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Abstract—For music information retrieval tasks, a nearest
neighbor classifier using the Kullback–Leibler divergence be-
tween Gaussian mixture models of songs’ melfrequency cepstral
coefficients is commonly used to match songs by timbre. In this
paper, we analyze this distance measure analytically and exper-
imentally by the use of synthesized MIDI files, and we find that
it is highly sensitive to different instrument realizations. Despite
the lack of theoretical foundation, it handles the multipitch case
quite well when all pitches originate from the same instrument,
but it has some weaknesses when different instruments play si-
multaneously. As a proof of concept, we demonstrate that a source
separation frontend can improve performance. Furthermore, we
have evaluated the robustness to changes in key, sample rate, and
bitrate.

Index Terms—Melody, musical instrument classification, timbre
recognition.

I. INTRODUCTION

M EL-FREQUENCY cepstral coefficients (MFCCs)
are extensively used in music information retrieval

algorithms [1]–[12]. Originating in speech processing, the
MFCCs were developed to model the spectral envelope while
suppressing the fundamental frequency. Together with the
temporal envelope, the spectral envelope is one of the most
salient components of timbre [13], [14], which is “that attribute
of auditory sensation in terms of which a listener can judge that
two sounds similarly presented and having the same loudness
and pitch are dissimilar” [15], i.e., what makes the same note
played with different instruments sound different. Thus, the
MFCCs in music information retrieval applications are com-
monly used to model the timbre. However, even though MFCCs
have experimentally been shown to perform well in instrument
recognition, artist recognition and genre classification [7], [8],
[16], a number of questions remain unanswered. For instance,
being developed for speech recognition in a single-speaker
environment, it is not obvious how the MFCCs are affected
by different instruments playing simultaneously and by chords
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where the fundamental frequencies have near-integer ra-
tios. Furthermore, as shown in [17], MFCCs are sensitive to
the spectral perturbations that result from low bitrate audio
compression.

In this paper, we address these issues and more. We analyze
the behavior of the MFCCs when either a single instrument or
different instruments play several notes simultaneously, thus vi-
olating the underlying assumption of a single voice. In relation
to the album effect [18], where MFCC-based distance measures
in artist recognition rate songs from the same album as much
more similar than songs by the same artist from different al-
bums, we investigate how MFCCs are affected by different re-
alizations of the same instrument. Finally, we investigate how
MFCCs are affected by transpositions, different sample rates
and different bitrates, since this is relevant in practical appli-
cations. A transposed version of a song, e.g., a live version that
is played in a different key than the studio version, is usually
considered similar to the original, and collections of arbitrary
music, such as encountered by an internet search engine, will in-
evitably contain songs with different sample rates and bitrates.

To analyze these topics, we use MIDI synthesis, for reasons
of tractability and reproducibility, to fabricate wave signals
for our experiments, and we employ the distance measure
proposed in [4] that extracts MFCCs and trains a Gaussian
mixture model for each song and uses the symmetrized Kull-
back–Leibler divergence between the models as distance
measure. A nearest-neighbor classification algorithm using this
approach won the International Conference on Music Infor-
mation Retrieval (ISMIR) genre classification contest in 2004
[6]. Genre classification is often not considered a goal in itself,
but rather an indirect means to verify the actual goal, which is
a measure of similarity between songs. In most comparisons
on tasks such as genre identification, distributions of MFCC
features have performed as well or better than all other features
considered—a notable result [7], [8]. Details of the system,
such as the precise form or number of MFCCs used, or the
particular mechanism used to represent and compare MFCC
distributions, appear to have only a secondary influence. Thus,
the distance measure studied in this paper, a particular instance
of a system for comparing music audio based on MFCC distri-
butions, is both highly representative of most current work in
music audio comparison, and is likely close to or equal to the
state of the art in most tasks of this kind.

In Section II, we review MFCCs, Gaussian modeling and
computation of the symmetrized Kullback–Leibler divergence.
In Section III, we describe the experiments before discussing the
results in Section IV and giving the conclusion in Section V.
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II. MEL-FREQUENCY CEPSTRAL COEFFICIENTS-BASED

TIMBRAL DISTANCE MEASURE

In the following, we describe the motivation behind the
MFCCs, mention some variations of the basic concept, dis-
cuss their applicability to music, and discuss the use of the
Kullback–Leibler divergence between multivariate Gaussian
mixture models as a distance measure between songs.

A. Mel-Frequency Cepstral Coefficients

MFCCs were introduced as a compact, perceptually based
representation of speech frames [19]. They are computed as
follows.

1) Estimate the amplitude or power spectrum of 20–30 ms of
speech.

2) Group neighboring frequency bins into overlapping tri-
angular bands with equal bandwidth according to the
melscale.

3) Sum the contents of each band.
4) Compute the logarithm of each sum.
5) Compute the discrete cosine transform of the bands.
6) Discard high-order coefficients from the cosine transform.

Most of these steps are perceptually motivated, but some steps
also have a signal processing interpretation. The signal is di-
vided into 20–30 ms blocks because speech is approximately
stationary within this time scale. Grouping into bands and sum-
ming mimics the difficulty in resolving two tones closely spaced
in frequency, and the logarithm approximates the human percep-
tion of loudness. The discrete cosine transform, however, does
not directly mimic a phenomenon in the human auditory system,
but is instead an approximation to the Karhunen–Loève trans-
form in order to obtain a compact representation with minimal
correlation between different coefficients.

