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for Consumer Video
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Abstract—This paper presents a novel method for automatically
classifying consumer video clips based on their soundtracks. We
use a set of 25 overlapping semantic classes, chosen for their
usefulness to users, viability of automatic detection and of anno-
tator labeling, and sufficiency of representation in available video
collections. A set of 1873 videos from real users has been annotated
with these concepts. Starting with a basic representation of each
video clip as a sequence of mel-frequency cepstral coefficient
(MFCC) frames, we experiment with three clip-level representa-
tions: single Gaussian modeling, Gaussian mixture modeling, and
probabilistic latent semantic analysis of a Gaussian component
histogram. Using such summary features, we produce support
vector machine (SVM) classifiers based on the Kullback–Leibler,
Bhattacharyya, or Mahalanobis distance measures. Quantitative
evaluation shows that our approaches are effective for detecting
interesting concepts in a large collection of real-world consumer
video clips.

Index Terms—Audio classification, consumer video classifica-
tion, semantic concept detection, soundtrack analysis.

I. INTRODUCTION

M ORE and more people are capturing everyday experi-
ences using the video recording functions of small and

inexpensive digital cameras and camcorders. These recordings
are commonly shared with others through sites such as YouTube
[1]. Such large consumer video archives contain copious in-
formation and consequently present many new opportunities
for automatic extraction of information and the development of
intelligent browsing systems. However, navigation and search
within this kind of real-world material remain a considerable
challenge. This paper addresses this challenge, looking in par-
ticular at the opportunities to exploit acoustic information—the
soundtrack of a video—to see what useful descriptors can be
reliably extracted from this modality. While the visual informa-
tion in a video is clearly very rich, we believe that the soundtrack
may offer a useful and complementary source of information.
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Prior work on soundtrack analysis has typically focused
on detecting or distinguishing between a small number of
high level categories such as speech, music, silence, noise, or
applause. The application domain has most often relatively
carefully produced sources, such as broadcast audio or movie
soundtracks. Saunders [2] presented a speech/music discrimi-
nation (SMD) based on simple features such as zero-crossing
rate and short-time energy and a multivariate Gaussian classifier
for use with radio broadcasts. This work reported an accuracy
rate of 98% with 2.4-s segments. Scheirer et al. [3] tested 13
temporal and spectral features followed by a Gaussian mixture
model (GMM) classifier, and reported an error rate of 1.4%
in classifying 2.4-s segments from a database of randomly
recorded radio broadcasts of speech and music. Williams et al.
[4] approached SMD by estimating the posterior probability
of around 50 phone classes on the same data, and achieved
the same performance. Zhang et al. [5] proposed a system
to segment and classify audio from movies or TV programs
into more classes such as speech, music, song, environmental
sound, speech with music background, environmental sound
with music background, silence, etc. Energy, zero-crossing
rate, pitch, and spectral peak tracks were used as features,
and heuristic rule-based classifier achieved an accuracy rate
of more than 90%. Ajmera et al. [6] used entropy and dy-
namism features based on posterior probabilities of speech
phonetic classes [as obtained at the output of an artificial neural
network (ANN)], and developed a SMD based on a hidden
Markov model (HMM) classification framework. Lee et al.
[7] developed a noise-robust musical pitch detector based on
long-window autocorrelation for identifying the presence of
music in the noisy, highly variable consumer audio collected
by body-worn recorders. A support vector machine (SVM)
classifier using both pitch and rhythm features achieved 92%
average precision (AP) on 1873 YouTube videos.

