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Abstract—This paper presents a general probabilistic model for
transcribing single-channel music recordings containing multiple
polyphonic instrument sources. The system requires no prior
knowledge of the instruments present in the mixture (other
than the number), although it can benefit from information
about instrument type if available. In contrast to many existing
polyphonic transcription systems, our approach explicitly models
the individual instruments and is thereby able to assign detected
notes to their respective sources. We use training instruments to
learn a set of linear manifolds in model parameter space which
are then used during transcription to constrain the properties
of models fit to the target mixture. This leads to a hierarchical
mixture-of-subspaces design which makes it possible to supply the
system with prior knowledge at different levels of abstraction.

The proposed technique is evaluated on both recorded and
synthesized mixtures containing two, three, four, and five instru-
ments each. We compare our approach in terms of transcription
with (i.e. detected pitches must be associated with the correct
instrument) and without source-assignment to another multi-
instrument transcription system as well as a baseline NMF
algorithm. For two-instrument mixtures evaluated with source-
assignment, we obtain average frame-level F-measures of up to
0.52 in the completely blind transcription setting (i.e. no prior
knowledge of the instruments in the mixture) and up to 0.67
if we assume knowledge of the basic instrument types. For
transcription without source assignment, these numbers rise to
0.76 and 0.83, respectively.

Index Terms—Music, polyphonic transcription, NMF, sub-
space, eigeninstruments

I. INTRODUCTION

MUSIC transcription is one of the oldest and most well-
studied problems in the field of music information

retrieval (MIR). To some extent, the term “transcription” is
not well-defined, as different researchers have focused on
extracting different sets of musical information. Due to the
difficulty in producing all the information required for a com-
plete musical score, most systems have focused only on those
properties necessary to generate a pianoroll representation that
includes pitch, note onset time, and note offset time. This is
the definition of transcription that we will use in this paper,
although we will consider the additional property of instrument
source.

In many respects music transcription resembles speech
recognition: in both cases we are tasked with the problem
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of decoding an acoustic signal into its underlying symbolic
form. However, despite this apparent similarity, music poses
a unique set of challenges which make the transcription
problem particularly difficult. For example, even in a multi-
talker speech recognition setting, we can generally assume that
when several talkers are simultaneously active, there is little
overlap between them both in time and frequency. However,
for a piece of music with multiple instruments present, the
sources (instruments) are often highly correlated in time (due
to the underlying rhythm and meter) as well as frequency
(because notes are often harmonically related). Thus, many
useful assumptions made in speech recognition regarding
the spectro-temporal sparsity of sources may not hold for
music transcription. Instead, techniques which address source
superposition by explicitly modeling the mixing process are
more appropriate.

A. NMF-based Transcription

Non-negative matrix factorization (NMF) [1], [2] is a gen-
eral technique for decomposing a matrix V containing only
non-negative entries into a product of matrices W and H, each
of which also contains only non-negative entries. In its most
basic form, NMF is a fully unsupervised algorithm, requiring
only an input matrix V and a target rank K for the output
matrices W and H. An iterative update scheme based on the
generalized EM [3] algorithm is typically used to solve for the
decomposition:

V ≈WH (1)

NMF has become popular over the last decade in part
because of its wide applicability, fast multiplicative update
equations [4], and ease of extension. Much of the recent work
on NMF and related techniques comes from the recognition
that for many problems, the basic decomposition is under-
constrained. Many different extensions have been proposed to
alleviate this problem, including the addition of penalty terms
for sparsity [5], [6], [7] and temporal continuity [8], [9], [10].

In addition to other problems such as source separation [11],
[12], NMF and extensions thereof have been shown to be
effective for single-channel music transcription [13], [14],
[15], [16]. In this situation the algorithm is typically applied to
the magnitude spectrogram of the target mixture, V, and the
resulting factorization is interpreted such that W corresponds
to a set of spectral basis vectors and H to a set of activations
of those basis vectors over time. If V contains only a single
instrument source, we can view W as a set of spectral tem-
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Fig. 1. Illustration of the basic NMF transcription framework. In this example
two instrument sources each with five pitches are considered. This results in
sub-models W1 and W2 as well as transcriptions H1 and H2.

plates, one per pitch.1 Thus, H gives the degree to which each
pitch is active in each time frame and represents most of the
information needed for transcription. This basic formulation
can be extended to handle a mixture of S instrument sources

V ≈
S∑

s=1

WsHs (2)

by simply interpreting the basis and weight matrices as having
block forms. This concept is illustrated in Figure 1 for a
mixture of synthetic piano and flute notes.

The NMF decomposition can be used for transcription in
both supervised (W is known a priori and therefore held fixed)
and unsupervised (W and H are solved for simultaneously)
settings. However, difficulties arise with both formulations. For
unsupervised transcription it is unclear how to determine the
number of basis vectors required, although this is an area of
active research [17]. If we use too few, a single basis vector
may be forced to represent multiple notes, while if we use too
many some basis vectors may have unclear interpretations.
Even if we manage to choose the correct number of bases, we
still face the problem of determining the mapping between
bases and pitches as the basis ordering is typically arbitrary.
Furthermore, while this framework is capable of separating
notes from distinct instruments as individual columns of W
(and corresponding rows of H), there is no simple solution to
the task of organizing these individual columns into coherent
blocks corresponding to particular instruments. Recent work
on the problem of assigning bases to instrument sources
has included the use of classifiers, such as support vector
machines [18], and clustering algorithms [19].

