
1872 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 7, SEPTEMBER 2010

Evaluating Source Separation Algorithms
With Reverberant Speech

Michael I. Mandel, Member, IEEE, Scott Bressler, Barbara Shinn-Cunningham, and
Daniel P. W. Ellis, Senior Member, IEEE

Abstract—This paper examines the performance of several
source separation systems on a speech separation task for which
human intelligibility has previously been measured. For anechoic
mixtures, automatic speech recognition (ASR) performance on
the separated signals is quite similar to human performance. In
reverberation, however, while signal separation has some benefit
for ASR, the results are still far below those of human listeners
facing the same task. Performing this same experiment with a
number of oracle masks created with a priori knowledge of the
separated sources motivates a new objective measure of separation
performance, the Direct-path, Early echo, and Reverberation, of
the Target and Masker (DERTM), which is closely related to the
ASR results. This measure indicates that while the non-oracle
algorithms successfully reject the direct-path signal from the
masking source, they reject less of its reverberation, explaining
the disappointing ASR performance.

Index Terms—Intelligibility, objective evaluation, reverberation,
speech enhancement, time–frequency masking, underdetermined
source separation.

I. INTRODUCTION

I T is important to measure how well source separation al-
gorithms perform in order to compare and improve them.

Typically, however, this performance is measured in terms of
the similarity between the original source waveforms and the
waveforms estimated from a mixture. When separating sources
from an instantaneous overdetermined mixture (i.e., a mixture
with more microphones than sources and no reverberation or de-
lays), perfect reconstruction of each source should be attainable.
When separating sources from reverberant and underdetermined
mixtures, however, perfect reconstruction is impossible because
of the information lost in the mixing process. Thus, measuring
the fidelity of the waveform estimation makes unreasonable ex-
pectations of a separation algorithm.
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It is more informative to compare the original and estimated
signals in a representation that is more relevant to the intended
application of the source separator than the raw waveform [1].
For example, if a separator is to be used as the front-end for an
automatic speech recognition system, its performance should
be measured in terms of the increase in performance of the
end-to-end system when it is in place, not in terms of an inter-
mediate quantity that only indirectly affects the system’s per-
formance such as waveform reconstruction error. Similarly, if a
separator is to be used in a hearing aid application, its perfor-
mance should be measured in terms of the increase in intelligi-
bility it provides to listeners.

Because human speech recognition accuracy is still well be-
yond that of automatic speech recognition (ASR) in many con-
ditions, human speech recognition performance can be thought
of as an upper bound on the performance of automatic recog-
nizers. While human intelligibility has been used to evaluate
the quality of ground truth masking-based source separation [2],
[3], such evaluations are expensive and time consuming and
must be rerun for every variant of a source separation algorithm.
ASR performance, on the other hand, requires only computa-
tional resources. It has been used to evaluate some of the earliest
underdetermined source separation systems (e.g., [4]).

ASR and intelligibility both provide a coarse measure of the
performance of source separation systems, however, because
they only provide estimates at the word or phoneme level. When
developing source separators it is useful to have a metric that
operates at a finer resolution in both time and frequency, thus
allowing greater insight into how and why an approach works
or fails. This has motivated the use of other objective measures
of source separation performance. While such metrics, e.g., the
Perceptual Evaluation of Speech Quality (PESQ) and various
signal-to-distortion metrics, can be informative, they have not
been shown decisively to correspond well with intelligibility of
signals for human subjects.

PESQ is, as its name says, a metric designed to predict sub-
jective judgments of speech quality. It was originally designed
for use in telecommunications, but has recently been shown to
correspond well will subjective judgments of speech quality for
speech enhancement and separation systems [5]. It has also been
used to predict ASR performance [6]. Quality is a property of
speech that corresponds to its realism and naturalness, char-
acteristics that are not necessary for intelligibility. [3] and [7]
have shown that a frequency-dependent gating or modulation of
noise, which has low quality, can be highly intelligible. Thus,
while ASR performance can be predicted by quality to some
extent, the relationship is imperfect and indirect [8], [9].
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Other metrics that are popular for evaluating speech sepa-
ration performance are based on some form of signal-to-noise
ratio (SNR). While they are more straightforward to calculate,
it is not clear whether they are meant to predict intelligibility or
quality. As measures of intelligibility, these metrics are flawed,
since signal energy does not correlate consistently with intelli-
gibility [1]. For example, low speech frequencies tend to be rela-
tively intense, independent of spectral and temporal content, but
do not affect intelligibility as much as mid and high frequencies.
Similarly, in normal speech higher frequencies tend to have low
intensity, but their deletion can diminish intelligibility signifi-
cantly. Another problem with many such measures is that they
do not provide a single figure of merit, but instead separately
account for target energy that is lost and noise that is not elim-
inated (e.g., [10], [11]) complicating comparisons of different
algorithms and making it difficult to determine how a given al-
gorithm is failing.