For less constrained environmental sounds, research has con-
sidered problems such as content-based retrieval, surveillance
applications, or context-awareness in mobile devices. A popular
framework is to segment, cluster, and classify environmental
recordings into relatively simple concepts such as “animal,”
“machine,” “walking,” “reading,” “meeting,” and “restaurant,”
with testing performed on a few hours of data. Wold et al.
[8] presented a content-based audio retrieval system called
“Muscle Fish.” This work analyzed sounds in terms of percep-
tual aspects such as loudness, pitch, brightness, bandwidth, and
harmonicity, and adopted the nearest neighbor (NN) rule based
on Mahalanobis distance measure to classify the query sound
into one of predefined sound classes broadly categorized into
animals, machines, musical instrument, speech, and nature.
Foote [9] proposed a music and sound effects retrieval system
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where 12 mel-frequency cepstral coefficients (MFCCs) plus en-
ergy were used as feature vectors. A tree-based vector quantizer
(VQ) was applied on the feature vector space to partition it into
regions. Sounds were classified by calculating the Euclidean
or cosine distances between the histograms of VQ codeword
usage within each sound. Guo et al. [10] used SVM classifiers
with perceptual and cepstral features on the “Muscle Fish” data
and roughly halved the errors in comparison to [8]. Ellis et al.
[11] developed an automatic indexing mechanism at a coarse
time scale (e.g., 60-s frames) using features such as average
log energy and entropy deviation to identify the user’s location
based on nonspeech background ambience. Segmentation
employed the Bayesian information criterion, and segments
were then associated with one another via spectral clustering.
This work gave frame-level accuracies of over 80% on a 62-h
hand-labeled personal audio recordings. Malkin et al. [12]
used linear autoencoding neural networks to achieve a lower
error rate than a standard Gaussian mixture model (GMM)
for classifying environments such as restaurant, office, and
outdoor. A linear combination of autoencoders and GMMs
yielded still better performance. Ma et al. [13] considered the
problem of classifying the acoustic environment on a portable
device, for instance to provide a record of daily activities.
They used MFCC features classified by an adapted speech
recognition HMM to achieve over 90% accuracy distinguishing
3-s excerpts of 11 environments; humans averaged only 35%
correct on the same data. Chu et al. [14] investigate acoustic
context recognition for an autonomous robot. They compared
nearest-neighbor (NN), GMM, and SVM classifiers with a
wide range of features on a five-way classification task, and
found best performance using the SVM and a subset of features
selected by a greedy scheme.

The work most directly comparable to the current paper is that
by Eronen et al. [15]. Similar to [13], they investigated the clas-
sification of 24 contexts such as restaurant, office, street, kitchen
with a view to applications in portable devices that could alter
their behavior to best match an inferred situation. They com-
pared a variety of features and classifiers, and achieved best
performance with a simple approach of training a five-com-
ponent GMM on the MFCCs for each class, then classifying
a test sample according to the GMM under which it achieves
the highest likelihood. We take this as our baseline comparison
system in the results below.

None of this prior work has directly addressed the classifi-
cation of consumer videos by their soundtracks, and this do-
main raises a number of novel issues that are addressed for the
first time in this paper. First, we are dealing with the relatively
large number of 25 concepts, comparable only to the 24 contexts
in [15]; other systems used only between 2 and 12 concepts.
Second, our concepts are drawn from a user study of photog-
raphy consumers [16], and thus reflect actual types of queries
that users would wish to make rather than simply the distinctions
that we expect to be evident in the data. Third, in all previous
work there has been exactly one ground-truth label for each clip
example (i.e., the data were exclusively arranged into a certain
number of examples of each category). Consumer-relevant con-
cepts cannot be so cleanly divided, and in our data most clips

bear multiple labels, requiring a different approach to classifi-
cation; our approach is inspired by similar work in music clip
tagging, which has a similarly unpredictable number of rele-
vant tags per item [17]. Finally, our data set is larger than any
previously reported in environmental sounds, consisting of the
soundtracks from 1873 distinct videos obtained from YouTube
(as described below). These soundtracks are typically rather
poor quality, often contain high levels of noise, and frequently
have only sparse instances of “useful” (i.e., category-relevant)
sounds. Thus, this is a much more demanding task than has been
addressed in earlier work.

In addition to the novelty of the problem, this paper makes
a number of specific technical contributions. First, we illustrate
the viability of classifying, based only on soundtrack data, con-
cepts like “beach” or “night” that on first sight seem unrelated
to audio. Second, we show how to address the problem of over-
lapping concepts through the use of multiple, independent clas-
sifiers. Finally, we introduce a novel technique based on proba-
bilistic latent semantic analysis (pLSA) which outperforms our
baseline Gaussian-SVM classifiers.