As the name of the MFCCs imply, the last three steps can also
be interpreted as homomorphic deconvolution in the cepstral do-
main to obtain the spectral envelope (see, e.g., [20]). Briefly, this
approach employs the common model of voice as glottal exci-
tation filtered by a slowly-changing vocal tract, and attempts
to separate these two components. The linear filtering becomes
multiplication in the Fourier domain, which then turns into ad-
dition after the logarithm. The final Fourier transform, accom-
plished by the discrete cosine transform, retains linearity but fur-
ther allows separation between the vocal tract spectrum, which
is assumed smooth in frequency and thus ends up being repre-
sented by the low-index cepstral coefficients, and the harmonic
spectrum of the excitation, which varies rapidly with frequency
and falls predominantly into higher cepstral bins. These are dis-
carded, leaving a compact feature representation that describes
the vocal tract characteristics with little dependence on the fine
structure of the excitation (such as its period). For a detailed de-
scription of homomorphic signal processing see [21], and for a
discussion of the statistical properties of the cepstrum see [22].
For a discussion of using the MFCCs as a model for perceptual
timbre space for static sounds, see [23].

B. Variations

When computing MFCCs from a signal, there are a number
of free parameters. For instance, both the periodogram, linear
prediction analysis, the Capon spectral estimator, and warped

versions of the latter two have been used to estimate the spec-
trum, and the number of meldistributed bands and their lower
and upper cutoff frequency may also differ. For speech recog-
nition, comparisons of different such parameters can be found
in [24] and [25]. For music, less exhaustive comparisons can
be found in [5] and [12]. It is also an open question how many
coefficients should be kept after the discrete cosine transform.
According to [17], the first five to fifteen are commonly used. In
[26], as many as 20 coefficients, excluding the 0th coefficient,
are used with success. In the following, we will use the term
“MFCC order” to refer to the number of coefficients that are
kept. Another open question is whether to include the 0th coef-
ficient. Being the DC value, the 0th coefficient is the average of
the logarithm of the summed contents of the triangular bands,
and it can thus be interpreted as the loudness averaged over the
triangular bands. On the one hand, volume may be useful for
modeling a song, while on the other hand it is subject to arbi-
trary shifts (i.e., varying the overall scale of the waveform) and
does not contain information about the spectral shape as such.

C. Applicability to Music

In [27], it is verified that the melscale is preferable to a
linear scale in music modeling, and that the discrete cosine
transform does approximate the Karhunen–Loéve transform.
However, a number of uncertainties remain. In particular, the
assumed signal model consisting of one excitation signal and
a filter only applies to speech. In polyphonic music there may,
unlike in speech, be several excitation signals with different
fundamental frequencies and different filters. Not only may this
create ambiguity problems when estimating which instruments
the music was played by, since it is not possible to uniquely
determine how each source signal contributed to the spectral
envelopes, but the way the sources combine is also very non-
linear due to the logarithm in step 4. Furthermore, it was shown
in [17] that MFCCs are sensitive to the spectral perturbations
that are introduced when audio is compressed at low bitrates,
mostly due to distortion at higher frequencies. However, it was
not shown whether this actually affects instrument or genre
classification performance. A very similar issue is the sampling
frequency of the music that the MFCCs are computed from.
In a real-world music collection, all music may not have the
same sampling frequency. A downsampled signal would have
very low energy in the highest melbands, leaving the logarithm
in step 4 in the MFCC computation either undefined or at
least approaching minus infinity. In practical applications,
some minimal (floor) value is imposed on channels containing
little or no energy. When the MFCC analysis is applied over
a bandwidth greater than that remaining in the compressed
waveform, this amounts to imposing a rectangular window on
the spectrum, or, equivalently, convolving the MFCCs with a
sinc function. We will return to these issues in Section III.

D. Modelling MFCCs by Gaussian Mixture Models

Storing the raw MFCCs would take up a considerable amount
of space, so the MFCCs from each song are used to train a
parametric, statistical model, namely a multivariate Gaussian
mixture model. As distance measure between the Gaussian
mixture models, we use the symmetrized Kullback–Leibler
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divergence. This approach was presented in [4], but both
[2] and [28] have previously experimented with very similar
approaches. The probability density function for a random
variable modeled by a Gaussian mixture model with
mixtures is given by

(1)
where is the number of mixtures and , , and are
the mean, covariance matrix, and weight of the ’th Gaussian,
respectively. For , the maximum-likelihood estimates of
the mean and covariance matrix are given by [29]

(2)

and

(3)

For , the k-means algorithm followed by the expectation-
maximization algorithm (see [30] and [31]) is typically used to
train the weights , means , and covariance matrices .
As mentioned, we use the symmetrized Kullback–Leibler diver-
gence between the Gaussian mixtures as distance measure be-
tween two songs. The Kullback–Leibler divergence is an asym-
metric information theoretic measure of the distance between
two probability density functions. The Kullback–Leibler diver-
gence between and , , is given by

(4)

For discrete random variables, is the penalty of de-
signing a code that describes data with distribution with
shortest possible length but instead use it to encode data with
distribution [32]. If and are close, the penalty
will be small and vice versa. For two multivariate Gaussian dis-
tributions, and , the Kullback–Leibler divergence is
given in closed form by

(5)

where is the dimensionality of . For Gaussian mixtures, a
closed form expression for does not exist, and it
must be estimated, e.g., by stochastic integration or closed form
approximations [10], [33], [34]. To obtain a symmetric distance
measure, we use .

Collecting the two Kullback–Leibler divergences under a
single integral, we can directly see how different values of

and affect the resulting distance

(6)

Fig. 1. Symmetrized Kullback–Leibler divergence. When either � ����� or
� ����� approaches zero, � �� � � � approach infinity.

Fig. 2. Squared L2 distance. Note that unlike � �� � � � in Fig. 1,
� �� � � � behaves nicely when � ����� or � ����� approach zero.

where

(7)

In Fig. 1, is shown as a function of
and . From the figure and (7), it is seen that for

to be large, there has to be where both the
difference and the ratio between and is large. High
values are obtained when only one of and approach
zero. In comparison, consider the square of the L2 distance,
which is given by

(8)

where

(9)

In Fig. 2, is plotted as a function of
and . Experimentally, using the L2 distance between
Gaussian mixture models does not work well for genre classi-
fication. In unpublished nearest-neighbor experiments on the
ISMIR 2004 genre classification training set, we obtained 42%
accuracy using the L2 distance compared to 65% using the
symmetrized Kullback–Leibler divergence (in the experiments,
nearest-neighbor songs by the same artist as the query song
were ignored). From this it would seem that the success of
the symmetrized Kullback–Leibler divergence in music infor-
mation retrieval is crucially linked to it asymptotically going
towards infinity when one of and goes towards zero,
i.e., it highly penalizes differences. This is supported by the
observation in [10] that only a minority of a song’s MFCCs
actually discriminate it from other songs.

