.89

Table 2: Evaluation metrics for the mixture of melodies performed
by violin and flute.
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Figure 3: Learned weights (B) for the two sources in Pachelbel’s
Canon and the two sources in the overlapping melody mixture.

Figure 4: Score designed to contain two voices with substantial
overlap.

ano as the instruments reveals a drop in performance, particularly
for piano. Piano notes exhibit considerable variation in spectrum
throughout their decay, and thus are difficult to fit with our current
simple eigeninstrument model space.

5. DISCUSSION AND CONCLUSIONS

We have presented a novel data-driven approach to the challenging
problem of polyphonic music transcription of multiple simultane-
ous instruments. The algorithm was tested on two synthetic poly-
phonic mixtures: an excerpt of Pachelbel’s Canon and a mixture
of two closely overlapping melodies, with average accuracy rates
of 68% and 72%, respectively. Unlike most prior work in poly-
phonic transcription, these accuracies include the requirement that
notes are correctly assigned to their respective instruments.

Although we believe that our results support the utility of the
proposed approach, there are several areas in which improvements
could be made. First, we intend to broaden our experiments to in-
clude more than two instruments as well as testing our algorithm
on actual recorded audio. Although we have tried to avoid mak-
ing our experimental setup too simplistic though the use of differ-
ent synthesizers for training and test data and through the removal
from the training set the instruments used in the test data, there
is clearly no substitute for real recordings. Second, little atten-
tion was paid to initialization in our experiments, although NMF,
and by extension our algorithm, are suceptible to local minima.
There are numerous ways to combat this issue, including multiple
restarts, annealing techniques, and instrument classifier methods.
A third area for extension and improvement is the static-spectrum
assumption that our model makes. Most instruments exhibit dy-
namic spectra over the course of a single note and we may be able
to substantially improve performance by including this informa-
tion in our model. Techniques such as convolutive NMF [8] which
provide a means for incorporating temporal information into NMF
may be useful in this context. We intend to explore these possibil-
ities in the future.
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Figure 5: SsNMF transcription of the overlapping melody mixture.
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