Our concepts have diverse characteristics in terms of consis-
tency, frequency, and interrelationships. For example, the labels
“music” and “crowd” typically persist over most or all of any
clip to which they apply, and hence should be well represented
in the global feature patterns (e.g., mean and covariance of the
clip’s frame-level features). However, the concept “cheer” man-
ifests as a relatively small segment within a clip (at most a few
seconds), which means that the global patterns of an entire clip
may fail to distinguish it from others. This points to the need for
methods that can emphasize local patterns embedded in a global
background, such as the pLSA approach described below.

We briefly review the selection, definition, and annotation of
semantic concepts for consumer videos in Section II-A. Audio-
based detectors are described in Section III. The evaluation and
discussion of experimental results are given in Sections IV and
V, respectively.

II. DATA AND LABELS

A. Semantic Concepts

Our goal is to provide classification that is relevant to users
browsing personal video collections, thus our concepts must
reflect the actual needs of this target group. In previous work
[18], we defined the set of 25 concepts used here by starting
from a full ontology of over 100 concepts obtained through user
studies conducted by the Eastman Kodak Company [18]. This
set was pared down based on criteria of usefulness and viability
(i.e., whether the concept was suitably unambiguous to be la-
beled by humans, and whether it should be detectable in either
video or audio). These selected concepts fall into several broad
categories including activities, occasions, locations, or partic-
ular objects in the scene, as shown in Table I. Most concepts
are intrinsically visual, although some concepts, such as music
and cheering, are primarily acoustic. Since most of the selected
concepts are dominated by the visual cues, using visual cues
achieved higher accuracy for most concepts than using audio
cues. However, audio models provided significant benefits. For



1408 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 6, AUGUST 2010

TABLE I
DEFINITION OF THE 25 CONCEPTS, AND COUNTS OF MANUALLY LABELED

EXAMPLES OF EACH CONCEPT FROM 1873 VIDEOS

example, by their nature, concepts like “music,” “singing,” and
“cheer” can primarily be detected in the acoustic domain. Even
for some visually dominated concepts (like “museum” and
“animal”), audio methods were found to be more reliable than
visual counterparts, implying that the soundtracks of video clips
from these concepts provide rather consistent audio features
for classification. By combining visual baseline detectors and
audio baseline detectors through context fusion, the proposed
Audio–Visual Boosted Conditional Random Field (AVBCRF)
method algorithm improves the performance by more than 10%
compared with the visual baseline. The improvements over
many concepts are significant, e.g., 40% for “animal,” 51% for
“baby,” 228% for “museum,” 35% for “dancing,” and 21% for
“parade.” This paper describes for the first time the detail of the
audio-based detectors used in that work.

B. Video Data

We downloaded 4539 videos (about 200 videos for each con-
cept) from YouTube [1] by using the most relevant keyword
queries associated with the definition of the 25 concepts. For
these downloaded videos, we first manually filtered them to
discard videos not consistent with the consumer video genre,
or low-quality videos (e.g., those with particularly bad sound
quality).

Non-consumer videos fall mainly into two categories: broad-
casting content, and user-edited videos. The “sports” videos
downloaded with using keywords like soccer, basketball, foot-
ball, baseball, volleyball, and ping-pong, contain many com-
mercial videos captured from TV. Some consumer videos are

Fig. 1. Co-occurrence matrix for the 25 manually annotated labels within the
1873 video set. Co-occurrence counts within each row are normalized by the
total number of instances of that row’s concept to give the conditional proba-
bility of observing the overlapped concept given the labeled concept.

also extensively edited, e.g., the highlights of a field trip can
have many abrupt changes of locations in single video clip.
Some clips look like music videos, with the original soundtrack
largely or completely replaced by added music. These types are
also excluded.

In consequence, the 4539 YouTube videos were reduced
to 1873 (41%) relevant, consumer-style clips, 1261 (28%)
irrelevant (non-consumer), and 1405 (31%) poor-quality videos
whose soundtracks had bandwidth less than 8 kHz. We used
only the 1873 relevant videos with adequate sound quality as
our experimental data set. The average duration of a clip from
this set was 145 s.