A disadvantage of using Gaussian mixture models to aggre-
gate the MFCCs is that the temporal development of sounds is
not taken into account, even though it is important to the percep-
tion of timbre [13], [14]. As noted in [10], a song can be mod-
eled by the same Gaussian mixture model whether it is played
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Fig. 3. Log-likelihood for various Gaussian mixture model configurations. The
number denotes the number of Gaussians in the mixture, and the letter is “�”
for diagonal covariance matrices and “� ” for full covariance matrices.

forwards or backwards, even though it clearly makes an audible
difference. Another disadvantage is that when two instruments
play simultaneously, the probability density function (pdf) of
the MFCCs will in general change rather unpredictably. If the
two instruments only have little overlap in the melfrequency do-
main, they will still be approximately linearly mixed after taking
the logarithm in step 4 in Section II-A and after the discrete co-
sine transform, since the latter is a linear operation. However,
the pdf of a sum of two stochastic variables is the convolution
of the pdf of each of the variables. Only if the instruments do
not play simultaneously will the resulting pdf contain separate
peaks for each instrument. To make matters even worse, such
considerations also apply when chords are being played, and in
this case it is almost guaranteed that some harmonics will fall
into the same frequency bands, removing even the possibility of
nonoverlapping spectra.

With Gaussian mixture models, the covariance matrices are
often assumed to be diagonal for computational simplicity. In
[7] and [8], it was shown that instead of a Gaussian mixture
model where each Gaussian component has diagonal covari-
ance matrix, a single Gaussian with full covariance matrix can
be used without sacrificing discrimination performance. This
simplifies both training and evaluation, since the closed form
expressions in (2), (3), and (5) can be used. If the inverse of
the covariance matrices are precomputed, (5) can be evaluated
quite efficiently since the trace term only requires the diagonal
elements of to be computed. For the symmetric ver-
sion, the log terms even cancel, thus not even requiring the de-
terminants to be precomputed. In Fig. 3, the average log-like-
lihoods for 30 randomly selected songs from the ISMIR 2004
genre classification training database are shown for different
Gaussian mixture model configurations. The figure shows that
log-likelihoods for a mixture of ten Gaussians with diagonal co-
variances and one Gaussian with full covariance matrix is quite
similar. Using 30 Gaussians with diagonal covariance matrices
increases the log-likelihood, but as shown in [9], genre classi-
fication performance does not benefit from this increased mod-
eling accuracy. Log-likelihoods indicate only how well a model
has captured the underlying density of the data, and not how
well the models will discriminate in a classification task.

III. EXPERIMENTS

In this section, we present six experiments that further in-
vestigate the behavior of the MFCC–Gaussian–KL approach.
The basic assumption behind all the experiments is that this

TABLE I
SIX SOUND FONTS USED FOR THE EXPERIMENTS

approach is a timbral distance measure and that as such it is
supposed to perform well at instrument classification. In all ex-
periments, we thus see how the instrument recognition perfor-
mance is affected by various transformations and distortions. To
perform the experiments, we take a number of MIDI files that
are generated with Microsoft Music Producer and modify them
in different ways to specifically show different MFCC proper-
ties. To synthesize wave signals from the MIDI files, we use
the software synthesizer TiMidity++ version 2.13.2 with the six
sound fonts listed in Table I. As each sound font uses different
instrument samples, this approximates using six different real-
izations of each instrument. To compute MFCCs, we use the im-
plementation in the Intelligent Sound Project toolbox that orig-
inates from the VOICEBOX toolbox by Mike Brookes. This
implementation is described in [17] and includes frequencies
up to 11 025 Hz in the MFCCs. To aggregate the MFCCs from
each synthesized MIDI file, we use the approach with a single
Gaussian with full covariance matrix, since this would be the
obvious choice in practical applications due to the clear compu-
tational advantages. All experiments have been performed with
a number of different MFCC orders to see how it affects the re-
sults. We use : to denote MFCCs where the th to the th coef-
ficient have been kept after the discrete cosine transform. As an
example, 0:6 is where the DC coefficient and the following six
coefficients have been kept. The experiments are implemented
in MATLAB, and the source code, MIDI files and links to the
sound fonts are available online.1

A. Timbre Versus Melody Classification

The first experiment is performed to verify that the
MFCC–Gaussian–KL approach described in Section II also
groups songs by instrumentation when an instrument plays
several notes simultaneously. Due to the simple relation be-
tween harmonics in chords, the MFCC–Gaussian–KL approach
could equally well match songs with similar chords than songs
with identical instrumentation. When we refer to melodies in
this section, we are thus not concerned with the lead melody,
but rather with the chords and combinations of notes that are
characteristic to a particular melody.

To perform the experiment, we take 30 MIDI songs of very
different styles and the 30 MIDI instruments listed in Table II.
For all combinations of songs and instruments, we perform the
following.

1) Read MIDI song .
2) Remove all percussion.
3) Force all notes to be played by instrument .
4) Synthesize a wave signal .

1http://kom.aau.dk/~jhj/publications/
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Fig. 4. Mean and standard deviation of instrument and melody classification accuracies, i.e., the fraction of songs that have a song with the same instrumentation,
or the same melody as nearest neighbor, respectively. For moderate MFCC orders, the instrument classification accuracy is consistently close to 1, and the melody
classification accuracy is close to 0.