This paper explores the performance of a number of state-of-
the-art source separation systems in terms of the improvement
they give to automatic speech recognizers and to human lis-
teners. Section II-C proposes a number of models of the per-
formance of these separators in terms of novel oracle-based
source separators that preserve or reject different parts of the
target and masker signals. Sections III and IV show that while
the non-oracle systems improve ASR performance substantially
for anechoic mixtures, they only improve it slightly for rever-
berant mixtures. One of the oracle models very closely follows
the performance of the source separators in these experiments
and in subsequent investigations with other evaluation metrics
in Sections V and VI.

Section V examines these separations through the lens of the
novel DERTM metric, which is related to this family of oracle-
based models and measures the change in energy of the Direct-
path, Early echos, and Reverberation of the Target and Masker
(DERTM) signals produced by a mask-based source separator.
DERTM distinguishes between different types of separation er-
rors and further supports the fit of this model, implying that the
source separators successfully reject the direct-path signal from
interfering sources, but fail to reject reverberation from them.
DERTM also detects that one separation algorithm, MESSL,
breaks down at very low target-to-masker ratios because of a
failure of its localization initialization. This breakdown is not
detected by the PESQ [12, Sec. 10.5.3.3], or the SNR metric
(our designation) [13], which are described along with other ob-
jective separation metrics in Section VI.

II. SHARED EXPERIMENTAL DETAILS

The experiment in this paper is based on the human spatial
hearing experiment of [14], but only includes a subset of the
conditions tested in that paper. Section II-A describes the orig-
inal experiment, and Section II-B describes the experiment that
we carried out based on it. Note that while all of the algorithms
compared in this paper are able to separate underdetermined
mixtures, because the original psychoacoustic experiment used
a determined mixture with two sources and two microphones,
we follow the same procedure here.

A. Details of Original Experiment

The experiment of [14] examined the intelligibility of a target
utterance in the presence of a masking utterance in reverberant
and anechoic conditions while varying the cues that a listener
could use to separate the two streams. All utterances were
spoken by the same person, so no speaker-dependent cues were
available to the listeners. The cues that were available included
the linguistic content of the utterances, spatial location, pitch,
and timing.

The target utterance was a string of five digits, “one” through
“nine,” “oh,” and “zero.” The masking utterance was a sentence
from the TIMIT corpus, i.e., a grammatically correct sentence.
The target speaker was always located in front of the listener,
while the masking speaker was either located in front of the lis-
tener or at 90 to their right. In certain conditions, the speaker’s
voice was modified to be a single pitch throughout the utterance.
The digit-string target always started after the masker sentence,
so that differences in source onset could be used to identify the
target. Subjects were tested in all possible combinations of in-
tonation and spatial conditions.

Unlike many recent studies of speech-on-speech masking,
this task greatly limited the subjects’ uncertainty about which
source was the target and which was the masker (e.g., in con-
trast to [15]–[19]), essentially solving the problem of source se-
lection (see [20]). Instead, listeners should have been able to
understand the target if they could separate it from the masker.
This made these results more directly relevant to our own sepa-
ration algorithm evaluations than most other studies.

The results of this experiment indicated that the intelligi-
bility of speech was qualitatively different in anechoic and
reverberant conditions. In all conditions, masking was max-
imal when intonation and spatial cues were the same in the
two utterances. In reverberation, where segregation cues are
weakened, differences in either of these cues provided a release
from masking and differences in both of these cues combined
into an even larger release from masking. This was not the case
in the anechoic condition where segregation was much easier.
In this case, the effect of spatial separation could be explained
by energetic release, i.e., the signal at the ear with the higher
SNR predicted all anechoic binaural conditions perfectly. Thus
in anechoic conditions, pitch helped humans segregate sources,
but location did not help beyond the energetic differences it
induced in different configurations.