Videos were downloaded based on the tags and description
provided by their owners. However, people will generally tag
their videos according to subjective definitions (e.g., labeling
an entire ski trip as relating to the concept “skiing”). To ensure
accurate labels, we manually reviewed every one of the 1873
videos, and tagged it with the concepts that it contained, as de-
fined in Table I.1 On average, each video ended up with three
concept labels, and some labels were very likely to co-occur
with others, as illustrated in Fig. 1. For example, “group of three
or more,” “music,” “crowd,” and “cheer,” are all highly over-
lapped with other concepts. More details on the video collec-
tions and labels are provided in [16].

III. AUDIO CONCEPT DETECTION ALGORITHMS

Our fundamental frame-level feature is the MFCCs com-
monly used in speech recognition and other acoustic classifica-
tion tasks. The single-channel (mono) soundtrack of a video is
first resampled to 8 kHz, and then a short-time Fourier magni-
tude spectrum is calculated over 25-ms windows every 10 ms.
The spectrum of each window is warped to the Mel frequency
scale, and the log of these auditory spectra is decorrelated into
MFCCs via a discrete cosine transform.

After the initial MFCC analysis, each video’s soundtrack
is represented as a set of -dimensional MFCC feature
vectors, where the total number of frames depends on the

1These labels, along with the references to the YouTube videos, are available
on our website, http://www.labrosa.ee.columbia.edu/projects/consumervideo/.
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duration of the original video. (21 dimensions were chosen
based on results from our earlier experiments [11]; general
audio classification usually benefits from using more MFCC
dimensions than are commonly used for speech recognition.)
To reduce this set of MFCC frames, regardless of its original
size, to a single fixed-dimension clip-level feature vector, we
experimented with three different techniques: Single Gaussian
modeling (1G), Gaussian mixture modeling (GMM), and
probabilistic latent semantic analysis of a Gaussian component
histogram (pLSA). Each of these is discussed in more detail
below.

These fixed-size representations are then compared to one
another by several distance measures: the Kullback–Leibler di-
vergence (KL), Bhattacharyya distance (Bha), and Mahalanobis
distance (Mah). The distances between all clips form the input
to a support vector machine classifier as described in the next
subsection.

A. Support Vector Machines (SVMs)

The SVM is a supervised learning method used for classifica-
tion and regression that has many desirable properties [19]. Data
items are projected into a high-dimensional feature space, and
the SVM finds a separating hyperplane in that space that maxi-
mizes the margin between sets of positive and negative training
examples. Instead of working in the high-dimensional space di-
rectly, the SVM requires only the matrix of inner products be-
tween all training points in that space, also known as the kernel
or gram matrix. With a method similar to [20], we exponentiate
the matrix of distances between examples to create a
gram matrix

(1)

where , and and index the video
clips. We use the so-called slack-SVM that allows a trade-off
between imperfect separation of training examples and smooth-
ness of the classification boundary, controlled by a constant
that we vary in the range . Both tunable pa-
rameters and are chosen to maximize classification accu-
racy over a held-out set of validation data. After training an in-
dependent SVM model for each concept, we apply the classi-
fiers to summary features derived from the test video clips. The
resulting distance-to-boundary is a real value that indicates how
strongly the video is classified as reflecting the concept. The
test videos are then ranked according to this value. Following
conventions in information retrieval, we evaluate classifiers by
calculating their average precision (AP), which is the proportion
of true results in the ranked list when truncated at the th true
item, averaged over all .

B. Single Gaussian Modeling (1G)

The basic assumption of single Gaussian modeling is that
different activities (or concepts) are associated with different
sounds whose average spectral shape and variation, as calcu-
lated by the cepstral feature statistics, will be sufficient to dis-
criminate categories. This approach is based on common prac-
tice in speaker recognition and music genre identification, where

Fig. 2. Process of calculating clip-level features via a single Gaussian model
per clip, and using them within an SVM classifier.

the distribution of cepstral features, collapsed across time, is
found to be a good basis for classification [21], [22]. Specifi-
cally, to describe a clip’s sequence of MFCC features as a single
feature vector, we ignore the time dimension and treat the set as
a “bag of the frames” in MFCC feature space, which we then
model as a single, full-covariance Gaussian distribution. This
Gaussian is parameterized by its 21-dimensional mean vector
and 21 21-dimensional (full) covariance matrix . The overall
process of the single Gaussian modeling is illustrated in Fig. 2.