5) Extract MFCCs.
6) Train a multivariate Gaussian probability density function

on the MFCCs.
Next, we perform nearest-neighbor classification on the

songs, i.e., for each song we compute

(10)

If the nearest neighbor to song , played with instrument ,
is , and it is also played with instrument , i.e., , then
there is a match of instruments. We define the instrument clas-
sification rate by the fraction of songs where the instrument of a
song and its nearest-neighbor matches. Similarly, we define the
melody classification rate by the fraction of songs where .
We repeat the experiment for the different sound fonts. Forcing
all notes in a song to be played by the same instrument is not
realistic, since, e.g., the bass line would usually not be played
with the same instrument as the main melody. However, using
only the melody line would be an oversimplification. Keeping
the percussion, which depends on the song, , would also blur
the results, although in informal experiments, keeping it only
decreases the instrument classification accuracy by a few per-
centage points. In Fig. 4, instrument and melody classification
rates are shown as a function of the MFCC order and the sound
font used. From the figure, it is evident that when using even a
moderate number of coefficients, the MFCC–Gaussian–KL ap-
proach is successful at identifying the instrument and is almost
completely unaffected by the variations in the note and chord
distributions present in the different songs.

B. Ensembles

Next, we repeat the experiment from the previous section
using three different instruments for each song instead of just
one. We select 30 MIDI files that each have three nonpercussive
tracks, and we select three sets with three instruments each. Let

, , and denote the three sets,
let , and let denote the MIDI file number. Sim-
ilar to the experiment in Section III-A, we perform the following
for all combinations of , , , and .

1) Read MIDI song .
2) Remove all percussion.
3) Let all notes in the first, second, and third track be played

by instrument , , and , respectively.
4) Synthesize a wave signal .
5) Extract MFCCs.

TABLE II
INSTRUMENTS USED TO SYNTHESIZE THE SONGS USED FOR THE EXPERIMENTS.

ALL ARE FROM THE GENERAL MIDI SPECIFICATION

6) Train a multivariate Gaussian probability density function
on the MFCCs.

As before, the nearest neighbor is found, but this time according
to

(11)

Thus, the nearest neighbor is not allowed to have the same
melody as the query. This is to avoid that the nearest neighbor
is the same melody with the instrument in a weak track re-
placed by another instrument. The fraction of nearest neighbors
with the same three instruments, the fraction with at least two
identical instruments and the fraction with at least one identical
instrument is computed by counting how many of
equals .

In Fig. 5, the fractions of nearest neighbors with different
numbers of identical instruments are plotted. The fraction

Authorized licensed use limited to: Columbia University. Downloaded on August 31, 2009 at 17:58 from IEEE Xplore.  Restrictions apply. 



698 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 4, MAY 2009

Fig. 5. Mean and standard deviation of instrument classification accuracies when the success criterion is that the nearest neighbor has at least one, two, or three
identical instruments. Results are averaged over all six sound fonts.

Fig. 6. Instrument classification rates for different configurations of the
Gaussian mixture model. The numbers denote the number of Gaussians in the
mixture, and “dia.” and “full” refer to the covariance matrices. For both “add”
and “sep,” each instrument has been synthesized independently. For “add,” the
tracks were concatenated to a single signal, while for “sep,” the three equally
weighted Gaussians were trained separately for each track. For “NMF,” an
NMF source separation algorithm has been applied. Results are averaged over
all six sound fonts.

of nearest neighbors with two or more identical instruments
is comparable to the instrument classification performance
in Fig. 4. To determine if the difficulties detecting all three
instrument are caused by the MFCCs or the Gaussian model,
we have repeated the experiments in Fig. 6 with MFCCs 0:10
for the following seven setups.

• Using Gaussian mixture models with ten and 30 diagonal
covariance matrices, respectively.

• Gaussian mixture models with one and three full covari-
ance matrices, respectively.

• Gaussian mixture models with one and three full covari-
ance matrices, respectively, but where the instruments in a
song are synthesized independently and subsequently con-
catenated into one song of triple length.

• Gaussian mixture models with three full covariance ma-
trices where each instrument in a song is synthesized inde-
pendently, and each Gaussian is trained on a single instru-
ment only. The weights are set to 1/3 each.

• Gaussian mixture model with one full covariance matrix,
where, as a proof of concept, a non-negative matrix fac-
torization (NMF) algorithm separates the MFCCs into
individual sources that are concatenated before training
the Gaussian model. The approach is a straightforward
adoption of [35], where the NMF is performed between
steps 3 and 4 in the MFCC computation described in
Section II-A. As we, in line with [35], use a log-scale
instead of the melscale, we should rightfully use the
term LFCC instead of MFCC. Note that, like the first
two setups, but unlike the setups based on independent
instruments, this approach does not require access to the
original, separate waveforms of each instrument, and thus
is applicable to existing recordings.

From the additional experiments, it becomes clear that the dif-
ficulties capturing all three instruments originate from the si-
multaneous mixture. As we saw in Section III-A, it does not
matter that one instrument plays several notes at a time, but from
Fig. 5 and the “1 full add” experiment in Fig. 6, we see that it
clearly makes a difference whether different instruments play si-
multaneously. Although a slight improvement is observed when
using separate Gaussians for each instrument, a single Gaussian
actually seems to be adequate for modeling all instruments as
long as different instruments do not play simultaneously. We
also see that the NMF-based separation algorithm increases the
number of cases where all three instruments are recognized. It
conveniently simplifies the source separation task that a single
Gaussian is sufficient to model all three instruments, since it
eliminates the need to group the separated sources into indi-
vidual instruments.