In the supervised context, we already know W and therefore
the number of basis vectors along with their ordering, making
it trivial to partition H by source. The main problem with
this approach is that it assumes that we already have good
models for the instrument sources in the target mixture.
However, in most realistic use cases we do not have access to
this information, making some kind of additional knowledge
necessary in order for the system to achieve good performance.

One approach, which has been explored in several recent
papers, is to impose constraints on the solution of W or
its equivalent, converting the problem to a semi-supervised
form. Virtanen and Klapuri use a source-filter model which

1In an unsupervised context, the algorithm cannot be expected to disam-
biguate individual pitches if they never occur in isolation; if two notes always
occur together then the algorithm will assign a single basis vector to their
combination.

constrains the basis vectors to be formed as the product of
excitation and filter coefficients [20]. This factorization can
result in a decomposition requiring fewer parameters than an
equivalent NMF decomposition and has been used for tasks
such as instrument recognition [21]. Vincent et al. impose
harmonicity constraints on the basis vectors by modeling them
as combinations of deterministic narrow-band spectra [14],
[22]. More recently, this model was extended by Bertin et
al. to include further constraints that encourage temporal
smoothness in the basis activations [23].

B. Multi-instrument Transcription

Although there has been substantial work on the mono-
phonic [24] and polyphonic [25], [26], [27], [28], [23] tran-
scription problems, many of these efforts have ignored the
important task of assigning notes to their instrument sources.
Exceptions include work by: Kashino et al. on hypothesis-
driven musical scene analysis [29]; Vincent and Rodet on
multi-instrument separation and transcription using indepen-
dent subspace analysis and factorial hidden Markov mod-
els [30]; Leveau et al. on sparse dictionary-based methods
that, although tested primarily on instrument recognition tasks,
could be adapted to the transcription problem [31]; Kameoka
et al. on harmonic temporal clustering (HTC) [32] which
defines a probabilistic model that accounts for timbre and can
label notes by instrument; a system for detecting and track-
ing multiple note streams using higher-order hidden Markov
models proposed by Chang et al. [33]; and the multi-pitch
tracking work of Duan et al. [34], [35]. Duan et al. take a
multi-stage approach which consists of multi-pitch estimation
followed by segmentation and grouping into instrument tracks.
The track formation stage, which they motivate using psycho-
acoustic principles of perceptual grouping, is accomplished
using a constrained clustering algorithm. It is important to
note that this system makes the simplifying assumption that
each instrument source is monophonic. Thus, it cannot be used
for recordings containing chords and multi-stops.

In previous work, we introduced a semi-supervised NMF
variant called subspace NMF [15]. This algorithm consists of
two parts: a training stage and a constrained decomposition
stage. In the first stage, the algorithm uses NMF or another
non-negative subspace learning technique to form a model
parameter subspace, Θ, from training examples. In the second
stage of the algorithm, we solve for the basis and activation
matrices, W and H, in a fashion similar to regular NMF,
except we impose the constraint that W must lie in the
subspace defined by Θ. This approach is useful for multi-
instrument transcription as the instrument model subspace not
only solves the ordering problem of the basis vectors in the
instrument models, but also drastically reduces the number
of free parameters. Despite not meeting the strict definition
of eigenvectors, we refer to these elements of the model as
“eigeninstruments” to reinforce the notion that they represent
a basis for the model parameter space.

Recently, it has been shown [36] that NMF is very closely
related to probabilistic latent semantic analysis (PLSA) [37]
as well as a generalization to higher-order data distributions
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called probabilistic latent component analysis (PLCA) [7].
Although in many respects these classes of algorithms are
equivalent (at least up to a scaling factor), the probabilistic
varieties are often easier to interpret and extend. In more recent
work, we introduced a probabilistic extension of the subspace
NMF transcription system called probabilistic eigeninstrument
transcription (PET) [16]. In this paper, we present a hierar-
chical extension of the PET system which allows us to more
accurately represent non-linearities in the instrument model
space and to include prior knowledge at different levels of
abstraction.

II. METHOD

Our system is based on the assumption that a suitably-
normalized magnitude spectrogram, V, can be modeled as
a joint distribution over time and frequency, P (f, t). This
quantity can be factored into a frame probability P (t), which
can be computed directly from the observed data, and a
conditional distribution over frequency bins P (f |t); spectro-
gram frames are treated as repeated draws from an underlying
random process characterized by P (f |t). We can model this
distribution with a mixture of latent factors as follows:

P (f, t) = P (t)P (f |t)
= P (t)

∑
z

P (f |z)P (z|t) (3)

Note that when there is only a single latent variable z this
is the same as the PLSA model and is effectively identical
to NMF. The latent variable framework, however, has the
advantage of a clear probabilistic interpretation which makes
it easier to introduce additional parameters and constraints.
It is worth emphasizing that the distributions in (3) are all
multinomials. This can be somewhat confusing as it may not
be immediately apparent that they represent the probabilities
of time and frequency bins rather than specific values; it is as if
the spectrogram were formed by distributing a pile of energy
quanta according to the combined multinomial distribution,
then seeing at the end how much energy accumulates in each
time-frequency bin. This subtle yet important distinction is at
the heart of how and why these factorization-based algorithms
work.