To calculate the distance between two Gaussians, as required
for the gram-matrix input (or kernel matrix) for the SVM, we
have experimented with three different distance measures. First
is the KLdivergence: If two clips and are modeled by single
Gaussians as

(2)

respectively, then the distance between the clips is taken as the
KL divergence between Gaussians and , i.e.,

(3)

The second distance measure is the Bha distance, defined by

(4)

The final approach simply treats the -dimensional mean
vector concatenated with the independent values
(diagonal and upper triangular elements) of the covariance ma-
trix as a point in a new 21 231-dimensional feature space
describing the clip. These 252-dimensional features, denoted
by and for videos and , are compared to one another
using the Mahalanobis (i.e., covariance-normalized Euclidean)
distance to build the gram matrix

(5)
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where is the covariance of these features taken across the en-
tire training set. We assumed to be diagonal, i.e., consisting
only of the variance of each dimension.

C. Gaussian Mixture Models (GMMs)

In order to capture details of feature distributions that may
not be well fit by a single Gaussian, we also experimented with
using a mixture of diagonal-covariance Gaussians, estimated via
the EM algorithm, to describe the bag-of-frames distribution. To
compare GMMs, we use just one distance measure, an approx-
imation to the Bhattacharyya distance that was shown to give
good performance in tasks requiring the comparison of GMMs
[23]: Assume that the distributions of two clips, and ,
are represented by two different GMMs

(6)

where , , and are the prior weight, mean, and covari-
ance of each Gaussian mixture component used to approximate
clip , and the -subscripted values are for clip . To simplify
notation, we call and hence-
forth.

Although there is no closed-from expression for the Bhat-
tacharyya divergence between two GMMs, it can be approx-
imated by variational methods [23]. The Bhattacharyya simi-
larity between two distributions and is

(7)

where is the Bhattacharyya distance between a par-
ticular pair of single Gaussians, one from each mixture. To pre-
serve the identity property that if and only if

, the variational Bhattacharyya similarity is normal-
ized using the geometric mean of and

(8)

With this normalized Bhattacharyya approximation, the corre-
sponding Bhattacharyya divergence is defined as

.

D. Probabilistic Latent Semantic Analysis (pLSA)

Unlike the Gaussian models’ assumption that each concept
is distinguished by the global distribution of all short-time fea-
ture vectors, this approach recognizes that each soundtrack will
consist of many different sounds that may occur in different pro-
portions even for the same category, leading to variations in the
global statistics. If, however, we could decompose the sound-
track into separate descriptions of those specific sounds, we
might find that the particular palette of sounds, but not neces-
sarily their exact proportions, would be a more useful indicator
of the content. Some kinds of sounds (e.g., background noise)
may be common to all classes, whereas some sound classes

(e.g., a baby’s cry) might be very specific to a particular class
of videos.

To build a model better able to capture this idea, we first con-
struct the vocabulary (or palette) of sounds by constructing a
large GMM, composed of Gaussian components; we exper-
imented with in the range 256 to 1024. This large GMM
was trained on MFCC frames subsampled from all videos from
the training set, regardless of label. (We observed a marginally
better performance after training the GMM on a set of frames
selected as the central points of about 100 groups, clustered by
the -means algorithm on each clip, instead of a random sam-
pling method). The resulting Gaussians are then considered
as anonymous sound classes from which each individual sound-
track is assembled—the analogs of words in document mod-
eling. We assign every MFCC frame in a given soundtrack to the
most likely mixture component from this “vocabulary” GMM,
and describe the overall soundtrack with a histogram of how
often each of the Gaussians was chosen when quantizing the
original clip’s frames.