C. Different Realizations of the Same Instrument

In Section III-A, we saw that the MFCC–Gaussian–KL
approach was able to match songs played by the same instru-
ment when they had been synthesized using the same sound
font. In this section, to get an idea of how well this approach
handles two different realizations of the same instrument,
we use synthesized songs from different sound fonts as test
and training data and measure the instrument classification
performance once again. To the extent that a human listener
would consider one instrument synthesized with two different
sound fonts more similar than the same instrument synthesized
by the first sound font and another instrument synthesized by
the second, this experiment can also be considered a test of
how well the MFCC–Gaussian–KL approach approximates
human perception of timbral similarity. The experimental setup
is that of Section III-A, only we use two different sound fonts,

and , to synthesize two wave signals, and

, and estimate two multivariate Gaussians probability

density functions, and . We perform nearest
neighbor classification again, but this time with a query syn-
thesized with and a training set synthesized with , i.e.,
(10) is modified to

(12)

We test all combinations of the sound fonts mentioned in
Table I. The resulting instrument classification rates are shown
in Fig. 7, and we see that the performance when using two
different sound fonts are relatively low. We expect the low
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Fig. 7. Mean and standard deviation of instrument classification accuracies when mixing different sound fonts.

performance to have the same cause as the album effect [18]. In
[36], the same phenomenon was observed when classifying in-
struments across different databases of real instrument sounds,
and they significantly increased classification performance by
using several databases as training set. However, this is not
directly applicable in our case, since the MFCC–Gaussian–KL
is a song-level distance measure without an explicit training
step.

When using songs synthesized from the same sound font for
query and training, it is unimportant whether we increase the
MFCC order by including the 0th coefficient or the next higher
coefficient. However, when combining different sound fonts, in-
cluding the 0th MFCC at the cost of one of the higher coef-
ficients has noticeable impact on performance. Unfortunately,
since it is highly dependent on the choice of sound fonts if per-
formance increases or decreases, an unambiguous conclusion
cannot be drawn.

D. Transposition

When recognizing the instruments that are playing, a human
listener is not particularly sensitive to transpositions of a few
semitones. In this section, we experimentally evaluate how the
MFCC–Gaussian–KL approach behaves in this respect. The ex-
periment is built upon the same framework as the experiment in
Section III-A and is performed as follows.

1) Repeat step 1–3 of the experiment in Section III-A.
2) Normalize the track octaves (see below).
3) Transpose the song semitones.
4) Synthesize wave signals .
5) Extract MFCCs.
6) Train a multivariate Gaussian probability density function

.
The octave normalization consists of transposing all tracks (e.g.,
bass and melody) such that the average note is as close to C4
(middle C on the piano) as possible, while only transposing the
individual tracks an integer number of octaves relative to each
other. The purpose is to reduce the tonal range of the songs. If
the tonal range is too large, the majority of notes in a song and
its transposed version will exist in both versions, hence blur-
ring the results (see Fig. 8). By only shifting the tracks an in-
teger number of octaves relative to each other, we ensure that
all harmonic relations between the tracks are kept. This time,
the nearest neighbor is found as

(13)

Fig. 8. Histogram of notes in a MIDI song before and after normalization. The
�-axis is the MIDI note number, i.e., 64 is middle C on the piano. The tonal
range of the original song is much larger than that of the normalized song.

That is, we search for the nearest neighbor to among
the songs that have only been normalized but have not been
transposed any further. The instrument and melody classifica-
tion rates are computed for 11 different values of that are
linearly spaced between and 24, which means that we max-
imally transpose songs two octaves up or down.

In Fig. 9, instrument classification performance is plotted as a
function of the number of semitones the query songs are trans-
posed. Performance is hardly influenced by transposing songs

semitones. Transposing ten semitones, which is almost an
octave, noticeably affects results. Transposing semitones
severely reduces accuracy. In Fig. 10, where instrument classifi-
cation performance is plotted as a function of the MFCC order,
we see that the instrument recognition accuracy generally in-
crease with increasing MFCC order, stagnating around 10.

E. Bandwidth

Since songs in an actual music database may not all
have equal sample rates, we examine the sensitivity of the
MFCC–Gaussian–KL approach to downsampling, i.e., re-
ducing the bandwidth. We both examine what happens if we
mix songs with different bandwidths, and what happens if
all songs have reduced, but identical bandwidth. Again, we
consider the MFCCs a timbral feature and use instrument
classification performance as ground truth.

1) Mixing Bandwidths: This experiment is very similar to
the transposition experiment in Section III-D, only we reduce
the bandwidths of the songs instead of transposing them. Prac-
tically, we use the MATLAB resample function to downsample
the wave signal to and upsample it to 22 kHz again. The
nearest neighbor instrument classification rate is found as in (13)
with and replaced by and , respec-
tively. The reference setting is 11 kHz, corresponding to
a sampling frequency of 22 kHz.
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Fig. 9. Instrument classification rate averaged over all sound fonts as a function of the number of semitones that query songs have been transposed.

Fig. 10. Instrument classification rate averaged over all sound fonts as a function of the number of MFCCs. The numbers �19, �14 etc. denote the number of
semitones songs have been transposed.

Fig. 11. Average instrument classification accuracy averaged over all sound
fonts when reducing the songs’ bandwidths. For the mixed bandwidth results,
the training set consists of songs with full bandwidth, while for the equal
bandwidth results, songs in both the test and training sets have equal, reduced
bandwidth.

2) Reducing Bandwidth for All Files: This experiment is per-
formed as the experiment in Section III-A, except that synthe-
sized wave signals are downsampled to before computing
the MFCCs for both test and training songs.

Results of both bandwidth experiments are shown in Fig. 11.
It is obvious from the figure that mixing songs with different
bandwidths is a bad idea. Reducing the bandwidth of the query
set from 11 kHz to 8 kHz significantly reduces performance,
while reducing the bandwidth to 5.5 kHz, i.e., mixing sample
rates of 22 kHz and 11 kHz, makes the distance measure prac-
tically useless with accuracies in the range from 30%–40%.
On the contrary, if all songs have the same, low bandwidth,
performance does not suffer significantly. It is thus clear that if
different sampling frequencies can be encountered in a music
collection, it is preferential to downsample all files to e.g.,
8 kHz before computing the MFCCs. Since it is computa-
tionally cheaper to extract MFCCs from downsampled songs,
and since classification accuracy is not noticeably affected
by reducing the bandwidth, this might be preferential with
homogeneous music collections as well. The experiment only
included voiced instruments, so this result might not generalize

Fig. 12. Instrument classification rates averaged over all sound fonts with MP3
compressed query songs as a function of bitrate.

to percussive instruments that often have more energy at high
frequencies. In informal experiments on the ISMIR 2004 genre
classification training database, genre classification accuracy
only decreased by a few percentage points when downsampling
all files to 8 kHz.