Suppose now that we wish to model a mixture of S
instrument sources, where each source has P possible pitches,
and each pitch is represented by a set of Z components. We
can extend the model described by (3) to accommodate these
parameters as follows:

P (f |t) =
∑
s,p,z

P (f |p, z, s)P (z|s, p, t)P (s|p, t)P (p|t) (4)

A. Instrument Models

1) Eigeninstruments: P (f |p, z, s) represents the instrument
models that we are trying to fit to the data. However, as
discussed in Section I, we usually don’t have access to the
exact models that produced the mixture and a blind parameter
search is highly under-constrained. The solution proposed
in our earlier work [15], [16], which we extend here, is
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Fig. 2. Formation of the jth instrument model subspace using the
eigeninstrument technique. First a set of training models (shown with Z = 1)
are reshaped to form model parameter matrix Θj . Next, NMF or a similar
subspace algorithm is used to decompose Θj into Ωj and Cj . Finally,
Ωj is reshaped to yield the probabilistic eigeninstruments for subspace j,
Pj(f |p, z, k).

to model the instruments as mixtures of basis models or
“eigeninstruments”. This approach is similar in spirit to the
eigenvoice technique used in speech recognition [38], [39].

Suppose that we have a set of instrument models M for
use in training. Each of these models Mi ∈M contains the
Z separate F -dimensional spectral vectors for each of the P
possible pitches as rendered by instrument i at a fixed velocity
(loudness). ThereforeMi has FPZ parameters in total which
we concatenate into a super-vector, mi. These super-vectors
are then stacked together into a matrix, Θ, and NMF with
some rank K is used to find Θ ≈ ΩC.2 The set of coefficient
vectors, C, is typically discarded at this point, although it
can be used to initialize the full transcription system as well
(see Section III-E). The K basis vectors in Ω represent
the eigeninstruments. Each of these vectors is reshaped to
the F -by-P -by-Z model size to form the eigeninstrument
distribution, P (f |p, z, k). Mixtures of this distribution can
now be used to model new instruments as follows:

P (f |p, z, s) =
∑

k

P (f |p, z, k)P (k|s) (5)

where P (k|s) represents a source-specific distribution over
eigeninstruments. This model reduces the size of the parameter
space for each source instrument in the mixture from FPZ,
which is typically tens of thousands, to K which is typically
between 10 and 100. Of course the quality of this parametriza-
tion depends on how well the eigeninstrument basis spans
the true instrument parameter space, but assuming a sufficient

2Some care has to be taken to ensure that the bases in Ω are properly
normalized so that each section of F entries sums to 1, but so long as this
requirement is met, any decomposition that yields non-negative basis vectors
can be used.
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Fig. 3. Caricature of the mixture-of-subspaces model. The global instrument
parameter space has several subspaces embedded in it. Each subspace cor-
responds to a different instrument type or family and has its own rank and
set of basis vectors. Note that in practice the subspaces are conical regions
extending from the global origin, but are shown here with offsets for visual
clarity.

variety of training instruments are used, we can expect good
coverage. An overview of the eigeninstrument construction
process is shown in Figure 2.

2) Hierarchical Eigeninstruments: Although we can expect
that by training on a broad range of instrument types, the
eigeninstrument space will be sufficiently expressive to repre-
sent new instruments, it is conceivable that the model may
not be restrictive enough. Implicit in the model described
in (5) is the assumption that the subspace defined by the
training instruments can be accurately represented as a linear
manifold. However, given the heterogeneity of the instruments
involved, it is possible that they may actually lie on a nonlinear
manifold, making (5) an insufficient model. The concern here
is that the eigeninstrument bases could end up modeling
regions of parameter space that are different enough from the
true instrument subspace that they allow for models with poor
discriminative properties.

One way to better model a non-linear subspace is to use a
mixture of linear subspaces. This locally linear approximation
is analogous to the mixture of principal component analysers
model described by Hinton et al. [40], although we continue to
enforce the non-negativity requirement in our model. Figure 3
illustrates the idea of locally linear subspaces embedded in a
global space. The figure shows the positive orthant of a space
corresponding to our global parameter space. In this example,
we have four subspaces embedded in this parameter space,
each defined by a different family of instruments. The dashed
lines represent basis vectors that might have been found by the
regular (non-hierarchical) eigeninstrument model. We can see
that these bases define a conical region of space that includes
far more than just the training points.