Suppose that we have given a collection of training clips
and an -mixture of Gaussians

. We summarize the training data as
a co-occurrence matrix of counts with elements

, the number of times mixture component
occurred in clip . Normalizing this within each clip gives
an empirical conditional distribution . Note that this
representation also ignores temporal structure, but it is able to
distinguish between nearby points in cepstral space provided
they were represented by different Gaussians in the vocabulary
model. The idea of using histograms of acoustic tokens to
represent the entire soundtrack is also similar to that of using
visual token histograms for image representation [24], [25].

We could use this histogram directly, but to remove
redundant structure and to give a more compact description,
we go on to decompose the histogram with pLSA [26]. This
approach, originally developed to generalize the distribu-
tions of individual words in documents on different topics

, models the histogram as a mixture of a
smaller number of “topic” histograms, giving each document
a compact representation in terms of a small number of topic
weights. The individual topics are defined automatically to
maximize the ability of the reduced-dimension model to match
the original set of histograms. (This technique has been used
successfully in an audio application by Arenas–García et al.
[27], who use pLSA as a way to integrate and condense dif-
ferent features of music recordings for applications in similarity
and retrieval.)

Specifically, the histogram-derived probability that a
particular component will be used in clip is approximated as
the sum of contributions from topics , , weighted by the
specific contributions of each topic to the clip, , i.e.,

(9)

which embodies the assumption that conditioning on a topic
makes clip and component independent. During training, the
topic profiles (which are shared between all clips), and
the per-clip topic weights , are optimized by using the
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Fig. 3. Illustration of the calculation of pLSA-based features and clip-level comparisons, based on GMM component histograms. Top left shows the formation
of the global GMM; bottom left shows the formation of the topic profiles, � ����� and topic weights, � ���� � in training data; top right shows the analysis of
each testing clip into topic weights, � ���� � by matching each histogram to a combination of topic profiles estimated by training data, and bottom right shows
the final classification by an SVM.

expectation–maximization (EM) algorithm. In the Expectation
(E) step, posterior probabilities are computed for the latent vari-
ables

(10)

Parameters are updated in the maximization (M) step

(11)

The number of distinct topics determines how accurately the
individual distributions can be matched, but also provides a way
to smooth over irrelevant minor variations in the use of certain
Gaussians. We tuned it empirically on the development data,
as described in Section IV. Representing a test item similarly
involves finding the best set of weights to match the observed
histogram as a (nonnegative) combination of the topic profiles;
we minimizing the KL distance via an iterative solution, i.e., the
per-clip topic weights of testing data sets are optimized
by using the EM algorithm with fixed the topic profiles
that is already estimated on training set.

Finally, each clip is represented by its vector of topic weights
and the SVM’s gram matrix is calculated as the Mahalanobis
distance in that topic weight vector space. (Again, we assumed
the feature covariance matrix was diagonal.) We compared
several different variants of the topic weight vector: unmodified

, log-transformed , and log-normalized
, which normalizes the topic weight by the

prior of topics and then takes the logarithm. The process of
pLSA feature extraction is illustrated in Fig. 3.

IV. EVALUATION

We evaluate our approaches using fivefold cross validation on
our labeled collection of 1873 videos: At each fold, SVM clas-
sifiers for each concept are trained on 40% of the data, tuned on
20%, and then tested on the remaining 40%, selected at random.

We then evaluated all our approaches in terms of the AP
for detecting the 25 concepts across the 1873 consumer-style
videos. Fig. 4 shows the results of the 1G with the three
different distance measures, KL, Mahalanobis, and Bhat-
tacharyya. 1G+KL gives better performance for location-re-
lated concepts such as “park,” “playground,” and “ski”; by
contrast, audio-dominated concepts such as “music,” “cheer,”
and “singing” are best with the 1G+Mah. Concepts “group
of 3+,” “crowd,” and “baby” are well detected by 1G+Bha,
possibly because human speech plays an important role in
discriminating them from other concepts. On average, 1G+KL
performs the best among the three distance measures.

Fig. 5 shows the results for GMMs with between 2 and 16
Gaussian components per model. Between-model distance is
calculated by the approximated Bhattacharyya divergence. Al-
though the optimal number of Gaussian is strongly dependent on
the total duration of positive examples of the class, the 8-GMM
is a good compromise (the best AP), able to capture detail across
all the classes.