F. Bitrate

Music is often stored in a compressed format. However, as
shown in [17], MFCCs are sensitive to the spectral perturba-
tions introduced by compression. In this section, we measure
how these issues affect instrument classification performance.
This experiment is performed in the same way as the transpo-
sition experiment in Section III-D, except that transposing has
been replaced by encoding to an MP3 file with bitrate and
decoding. Classification is also performed as given by (13). For
MP3 encoding, the constant bitrate mode of LAME version 3.97
is used. The synthesized wave signal is in stereo when encoding
but is converted to mono before computing the MFCCs. Results
of different bitrates are shown in Fig. 12. Furthermore, results of
reducing the bandwidth to 4 kHz after decompression are also
shown. Before compressing the wave signal, the MP3 encoder
applies a lowpass filter. At 64 kbps, this lowpass filter has tran-
sition band from 10935 Hz to 11226 Hz, which is in the range of
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the very highest frequencies used when computing the MFCCs.
Consequently, classification rates are virtually unaffected at a
bitrate of 64 kbps. At 48 kbps, the transition band is between
7557 Hz and 7824 Hz, and at 32 kbps, the transition band is be-
tween 5484 Hz and 5677 Hz. The classification rates at 5.5 kHz
and 8 kHz in Fig. 11 and at 32 kbps and 48 kbps in Fig. 12,
respectively, are strikingly similar, hinting that bandwidth re-
duction is the major cause of the reduced accuracy. This is con-
firmed by the experiments where the bandwidth is always re-
duced to 4 kHz, which are unaffected by changing bitrates. So,
if robustness to low bitrate MP3 encoding is desired, all songs
should be downsampled before computing MFCCs.

IV. DISCUSSION

In all experiments, we let multivariate Gaussian distributions
model the MFCCs from each song and used the symmetrized
Kullback–Leibler divergence between the Gaussian distri-
butions as distance measures. Strictly speaking, our results
therefore only speak of the MFCCs with this particular distance
measure and not of the MFCCs on their own. However, we
see no obvious reasons that other classifiers would perform
radically different.

In the first experiment, we saw that when keeping as little as
four coefficients while excluding the 0th cepstral coefficient, in-
strument classification accuracy was above 80%. We therefore
conclude that MFCCs primarily capture the spectral envelope
when encountering a polyphonic mixture of voices from one in-
strument and not e.g., the particular structure encountered when
playing harmonies.

When analyzing songs played by different instruments, only
two of the three instruments were often recognized. The number
of cases where all instruments were recognized increased dra-
matically when instruments were playing in turn instead of si-
multaneously, suggesting that the cause is either the log-step
when computing the MFCCs, or the phenomenon that the proba-
bility density functions of a sum of random variables is the con-
volution of the individual probability density functions. From
this it is clear that the success of the MFCC–Gaussian–KL ap-
proach in genre and artist classification is very possible due only
to instrument/ensemble detection. This is supported by [37] that
showed that for symbolic audio, instrument identification is very
important to genre classification. We hypothesize that in genre
classification experiments, recognizing the two most salient in-
struments is enough to achieve acceptable performance.

In the third experiment, we saw that the MFCC–Gaussian–
KL approach does not consider songs with identical instrumen-
tation synthesized with different sound fonts very similar. How-
ever, with nonsynthetic music databases, e.g., [5] and [8], this
distance measure seems to perform well even though different
artists use different instruments. A possible explanation may be
that the synthesized sounds are more homogeneous than a cor-
responding human performance, resulting in over-fitting of the
multivariate Gaussian distributions. Another possibility is that
what makes a real-world classifier work is the diversity among
different performances in the training collection; i.e., if there
are 50 piano songs in a collection, then a given piano piece may
only be close to one or two of the other piano songs, while the
rest, with respect to the distance measure, just as well could
have been a trumpet piece or a xylophone piece. As observed in

[8], performance of the MFCC–Gaussian–KL approach in genre
classification increases significantly if songs by the same artist
are in both the training and test collection, thus supporting the
latter hypothesis. We speculate that relying more on the tem-
poral development of sounds (for an example of this, see [38])
and less on the spectral shape and using a more perceptually
motivated distance measure instead of the Kullback–Leibler di-
vergence can improve the generalization performance.

In [5], it is suggested that there is a “glass ceiling” for the
MFCC–Gaussian–KL approach at 65%, meaning that no simple
variation of it can exceed this accuracy. From the experiments,
we can identify three possible causes of the glass ceiling.

1) The MFCC–Gaussian–KL approach neither takes melody
nor harmony into account.

2) It is highly sensitive to different renditions of the same
instrument.

3) It has problems identifying individual instruments in a
mixture.

With respect to the second cause, techniques exists for sup-
pressing channel effects in MFCC-based speaker identification.
If individual instruments are separated in a preprocessing step,
these techniques might be applicable to music as well. As shown
in Section III-B, a successful signal separation algorithm would
also mitigate the third cause.

We measured the reduction in instrument classification rate
when transposing songs. When transposing songs only a few
semitones, instrument recognition performance was hardly af-
fected, but transposing songs in the order of an octave or more
causes performance to decrease significantly. When we com-
pared MFCCs computed from songs with different bandwidths,
we found that performance decreased dramatically. In contrast,
if all songs had the same, low bandwidth, performance typi-
cally did not decrease more than 2–5 percentage points. Sim-
ilarly, comparing MFCCs computed from low bitrate MP3 files
and high bitrate files also affected instrument classification per-
formance dramatically. The performance decrease for mixing
bitrates matches the performance decrease when mixing band-
widths very well. If a song collection contains songs with dif-
ferent sample rates or different bitrates, it is recommended to
downsample all files before computing the MFCCs.