The extension from the PET instrument model to the
mixture-of-instrument subspaces model is straightforward and
we refer to the result as hierarchical eigeninstruments. Similar
to before we use NMF to solve for the eigeninstruments,
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Fig. 4. Illustration of the hierarchical probabilistic eigeninstrument tran-
scription (HPET) system. First, a set of training instruments is used to
derive the set of eigeninstrument subspaces. A weighted combination of
these subspaces are then used by the HPET model to learn the probability
distribution P (p, t|s), which is post-processed into source-specific binary
transcriptions, T1, T2, . . . , TS .

except now we have J training subsets with Ij instruments
each. For each model Mj

i ∈ Mj , we reshape the parameters
into a super-vector and then form the parameter matrix,
Θj . Next, NMF with rank Kj is performed on the matrix,
yielding Θj ≈ ΩjCj . Finally, each Θj is reshaped into
an eigeninstrument distribution, Pj(f |p, z, k). To form new
instruments, we now need to take a weighted combination of
eigeninstruments for each subspace j as well as a weighted
combination of the subspaces themselves:

P (f |p, z, s) =
∑

j

P (j|s)
∑

k

Pj(k|s)Pj(f |p, z, k) (6)

In addition to an increase in modeling power as compared to
the basic eigeninstrument model, the hierarchical model has
the advantage of being able to incorporate prior knowledge
in a targeted fashion by initializing or fixing the coefficients
of a specific subspace, Pj(k|s), or even the global subspace
mixture coefficients, P (j|s). This can be useful if, for exam-
ple, each subspace corresponds to a particular instrument type
(violin, piano, etc.) and we know the instrument types present
in the target mixture. A more coarse-grained modeling choice
might associate instrument families (brass, woodwind, etc.)
with individual subspaces, in which case we would only have
to know the family of each source in the mixture. In either
case, the hierarchical eigeninstrument model affords us the
ability to use the system with a priori information which is
more likely to be available in real-world use cases than specific
instrument models.

B. Transcription Model

We are now ready to present the full transcription model
proposed in this paper, which we refer to as hierarchical
probabilistic eigeninstrument transcription (HPET) and is
illustrated in Figure 4. Combining the probabilistic model in
(4) and the eigeninstrument model in (6), we arrive at the
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Fig. 5. Pianoroll of the complete 5-instrument mixture used in our
experiments.

following:

P (f |t) =∑
s,p,z,k,j

P (j|s)Pj(f |p, z, k)Pj(k|s)P (z|s, p, t)P (s|p, t)P (p|t)

(7)

Once we have solved for the model parameters, we calculate
the joint distribution over pitch and time conditional on source:

P (p, t|s) =
P (s|p, t)P (p|t)P (t)∑
p,t P (s|p, t)P (p|t)P (t)

(8)

This distribution effectively represents the transcription of
source s, but still needs to be post-processed to a binary pi-
anoroll representation so that it can be compared with ground-
truth data. Currently, this is done using a simple threshold γ
(see Section III-D). We refer to the final pianoroll transcription
of source s as Ts.

We solve for the parameters in (7) using the expectation-
maximization (EM) algorithm [3]. This involves iterating
between two update steps until convergence (we find that
50 − 100 iterations is almost always sufficient). In the first
(expectation) step, we calculate the posterior distribution over
the hidden variables s, p, z, and k, for each time-frequency
point given the current estimates of the model parameters:

P (s, p, z, k, j|f, t) =
P (j|s)Pj(f |p, z, k)Pj(k|s)P (z|s, p, t)P (s|p, t)P (p|t)

P (f |t)
(9)

In the second (maximization) step, we use this posterior to
increase the expected log-likelihood of the model given the
data:

L ∝
∑
f,t

Vf,t log (P (t)P (f |t)) (10)

where Vf,t are values from our original magnitude spectro-
gram, V. This results in the following update equations:

P (j|s) =

∑
f,t,p,z,k P (s, p, z, k, j|f, t)Vf,t∑

f,t,p,z,k,j P (s, p, z, k, j|f, t)Vf,t
(11)

Pj(k|s) =

∑
f,t,p,z P (s, p, z, k, j|f, t)Vf,t∑

f,t,p,z,k P (s, p, z, k, j|f, t)Vf,t
(12)

P (z|s, p, t) =

∑
f,k,j P (s, p, z, k, j|f, t)Vf,t∑

f,k,j,z P (s, p, z, k, j|f, t)Vf,t
(13)

P (s|p, t) =

∑
f,z,k,j P (s, p, z, k, j|f, t)Vf,t∑

f,z,k,j,s P (s, p, z, k, j|f, t)Vf,t
(14)

P (p|t) =

∑
f,s,z,k,j P (s, p, z, k, j|f, t)Vf,t∑

f,s,z,k,j,p P (s, p, z, k, j|f, t)Vf,t
(15)

III. EVALUATION

A. Data
The data set used in our experiments was formed from part

of the development woodwind data set used in the MIREX
Multiple Fundamental Frequency Estimation and Tracking
evaluation task.3 The first 22 seconds from the bassoon,
clarinet, oboe, flute, and horn tracks were manually tran-
scribed.4 These instrument tracks were then combined (by
simply adding the individual tracks) to produce all possible
2-instrument, 3-instrument, 4-instrument, and 5-instrument
mixtures and then down-sampled to 8kHz.