The performance of the pLSA of the GMM histogram is
shown in Figs. 6 and 7. To build the gram matrix for the
SVM, we tested various summary features, including the raw
histogram counts (i.e., without decomposition into
pLSA topics), the per-clip topic weights , log-topic
weights , and log-normalized topic weights

. In each case, the gram matrix contained
Mahalanobis distances, i.e., normalized by the variance of
the features across the entire training set. By comparing the
three curves for 1024-GMM histograms in Fig. 7, we see that
log-normalized topic weights perform significantly better than
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Fig. 4. Average precision (AP) across all 25 classes for the 1Gs, using each of the three distance measures, KL, Mahalanobis, and Bhattacharyya. Labels are sorted
by the guessing baseline performance (shown). Bars and error-bars indicate the mean and standard deviation over fivefold cross-validation testing respectively.

Fig. 5. As Fig. 4, but using GMMs with 2, 4, 8, and 16 components, and approximated Bhattacharyya distance.

Fig. 6. As Fig. 4, but using pLSA modeling of component-use histograms for GMMs of 256, 512, and 1024 components. Also shown is performance using the
256 component histogram directly, without pLSA modeling.

the raw histogram or unnormalized weights. As we increase the
number of Gaussian components used to build the histograms,
we see increasing benefits for the less-frequent (lower-prior)

concepts. The best performance is obtained by using around
500 topics to model component use within a 1024-mixture
GMM.
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Fig. 7. AP averaged across all classes for pLSA models using different numbers of “topics” (latent dimensions) and different treatments for the inferred per-clip
topic strengths, ������.

Fig. 8. Best results from Figs. 4, 5, and 6, illustrating the relative performance of each representation. Concepts are evaluated with average precision (AP), accuracy
and � .

V. DISCUSSION

Fig. 8 compares the best results for each of the three modeling
approaches, (1G+KL, 8-GMM+Bha, and pLSA-500+lognorm)
along with a comparison system based on [15]. The comparison

system builds an eight-component diagonal-covariance GMM
for the MFCC features of clips bearing each label, and ranks
items based on the likelihood under that GMM, i.e., it lacks the
final SVM stage of the other systems. The figure compares the
systems in terms of average precision (AP), accuracy rate, and
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Fig. 9. Confusion matrix of classified labels within 750 testing clips according to three approaches.

. The AP is the Average of Precisions calculated separately
for each true clip. The accuracy rate is the proportion of clips
correctly labeled. is a threshold-independent measure of the
separation between the two classes (presence and absence of
the label) when mapped to two unit-variance Gaussian distri-
butions. Note that accuracies can be made very high for con-
cepts with small prior probabilities simply by labeling all clips
as negative; and AP are less vulnerable to this bias. To obtain
a hard classification (for accuracy and calculation) from our
SVM-based rankings, we need to choose a threshold for the dis-
tance-to-boundary values. We set this threshold independently
for each class at the point at which the number of positive clas-
sifications matched the prior of the class.

Most striking is the wide variation in performance by concept,
which is to be expected since different labels will be more or less
evident in the soundtrack as well as being supported by widely
differing amounts of training data. Indeed, the main determinant
of performance of these classifiers appears to be the prior likeli-
hood of that label, suggesting that a large amount of training data
is the most important ingredient for a successful classifier. This
is, however, confounded by the correspondingly higher baseline.
In some cases these factors may be distinguished: a less fre-
quent concept “ski” has AP similar to that of the more frequent
concept “beach,” suggesting that it is more easily detected from
the audio. However, the error bars, showing the range of varia-
tion across the fivefold cross validation, reveal that “ski” gives
less consistent results, presumably because a smaller number of
positive training examples will lead to greater variability among
the different subsets of positive examples chosen in each fold to
train the SVM classifier.

Some concepts consist of a few distinct, representative sounds
that may be more successfully modeled by GMMs than by a
single Gaussian. For instance, we have noticed that “beach”
is mainly composed of two sound types, “wind” and “water”
sounds; the AP for this concept is noticeably larger with the
GMM than with 1G. This also suggests that performance could
be improved by dividing some classes into more specific and
hence more consistent subclasses (e.g., “animal” could be re-
fined to “dog,” “cat.” etc).