V. CONCLUSION

We have analyzed the properties of a commonly used music
similarity measure based on the Kullback–Leibler distance be-
tween Gaussian models of MFCC features. Our analyses show
that the MFCC–Gaussian–KL measure of distance between
songs recognizes instrumentation; a solo instrument playing
several notes simultaneously does not degrade recognition
accuracy, but an ensemble of instruments tend to suppress
the weaker instruments. Furthermore, different realizations of
instruments significantly reduces recognition performance. Our
results suggest that the use of source separation methods in
combination with already existing music similarity measures
may lead to increased classification performance.

ACKNOWLEDGMENT

The authors would like to thank H. Laurberg for assistance
with the non-negative matrix factorization algorithm used in
Section III-B.

Authorized licensed use limited to: Columbia University. Downloaded on August 31, 2009 at 17:58 from IEEE Xplore.  Restrictions apply. 



702 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 4, MAY 2009

REFERENCES

[1] J. T. Foote, “Content-based retrieval of music and audio,” Proc. SPIE
Multimedia Storage and Archiving Syst. II, pp. 138–147, 1997.

[2] B. Logan and A. Salomon, “A music similarity function based on
signal analysis,” in Proc. IEEE Int. Conf. Multimedia Expo, 2001, pp.
745–748.

[3] G. Tzanetakis and P. Cook, “Musical genre classification of audio sig-
nals,” IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293–301,
Jul. 2002.

[4] J.-J. Aucouturier and F. Pachet, “Finding songs that sound the same,”
in Proc. IEEE Benelux Workshop Model Based Process. Coding Audio,
2002, pp. 91–98.

[5] J.-J. Aucouturier and F. Pachet, “Improving timbre similarity: How
high’s the sky?,” J. Negative Results Speech Audio Sci., vol. 1, no. 1,
2004.

[6] E. Pampalk, “Speeding up music similarity,” in Proc. 2nd Annu. Music
Inf. Retrieval eXchange, 2005.

[7] M. I. Mandel and D. P. Ellis, “Song-level features and support vector
machines for music classification,” in Proc. Int. Symp. Music Inf. Re-
trieval, 2005, pp. 594–599.

[8] E. Pampalk, “Computational models of music similarity and their ap-
plication to music information retrieval,” Ph.D. dissertation, Vienna
Univ. of Technology, Vienna, Austria, 2006.

[9] A. Flexer, “Statistical evaluation of music information retrieval exper-
iments,” Inst. of Medical Cybernetics and Artificial Intelligence, Med-
ical Univ. of Vienna, Vienna, Austria, Tech. Rep, 2005.

[10] J.-J. Aucouturier, “Ten experiments on the modelling of polyphonic
timbre,” Ph.D. dissertation, Univ. of Paris 6, Paris, France, 2006.

[11] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl, “Aggregate
features and Adaboost for music classification,” Mach. Learn., vol. 65,
no. 2–3, pp. 473–484, 2006.

[12] J. H. Jensen, M. G. Christensen, M. N. Murthi, and S. H. Jensen, “Eval-
uation of MFCC estimation techniques for music similarity,” in Proc.
Eur. Signal Process. Conf., 2006.

[13] T. D. Rossing, F. R. Moore, and P. A. Wheeler, The Science of Sound,
3rd, Ed. New York: Addison-Wesley, 2002.

[14] B. C. J. Moore, An Introduction to the Psychology of Hearing, 5th,
Ed. New York: Elsevier Academic Press, 2004.

[15] Acoustical Terminology SI, Rev. 1–1960, American Standards Associ-
ation Std., New York, 1960.

[16] A. Nielsen, S. Sigurdsson, L. Hansen, and J. Arenas-Garcia, “On the
relevance of spectral features for instrument classification,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. ICASSP’07, 2007, vol.
2, pp. II-485–II-488.

[17] S. Sigurdsson, K. B. Petersen, and T. Lehn-Schiøler, “Mel frequency
cepstral coefficients: An evaluation of robustness of mp3 encoded
music,” in Proc. Int. Symp. Music Inf. Retrieval, 2006.

[18] Y. E. Kim, D. S. Williamson, and S. Pilli, “Understanding and quanti-
fying the album effect in artist identification,” in Proc. Int. Symp. Music
Inf. Retrieval, 2006.

[19] S. B. Davis and P. Mermelstein, “Comparison of parametric represen-
tations for monosyllabic word recognition in continuously spoken sen-
tences,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-28,
no. 4, pp. 357–366, Aug. 1980.

[20] A. V. Oppenheim and R. W. Schafer, “From frequency to quefrency:
A history of the cepstrum,” IEEE Signal Process. Mag., vol. 21, no. 5,
pp. 95–106, Sep. 2004.

[21] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
1st, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[22] P. Stoica and N. Sandgren, “Smoothed nonparametric spectral estima-
tion via cepsturm thresholding,” IEEE Signal Process. Mag., vol. 23,
no. 6, pp. 34–45, Nov. 2006.

[23] H. Terasawa, M. Slaney, and J. Berger, “Perceptual distance in timbre
space,” in Proc. Int. Conf. Auditory Display, 2005, pp. 61–68.

[24] F. Zheng, G. Zhang, and Z. Song, “Comparison of different implemen-
tations of MFCC,” J. Comput. Sci. Technol., vol. 16, pp. 582–589, 2001.

[25] M. Wölfel and J. McDonough, “Minimum variance distortionless re-
sponse spectral estimation,” IEEE Signal Process. Mag., vol. 22, no. 5,
pp. 117–126, Sep. 2005.