In addition to the data set of recorded performances, we
also produced a set of synthesized versions of the mixtures
described above. To produce the synthetic tracks, the MIDI
versions were rendered at an 8kHz sampling rate using timidity
5 and the SGM V2.016 soundfont. Reverberation and other
effects were not used.

For both the real and synthesized mixtures, the audio was
transformed into a magnitude spectrogram. This was done by
taking a 1024-point short-time Fourier transform (STFT) with
96ms (Hamming) window and 24ms hop and retaining only
the magnitude information. The specific properties of the data
set are given in Table I. Note that these numbers summarize
the recorded and synthesized data sets separately and therefore
are effectively doubled when both sets are considered.

TABLE I
SUMMARY OF THE PROPERTIES OF OUR DATA SET.

# Mixtures # Notes # Frames

2-instrument 10 4044 22470
3-instrument 10 6066 22470
4-instrument 5 4044 11235
5-instrument 1 1011 2247

It is also important to emphasize that this data is taken from
the MIREX development set and that the primary test data
is not publicly available. In addition, most authors of other
transcription systems do not report results on the development
data, making comparisons difficult. We do, however, include
a comparison to the multi-instrument transcription system
proposed by Duan et al. [34] in our experiments.

3http://www.music-ir.org/mirex/2009/index.php/Multiple Fundamental
Frequency Estimation & Tracking

4These transcriptions are available from the corresponding author.
5http://timidity.sourceforge.net
6http://www.geocities.jp/shansoundfont/
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TABLE II
INSTRUMENTS USED TO BUILD THE (HIERARCHICAL)
EIGENINSTRUMENTS MODEL IN OUR EXPERIMENTS.

Group (J) Rank (Kj ) Instruments

Keyboard 10 (5) Pianos
Guitar 12 (6) Guitars
Bass 8 (4) Basses
Viol 8 Violin, Viola, Cello, Contrabass
Brass 18 Trumpet, Trombone, Tuba,

(2) Horns, (4) Saxophones
Reed 6 Oboe, Bassoon, Clarinet
Pipe 6 Piccolo, Flute, Recorder

B. Instrument Models

We used a set of thirty-four instruments of varying types to
derive our instrument model. The instruments were divided up
into seven roughly equal-sized groups (i.e. J = 7) of related
instruments which formed the upper layer in the hierarchical
eigeninstruments model. The group names and breakdown of
specific instruments are given in Table II.

The instrument models were generated with timidity, but
in order to keep the tests with synthesized audio as fair
as possible, two different soundfonts (Papelmedia Final SF2
XXL 7 and Fluid R3 8) were used. We generated separate
instances of each instrument type using each of the soundfonts
at three different velocities (40, 80, and 100), which yielded
204 instrument models in total.

Each instrument model Mj
i consisted of P = 58 pitches

(C2-A6#) which were built as follows: for each pitch p, a
note of duration 1s was synthesized at an 8kHz sampling rate.
An STFT using a 1024-point (Hamming) window was taken
and the magnitude spectra were kept. These spectra were then
normalized so that the frequency components summed to 1
(i.e. each spectrogram column sums to 1). Next, NMF with
rank Z (the desired number of components per pitch) was run
on the normalized magnitude spectrogram and the resulting
basis vectors were used as the components for pitch p of model
Mj

i . Note that because unsupervised NMF yields arbitrarily
ordered basis vectors, this method does not guarantee that the
Z components of each pitch will correspond temporally across
models. We have found that initializing the activation matrix
used in each of these per-pitch NMFs to a consistent form
(such as one with a heavy main diagonal structure) helps to
remedy this problem.

Another potential issue has to do with the differences in
the natural playing ranges of the instruments. For example,
a violin generally cannot play below G3, although the model
described thus far would include notes below this. Therefore,
we masked out (i.e. set to 0) all FZ parameters of each note
outside the playing range of each instrument used in training.
There are other possibilities for handling these ill-defined pitch
values as well. We could, for example, simply leave them
in place or we could set each vector of F frequency bins
to an uninformative uniform distribution. A fourth possibility
is to treat the entries as missing data and modify our EM

7http://www.papelmedia.de/english/index.htm
8http://soundfonts.homemusician.net/collections soundfonts/fluid release

3.html

algorithm to impute their maximum likelihood values at each
iteration, similar to what others have done for NMF [41].
We experimented with all of these techniques, but found that
simply setting the parameters of the out-of-range pitch values
to 0 worked best.

Next, as described in Section II-A, the instrument models
were stacked into super-vector form and NMF was used to
find the instrument bases which were then reshaped into the
eigeninstruments. For the HPET system, we used different
ranks (values of Kj) for each group of instruments because
of the different sizes of the groups. The specific values used
for the ranks are given in Table II, although it is worth
noting that preliminary experiments did not show a substantial
difference in performance for larger values of Kj . The NMF
stage resulted in a set of instrument bases, Ωj for each
group j which were then reshaped into the eigeninstrument
distribution for group j, Pj(f |p, z, k). For the non-hierarchical
PET system, we simply combined all instruments into a single
group and used a rank equal to the sum of the ranks above
(K = 68). Similar to before, the resulting instrument bases
were then converted to an eigeninstrument distribution.