In addition, we have noticed that some concepts such as
“cheer,” “people,” and “music” may be predominantly con-
tained in other concepts such as “birthday,” “sports,” and
“show.” It is damaging to use such highly overlapped labels for

SVM training with the 1G or GMM approaches because it is
impossible to separate pure positive and negative segments at
the scale of whole clips. The pLSA model is less sensitive to
this problem, since it is able to represent the clip-level summary
features directly as combinations of “topics,” rather than trying
to assign them to a single class. This may explain why its
performance, averaged over all classes, appears superior to the
other approaches.

Fig. 9 shows confusion matrices for each classification ap-
proach obtained by assigning each clip to the single class whose
SVM gave the largest distance-to-margin, then looking at the
distribution of labels assigned to all clips tagged with each spe-
cific class to obtain each row of the matrix. Because this ap-
proach does not allow the classifier to assign the multiple tags
that each clip may bear, perfect performance is not possible and
confusions may reflect label co-occurrence as well as imperfect
classifiers. The 1G and GMM confusion patterns are more sim-
ilar to each other than to the pLSA approach.

Fig. 10 gives example results for detecting the concept
“cheer.” Most “cheer” clips contain speech, music, and other
background sounds that are more predominant than any
cheering sound. On average, cheer sounds account for around
28% of the time within corresponding clips.

We have argued that pLSA is successful because it can repre-
sent soundtracks as mixtures of “topics” that may correspond to
varying kinds of sounds within the overall soundtrack duration.
To give greater insight, Fig. 11 shows the weights associated
with each class for each of the anonymous topics for a 100 topic
model based on 1024 component GMM occupancy histograms.
While many pLSA topics are strongly identified with a single
concept, many others make significant contributions to several
classes, such as concepts 26 to 28 that occur in both “beach”
and “sunset,” or topics 96 and 97 that contribute to “park” and
“picnic.” The conjecture is that these topics correspond to the
GMM states that cover the common sounds that occur in these
classes; however, this needs to be confirmed by a closer exami-
nation of the time frames corresponding to the GMM states as-
sociated with these topics.

The pLSA approach gives consistently the best results. For
instance, pLSA achieves a higher Average Precision than the
next best approach (1G) for 18 out of the 25 categories; this is
statistically significant under a binomial model. However, the
margin of improvement is relatively small and might not be im-
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Fig. 10. Examples of retrieval results for the “cheer” concept. Shown are the
top 15 results for each of the best-performing detection systems, 1G+KL2,
8GMM+Bha, and pLSA500+lognorm. Results that are correct according to
manual labeling have pale borders. The proportion of correct results is shown
in the heading for each pane.

portant in some applications. The baseline single-Gaussian, or
likelihood-based GMM systems perform relatively well in com-
parison and are much simpler to construct and to evaluate. Thus,
depending on the nature of the database and the value of the
highest possible precision, these may be valid approaches. How-
ever, this pattern could change with larger training databases and
needs to be reevaluated.

Fig. 11. Example pLSA topic weights (i.e., ������) across all concepts for a
100-topic model. Topic columns are sorted according to the concept for which
they have the largest weight.

VI. CONCLUSION

In this paper, we have described several variants of a system
for classifying consumer videos into a number of semantic con-
cept classes, based on features derived from their soundtracks.
Specifically, we have experimented with various techniques for
summarizing low-level MFCC frames into fixed-size clip-level
summary features, including single Gaussian models, Gaussian
mixture models, and probabilistic latent semantic analysis
of the Gaussian component histogram. We constructed SVM
classifiers for each concept using the Kullback–Leibler, Bhat-
tacharyya, and Mahalanobis distances. In spite of doubts over
whether soundtrack features could be effective for identifying
content classes with no obvious acoustic correlates such as
“picnic” and “museum,” we show that our classifiers are able
to achieve APs far above chance, and in many cases at a level
useful in real retrieval tasks.
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