[26] E. Pampalk, “A MatLab toolbox to compute music similarity from
audio,” in Proc. Int. Symp. Music Inf. Retrieval, 2004, pp. 254–257.

[27] B. Logan, “Mel frequency cepstral coefficients for music modeling,” in
Proc. Int. Symp. Music Inf. Retrieval, 2000.

[28] Z. Liu and Q. Huang, “Content-based indexing and retrieval-by-ex-
ample in audio,” in Proc. IEEE Int. Conf. Multimedia Expo, 2000, pp.
877–880.

[29] P. Stoica and R. Moses, Spectral Analysis of Signals. Upper Saddle
River, NJ: Prentice-Hall, 2005.

[30] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” J. R. Statist. Soc. Ser. B,
vol. 39, no. 1, pp. 1–38, 1977.

[31] R. A. Redner and H. F. Walker, “Mixture densities, maximum likeli-
hood, and the EM algorithm,” SIAM Rev., vol. 26, no. 2, pp. 195–239,
1984.

[32] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[33] N. Vasconcelos, “On the complexity of probabilistic image retrieval,”
in Proc. IEEE Int. Conf. Comput. Vis., 2001, pp. 400–407.

[34] A. Berenzweig, “Anchors and hubs in audio-based music similarity,”
Ph.D. dissertation, Columbia Univ., New York, 2007.

[35] A. Holzapfel and Y. Stylianou, “Musical genre classification using
nonnegative matrix factorization-based features,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 16, no. 2, pp. 424–434, Feb. 2008.

[36] A. Livshin and X. Rodet, “The importance of cross database evaluation
in sound classification,” in Proc. Int. Symp. Music Inf. Retrieval, 2003.

[37] C. McKay and I. Fujinaga, “Automatic music classification and the im-
portance of instrument identification,” in Proc. Conf. Interdisciplinary
Musicol., 2005.

[38] A. Meng, P. Ahrendt, J. Larsen, and L. Hansen, “Temporal feature in-
tegration for music genre classification,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 15, no. 5, pp. 1654–1664, Jul. 2007.

Jesper Højvang Jensen (M’08) was born in West
Jutland, Denmark, in 1981. He received the M.Sc.
degree in electrical engineering from Aalborg Uni-
versity, Denmark, in 2005. where he is currently pur-
suing the Ph.D. degree within the Intelligent Sound
Project.

He has been a Visiting Researcher at Columbia
University, New York, and his primary research
interest is feature extraction for music similarity.

Mads Græsbøll Christensen (S’00–M’06) was
born in Copenhagen, Denmark, in March 1977. He
received the M.Sc. and Ph.D. degrees from Aalborg
University, Aalborg, Denmark, in 2002 and 2005,
respectively.

He is currently an Assistant Professor with
the Department of Electronic Systems, Aalborg
University. He has been a Visiting Researcher at
Philips Research Labs, Ecole Nationale Supérieure
des Télécommunications (ENST), and Columbia
University, New York. His research interests include

digital signal processing theory and methods with application to speech and
audio, in particular parametric analysis, modeling, and coding of speech and
audio signals.

Dr. Christensen received several awards, namely an IEEE International Con-
ference Acoustics, Speech, and Signal Processing Student Paper Contest Award,
the Spar Nord Foundation’s Research Prize awarded anually for an excellent
Ph.D. dissertation, and a Danish Independent Research Council’s Young Re-
searcher’s Award.

Daniel P. W. Ellis (S’93–M’96–SM’04) received the
Ph.D. degree in electrical engineering from the Mass-
achusetts Institute of Technology (MIT), Cambridge,
in 1996.

He was a Research Assistant at the Media Lab,
MIT . He is currently an Associate Professor in the
Electrical Engineering Department, Columbia Uni-
versity, New York. His Laboratory for Recognition
and Organization of Speech and Audio (LabROSA)
is concerned with extracting high-level information
from audio, including speech recognition, music de-

scription, and environmental sound processing. He is an External Fellow of the
International Computer Science Institute, Berkeley, CA. He also runs the AU-
DITORY e-mail list of 1700 worldwide researchers in perception and cognition
of sound.

Authorized licensed use limited to: Columbia University. Downloaded on August 31, 2009 at 17:58 from IEEE Xplore.  Restrictions apply. 



JENSEN et al.: QUANTITATIVE ANALYSIS OF A COMMON AUDIO SIMILARITY MEASURE 703

Søren Holdt Jensen (S’87–M’88–SM’00) received
the M.Sc. degree in electrical engineering from Aal-
borg University, Aalborg, Denmark, in 1988, and the
Ph.D. degree in signal processing from the Technical
University of Denmark, Lyngby, in 1995.

Before joining the Department of Electronic
Systems, Aalborg University, he was with the
Telecommunications Laboratory of Telecom Den-
mark, Ltd, Copenhagen, Denmark; the Electronics
Institute, Technical University of Denmark; the Sci-
entific Computing Group, Danish Computing Center

for Research and Education (UNI-C), Lyngby; the Electrical Engineering
Department, Katholieke Universiteit Leuven, Leuven, Belgium; and the Center
for PersonKommunikation (CPK), Aalborg University. His research interests
include statistical signal processing, speech and audio processing, multimedia
technologies, digital communications, and satellite based navigation.

Dr. Jensen was an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL

PROCESSING, is Member of the Editorial Board of the EURASIP Journal on Ad-
vances in Signal Processing, is an is Associate Editor for Elsevier Signal Pro-
cessing and the Research Letters in Signal Processing, and has also guest-edited
two special issues for the EURASIP Journal on Applied Signal Processing.
He is a recipient of an European Community Marie Curie Fellowship, former
Chairman of the IEEE Denmark Section, and Founder and Chairman of the
IEEE Denmark Section’s Signal Processing Chapter.

Authorized licensed use limited to: Columbia University. Downloaded on August 31, 2009 at 17:58 from IEEE Xplore.  Restrictions apply. 