Note that in preliminary experiments, we did not find a
significant advantage to values of Z > 1 and so the full set
of experiments presented below was carried out with only a
single component per pitch.

C. Algorithms

We evaluated several variations of our algorithm so as to
explore the hierarchical eigeninstruments model as well as
the effects of parameter initialization. In all cases where
parameters were initialized randomly, their values were drawn
from a uniform distribution.

1) HPET: totally random parameter initialization
2) HPETgroup: P (j|s) initialized to the correct value
3) HPETmodel: P (j|s) and Pj(k|s) initialized to an instru-

ment of the same type from the training set
The first variant corresponds to totally blind transcription

where the system is given no prior knowledge about the target
mixture other than the number of sources. The second variant
corresponds to providing the system with the group member-
ship of the sources in the mixture (i.e. setting P (j|s) = 1
when s belongs to instrument group j and 0 otherwise). The
third variant is akin to furnishing the system with knowledge
of the correct groups as well as an approximate setting for
the eigeninstrument distribution in that group (i.e. setting
Pj(k|s) = 1 when s is of instrument type k in group j
and setting Pj(k|s) = 0 otherwise). It is important to note
that in this third case we determine these eigeninstrument
settings using an instrument of the correct type, but whose
parameters come from the training set,M. This case is meant
to correspond to knowledge of the specific instrument type, not
the exact instrument model used to produce the test mixture.

Both of the informed variants of the HPET system are only
initialized with the settings that they receive. Intuitively, we
are trying to start the models in the correct “neighborhood”
of parameter space in the hope that they can further optimize
these settings. We have experimented with other variations
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where the parameters are fixed to these values, but the results
are not significantly different. Figure 6 shows an example
of the raw output distribution, P (p, t, |s), as generated by
HPETmodel. Ground truth values for the synthesized bassoon-
clarinet mixture are shown as well. Although the hierarchical
extension to the PET system has the advantage of providing
a means by which to include prior knowledge, we were also
interested in testing whether the increased subspace modeling
power would have a beneficial effect. To this end, we include
the original (non-hierarchical) PET algorithm in our experi-
ments as well.

As mentioned earlier, the paucity of transcription systems
capable of instrument-specific note assignment makes external
comparisons difficult. We are grateful to Duan et al. for
providing us with the source code for their multi-pitch tracking
system [34] which we refer to as MPT. We used the parameter
settings recommended by the authors. As with the HPET
systems, we provide the MPT algorithm with the number of
instrument sources in each mixture and with the minimum
and maximum pitch values to consider. As part of the multi-
pitch estimation front-end in MPT, the algorithm needs to
know the maximum polyphony to consider in each frame. It
is difficult to set this parameter fairly since our approach has
no such parameter (technically it is P , the cardinality of the
entire pitch range). Following the setting used for the MIREX
evaluation, we set this parameter to 6 which is the upper-bound
of the maximum polyphony that occurs in the data set. The
output of the MPT algorithm consists of the F0 values for each
instrument source in each frame. We rounded these values to
the nearest semitone.

Finally, as a baseline comparison, we include a generic
NMF-based transcription (with generalized KL divergence as
a cost function) system. This extremely simple system had all
of its instrument models (sub-matrices of W) initialized with
a generic instrument model which we defined as the average
of the instrument models in the training set.

D. Metrics

We evaluated our method using a number of metrics on both
the frame and note levels. In the interest of clarity, we distilled
these numbers down to F-measure [42] (the harmonic mean
of precision and recall) on both the frame and note levels as
well as the mean overlap ratio (MOR). When computing the
note-level metrics, we consider a note onset to be correct if it
falls within +/- 48ms of the ground truth onset. This is only
slightly more restrictive than the standard tolerance (+/- 50ms)
used by the MIREX community. Because of the difficulty in
generating an accurate ground-truth for note offsets (many
notes decay and therefore have ambiguous end times), we
opted to evaluate this aspect of system performance via the
MOR which is defined as follows. For each correctly detected
note onset, we compute the overlap ratio as defined in [43]:

overlap ratio =
min{toff

a , t
off
t } −max{ton

a , t
on
t }

max{toff
a , t

off
t } −min{ton

a , t
on
t }

(16)

where, for each note under consideration, ton
a is the onset

time according to the algorithm, ton
t is the ground-truth onset

Time
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(a) Clarinet (HPET)

Time

P
it
c
h
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Fig. 6. Example HPET (with model initialization) output distribution
P (p, t|s) and ground-truth data for the synthesized bassoon-clarinet mixture.

time, and toff
a , t

off
t are the offset times from algorithm and

ground-truth, respectively. The overlap ratio is computed for
all correctly detected notes and the mean is taken to give the
MOR.

Note that, because the order of the sources in P (p, t|s)
is arbitrary, we compute sets of metrics for all possible
permutations and report the set with the best frame-level F-
measure.

