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ABSTRACT

In music similarity and in the related task of genre clas-
sification, a distance measure between Gaussian mixture
models is frequently needed. We present a comparison of
the Kullback-Leibler distance, the earth movers distance
and the normalized L2 distance for this application. Al-
though the normalized L2 distance was slightly inferior
to the Kullback-Leibler distance with respect to classifi-
cation performance, it has the advantage of obeying the
triangle inequality, which allows for efficient searching.

1 INTRODUCTION

A common approach in computational music similarity
is to extract mel-frequency cepstral coefficients (MFCCs)
from a song, model them by a Gaussian mixture model
(GMM) and use a distance measure between the GMMs
as a measure of the musical distance between the songs
[2, 3, 5]. Through the years, a number of distance mea-
sures between GMMs have been suggested, such as the
Kullback-Leibler (KL) distance [2], optionally combined
with the earth movers distance (EMD) [3]. In this arti-
cle, we evaluate the performance of these two distance
measures between GMMs together with the normalized
L2 distance, which to our knowledge has not previously
been used for this application.

2 MEASURING MUSICAL DISTANCE

In the following, we shortly describe the Gaussian mixture
model and the three distance measures between GMMs
we have tested. Note that if a distance measure satis-
fies the triangle inequality, i.e., d(p1, p3) ≤ d(p1, p2) +
d(p2, p3) for all values of p1, p2 and p3, then a nearest
neighbor search can be speeded up by precomputing some
distances. Assume we are searching for the nearest neigh-
bor to p, and that we have just computed the distance to p1.
If we already know the distance between p1 and p2, then
the distance to p2 is bounded by d(p, p2) ≥ d(p1, p2) −
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d(p1, p). If the distance to the currently best candidate is
smaller than d(p1, p2)− d(p1, p), we can discard p2 with-
out computing d(p, p2).

2.1 Gaussian Mixture Models

Due to intractability, the MFCCs extracted from a song are
typically not stored but are instead modelled by a GMM.
A GMM is a weighted sum of multivariate Gaussians:
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where K is the number of mixtures. For K = 1, a simple
closed-form expression exists for the maximum-likelihood
estimate of the parameters. For K > 1, the k-means algo-
rithm and optionally the expectation-maximization algo-
rithm are used to estimate the parameters.

2.2 Kullback-Leibler Distance

The KL distance is an information-theoretic distance mea-
sure between probability density functions. It is given by
dKL(p1, p2) =

∫
p1(x) log p1(x)

p2(x)dx. As the KL distance
is not symmetric, a symmetrized version, dsKL(p1, p2) =
dKL(p1, p2) + dKL(p2, p1), is usually used in music infor-
mation retrieval. For Gaussian mixtures, a closed form
expression for dKL(p1, p2) only exists for K = 1. For
K > 1, dKL(p1, p2) is estimated using stochastic integra-
tion or the approximation in [4]. The KL distance does
not obey the triangle inequality.

2.3 Earth Movers Distance

In this context the EMD is the minimum cost of changing
one mixture into another when the cost of moving proba-
bility mass from component m in the first mixture to com-
ponent n in the second mixture is given [3]. A common
choice of cost is the symmetrized KL distance between
the individual Gaussian components. With this cost, the
EMD does not obey the triangle inequality.

2.4 Normalized L2 Distance

Let p′i(x) = pi(x)/
√∫

pi(x)2dx, i.e., pi(x) scaled to
unit L2-norm. We then define the normalized L2 distance
by dnL2(p1, p2) =

∫
(p′1(x)− p′2(x))2dx. Since the ordi-



Figure 1. Instrument recognition results. Labels on the
x-axis denotes the number of MFCCs retained, i.e. 0:10
means retaining the first 11 coefficients including the 0th.
“Fluid” and “SGM” denotes the Fluid R3 and SGM 180
sound fonts, respectively.

nary L2 distance obeys the triangle inequality, and since
we can simply prescale all GMMs to have unit L2-norm
and then consider the ordinary L2 distance between the
scaled GMMs, the normalized L2 distance will also obey
the triangle inequality. Also note that dnL2(p1, p2) is noth-
ing but a continuous version of the cosine distance [6],
since dnL2(p1, p2) = 2(1−

∫
p′1(x)p′2(x)dx). For GMMs,

closed form expressions for the normalized L2 distance
can be derived for any K from [1, Eq. (5.1) and (5.2)].

3 EVALUATION

We have evaluated the symmetrized KL distance com-
puted by stochastic integration using 100 samples, EMD
with the exact, symmetrized KL distance as cost, and the
normalized L2 distance. We extract the MFCCs with the
ISP toolbox R1 using default options 1 . To model the
MFCCs we have both used a single Gaussian with full
covariance matrix and a mixture of ten Gaussians with di-
agonal covariance matrices. With a single Gaussian, the
EMD reduces to the exact, symmetrized KL distance. Fur-
thermore, we have used different numbers of MFCCs. As
the MFCCs are timbral features and therefore are expected
to model instrumentation rather than melody or rhythm,
we have evaluated the distance measures in a synthetic
nearest neighbor instrument classification task using 900
synthesized MIDI songs with 30 different melodies and
30 different instruments. In Figure 1, results for using
a single sound font and results where the query song is
synthesized by a different sound font than the songs it is
compared to are shown. The former test can be considered
a sanity test, and the latter test reflects generalization be-
haviour. Moreover, we have evaluated the distance mea-
sures using 30 s excerpts of the training songs from the
MIREX 2004 genre classification contest, which consists
of 729 songs from 6 genres. Results for genre classifica-
tion, artist identification and genre classification with an
artist filter (see [5]) are shown in Figure 2.

1 http://isound.kom.auc.dk/

Figure 2. Genre and artist classification results for the
MIREX 2004 database.

4 DISCUSSION

As the results show, all three distance measures perform
approximately equal when using a single Gaussian with
full covariance matrix, except that the normalized L2 dis-
tance performs a little worse when mixing instruments
from different sound fonts. Using a mixture of ten diago-
nal Gaussians generally decrease recognition rates slightly,
although it should be noted that [2] recommends using
more than ten mixtures. For ten mixtures, the recognition
rate for the Kullback-Leibler distance seems to decrease
less than for the EMD and the normalized L2 distance.
From these results we conclude that the cosine distance
performs slightly worse than the Kullback-Leibler distance
in terms of accuracy. However, with a single Gaussian
having full covariance matrix this difference is negligible,
and since the cosine distance obeys the triangle inequality,
it might be preferable in applications with large datasets.
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