Recall that the output of our system is a joint distribution
over pitch and time (conditioned on source) and therefore must
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Fig. 7. Comparison of the sensitivity of the HPET algorithm at a range of
threshold values for γ. Results are averaged over mixtures consisting of the
same number of instruments.

be discretized before the evaluation metrics can be computed.
This is done by comparing each entry of P (p, t|s) to a
threshold parameter, γ, resulting in a binary pianoroll Ts:

Ts =
{

1 if P (p, t|s) > γ
0 otherwise (17)

The threshold γ used to convert P (p, t|s) to a binary pi-
anoroll was determined empirically for each algorithm variant
and each mixture. This was done by computing the threshold
that maximized the area under the receiver operating char-
acteristic (ROC) [44] curve for that mixture, taking source
assignment into account (i.e. pitch, time, and source must
match in order to be counted as a true positive). Although
this method of parameter determination is somewhat post-hoc,
the algorithm is fairly robust to the choice of γ as shown in
Figure 7.

As with many latent variable models, our system can be
sensitive to initial parameter values. In order to ameliorate the
effects of random initialization, we run each algorithm three

times on each test mixture. Evaluation metrics are computed
for each algorithm, mixture, and repetition and then averaged
over mixtures and repetitions to get the final scores reported
in Tables III-VI.

E. Experiments

We conducted two primary experiments in this work. The
first, and most important, was the comparison of the six
algorithms (three HPET variants, PET, MPT, and NMF) for
multi-instrument transcription. In this experimental setting we
are interested in evaluating not only an algorithm’s ability
to detect notes correctly, but also to assign these notes to
their source instruments. Therefore a pitch is only considered
correct if it occurs at the correct time and is assigned to the
proper instrument source. We refer to this as the transcription
with source assignment task.

It is, however, also interesting to also consider the efficacy
of each algorithm for the simpler source-agnostic transcription
task as this problem has been the focus of most transcription
research in recent years. We refer to this task as transcription
without source assignment. For concision, only the average
frame-level F-measures for this case are included.

The results of our experiments are summarized in Tables III-
VI. As we would expect, the baseline NMF system performs
the worst in all test cases – not surprising given the limited
information and lack of constraints. Also unsurprising is the
general downward trend in performance in all categories as
the number of instruments in the mixture increases.

In terms of the frame-level results for the case with source
assignment (Table III), we can see that the HPET algorithm
benefited substantially from good initializations. With the
exception of the outlier in the case of the real 5-instrument
mixture, HPET with full model initialization performed sub-
stantially better than other systems. HPET with initialization
by group performs slightly worse, although in some cases the
results are very close. Interestingly, we also find that HPET
does not always outperform PET, although again, the numbers
are often very close. This suggests that the true instrument
space may be relatively well approximated by a linear sub-
space. The comparison between HPET, PET, and MPT is
also interesting, as these systems all make use of roughly
the same amount of prior knowledge. For mixtures containing
fewer source instruments, the eigeninstrument-based systems
slightly out-perform MPT, although performance is essentially
the same for 4-instrument mixtures and MPT does better on
synthesized 5-instrument mixtures.

Turning to the note-level onset-detection metric (Table V),
we find a similar trend as at the frame-level. The initialized
models typically outperform all other systems by a reasonable
margin, with full model initialization leading to slightly better
performance than group-only initialization. The numbers for
all systems were generally down for this task as compared to
the frame-level analysis. MPT in particular did not perform
nearly as well as it had on frame-level detection. However,
the MPT numbers appear to be roughly consistent with the
MIREX 2010 note-level results which suggests that MPT had
difficulty with the characteristics of the woodwind data set.
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TABLE III
AVERAGE FRAME-LEVEL F-MEASURES (WITH SOURCE ASSIGNMENT).

Synthesized Real

2-inst 3-inst 4-inst 5-inst 2-inst 3-inst 4-inst 5-inst

HPET 0.50 0.44 0.36 0.27 0.52 0.43 0.37 0.40
HPETgroup 0.65 0.51 0.42 0.38 0.62 0.48 0.42 0.35
HPETmodel 0.67 0.54 0.47 0.42 0.63 0.50 0.43 0.33
PET [16] 0.53 0.40 0.33 0.28 0.53 0.42 0.36 0.35
MPT [34] 0.49 0.40 0.36 0.35 0.49 0.40 0.36 0.35
NMF 0.34 0.28 0.23 0.19 0.28 0.24 0.20 0.18

TABLE IV
AVERAGE FRAME-LEVEL F-MEASURES (WITHOUT SOURCE ASSIGNMENT).

Synthesized Real

2-inst 3-inst 4-inst 5-inst 2-inst 3-inst 4-inst 5-inst

HPET 0.76 0.73 0.71 0.69 0.62 0.67 0.65 0.65
HPETgroup 0.83 0.79 0.75 0.73 0.77 0.72 0.70 0.67
HPETmodel 0.83 0.80 0.77 0.73 0.78 0.73 0.70 0.67
PET [16] 0.76 0.71 0.68 0.65 0.70 0.67 0.67 0.66
MPT [34] 0.64 0.64 0.62 0.60 0.64 0.63 0.62 0.60
NMF 0.59 0.62 0.62 0.60 0.48 0.52 0.52 0.53

MPT did, however, do best in terms of MOR (Table VI) in
almost all categories, although results for the fully initialized
HPET variant were slightly better for the real 5-instrument
case.

Next, we consider transcription without source assignment
(Table IV) which corresponds to the polyphonic transcription
task that has been most thoroughly explored in the literature.
Again, the initialized models perform substantially better than
the others. Here we see the greatest disparity between synthe-
sized and recorded mixtures (at least for the eigeninstrument-
based systems) in all of the experiments. An examination of
the test data suggests that this may be largely due to a tuning
mismatch between the recorded audio and synthesized training
data.

Finally, we discuss the differences in performance between
the HPET variants based on the instruments in the mixture.
Figure 8 shows this breakdown. For each algorithm and
instrument, the figure shows the F-measure averaged over only
the mixtures containing that instrument. We can see that, in
almost all cases, the flute appears to have been the easiest
instrument to transcribe, and the oboe the most difficult. This
trend seems to have held for both synthetic as well as real
mixtures, although the blind HPET variant had more trouble
with real mixtures containing flute. Referring to Figure 5, we
see that the flute part occupies a largely isolated pitch range.
Given the limited number of harmonics present in notes at
this range, it seems likely that pitch was the primary source
of discriminative information for the flute part. The oboe part,
however, occurs not only roughly in the middle of the modeled
pitch range, but also almost entirely mirrors the clarinet part.
It is therefore not surprising that mixtures containing oboe are
difficult. The same line of reasoning, however, would lead us to
expect that the mixtures containing clarinet would be equally

TABLE V
AVERAGE NOTE-LEVEL F-MEASURES (WITH SOURCE ASSIGNMENT).

Synthesized Real

2-inst 3-inst 4-inst 5-inst 2-inst 3-inst 4-inst 5-inst

HPET 0.47 0.37 0.28 0.21 0.45 0.37 0.31 0.36
HPETgroup 0.61 0.46 0.35 0.31 0.60 0.44 0.37 0.31
HPETmodel 0.49 0.54 0.39 0.37 0.62 0.47 0.39 0.22
PET [16] 0.45 0.32 0.26 0.22 0.45 0.36 0.30 0.26
MPT [34] 0.21 0.14 0.10 0.10 0.19 0.14 0.10 0.10
NMF 0.27 0.22 0.17 0.11 0.23 0.19 0.15 0.11

TABLE VI
AVERAGE MEAN OVERLAP RATIOS (WITH SOURCE ASSIGNMENT).

Synthesized Real

2-inst 3-inst 4-inst 5-inst 2-inst 3-inst 4-inst 5-inst

HPET 0.49 0.47 0.45 0.43 0.49 0.47 0.43 0.43
HPETgroup 0.54 0.46 0.46 0.42 0.52 0.49 0.48 0.47
HPETmodel 0.54 0.51 0.49 0.47 0.52 0.48 0.48 0.53
PET [16] 0.51 0.46 0.43 0.37 0.47 0.45 0.42 0.40
MPT [34] 0.58 0.54 0.55 0.51 0.59 0.54 0.55 0.51
NMF 0.38 0.38 0.35 0.35 0.38 0.37 0.37 0.35

difficult given the similarities between the two instrument
parts. Interestingly, this does not appear to be the case as
performance for mixtures containing clarinet are reasonably
good overall. One possible explanation is that the clarinet
model is relatively dissimilar to others in eigeninstrument
space and therefore easy to pick out. This makes sense
considering that the harmonic structure of the clarinet’s timbre
contains almost exclusively odd harmonics (for the relevant
pitch range).

IV. CONCLUSIONS

We have presented a hierarchical probabilistic model for the
challenging problem of multi-instrument polyphonic transcrip-
tion. Our approach makes use of two sources of information
available from a set of training instruments. First, the spectral
characteristics of the training instruments are used to form
what we call “eigeninstruments”. These distributions over
frequency represent basis vectors that define instrument pa-
rameter subspaces specific to particular groups of instruments.
Second, the natural organization of instruments into families
or groups is exploited to partition the parameter space into
a set of separate subspaces. Together, these two distributions
constrain the solutions of new models which are fit directly to
the target mixture.

We have shown that this approach can perform well in the
blind transcription setting where no knowledge other than the
number of instruments is assumed. For many of the metrics
and mixture complexities considered, our approach performs
as well or better than other multi-instrument transcription ap-
proaches. We have also shown that by assuming fairly general
prior knowledge about the sources in the target mixture, we
can significantly increase the performance of our approach.

There are several areas in which the current system could be
improved and extended. First, the thresholding technique that
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Fig. 8. Per-instrument average frame-level F-measures (with source assign-
ment) by algorithm and number of sources for (a) synthesized data and (b)
real data.

we have used is extremely simple and results could probably
be improved substantially through the use of pitch dependent
thresholding or more sophisticated classification. Second, and
perhaps most importantly, although early experiments did
not show a benefit to using multiple components for each
pitch, it seems likely that the pitch models could be enriched
substantially. Many instruments have complex time-varying
structures within each note that would seem to be important
for recognition. We are currently exploring ways to incorporate
this type of information into our system.
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