Generally, in reverberant conditions, the curve of intelligi-
bility versus target-to-masker ratio (TMR) was shifted towards
higher TMRs and had a more shallow slope than in anechoic
conditions (see Figs. 1 and 2 for these curves). This indicates
that the target was less intelligible in a reverberant mixture, but
that an incremental change in relative masker level had a smaller
effect on intelligibility in reverberation (i.e., that the TMR was
less directly responsible for performance limitations than in ane-
choic conditions).

B. Details of Current Experiment

The experiments performed in this paper used the same utter-
ances and the same impulse responses as [14]. The impulse re-
sponses were recorded in a classroom of size 5 9 3.5 m (the
same classroom as [21]) with the source 1.2 m from a KEMAR
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Fig. 1. Automatic speech recognition performance as a function of target-to-masker after applying ground truth separation masks. Note that in (a) many of the
lines lie exactly on top of each other. Error bars show 1 standard error. (a) Anechoic. (b) Reverberant.

Fig. 2. Automatic speech recognition performance as a function of target-to-masker ratio after applying algorithmic separation masks. (a) Anechoic.
(b) Reverberant.

dummy head. They have a reverberation time of approximately
550 ms and have a direct-to-reverberant ratio of approximately
10 dB, computed as the ratio of the energy in the first 9.6 ms
of the impulse response to that in the rest of the impulse re-
sponse. One binaural impulse response was recorded at each of a
number of azimuths in the horizontal plane; however, following
[14], we only use the two recorded at 0 and 90 . The impulse
responses were recorded at a 50 kHz sampling rate, and then
downsampled to 25 kHz, the sampling rate of the utterances.

There were some differences between our experiment and
that of [14], however. Because localization is central to separa-
tion in all of the separation systems under evaluation, we did not
evaluate them on the collocated conditions. Unlike the human
subjects, the algorithms had no prior knowledge of the loca-
tions of the sources before the separation. We also only eval-
uated mixtures using naturally intoned speech; we did not use
the monotonized speech.

The 200 unique target utterances were split into three sets,
a training set of 75 utterances, a tuning set of 50 utterances,
and a test set of 75 utterances. All three sets used the same two
pairs of binaural room impulse responses and could use the same
masking utterances. The training set consisted of 64 mixtures at
each of eight TMRs spaced evenly between 1.7 dB and 45 dB.

The tuning and test sets consisted of 64 mixtures at each of
ten TMRs spaced evenly between 35 and 25 dB. The training
mixtures were randomized at each TMR, but the 64 random
mixtures in the tuning set were the same at each TMR, as were
the 64 random mixtures in the test set. Thus, there were a total
of 512 utterances in the training set and 640 utterances in each
of the tuning and test sets.

As in the human experiment, the target utterances were al-
ways shorter than the maskers, and silence was inserted before
and after them to center them in their respective maskers. All ut-
terances were normalized to the same RMS level before being
spatialized with the binaural room impulse responses and mixed
at the appropriate TMR. All mixtures had dither added to them
to create a constant noise floor in the inserted silence. The dither
just covered the recording noise floor in the louder ear at the
highest TMR of an utterance that had been passed through the
anechoic impulse responses.

C. Oracle Separations

The oracle binary mask, also known as the ideal binary
mask, has been proposed as an upper bound on the perfor-
mance of source separation algorithms that generate binary
time–frequency masks [13]. It is “ideal” both in being optimal
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TABLE I
SIX ORACLE MASKS USED IN THESE EXPERIMENTS. � INDICATES

THAT THE MASK TREATS A SIGNAL COMPONENT AS DESIRABLE, �
INDICATES THAT THE MASK TREATS IT AS UNDESIRABLE. SIGNAL

COMPONENTS ARE: TARGET DIRECT-PATH, TARGET REVERBERATION,
MASKER REVERBERATION, AND MASKER DIRECT-PATH. NOTE

THAT EARLY ECHOES ARE INCLUDED IN REVERBERATION

in terms of signal-to-interference ratio and in being unattain-
able from real-world mixtures. This is because it is created
using knowledge of the original component signals before they
are combined to make a mixture. In this paper, we compare
six different oracle separation algorithms. All of these oracle
masks are constructed based on the ratio of desirable energy
to undesirable energy at each time–frequency point. They
differ in their classification of the desirability of direct-path
and reverberant signals from the target and masker sources,
and in whether they create binary or continuous (Wiener filter)
masks. See Table I for an indication of the classification of
these signals in each mask.

The final reverberated signal can be decomposed into its di-
rect-path, early echo, and reverberant portions by convolving
different parts of the impulse response with the original ane-
choic signal, or, equivalently, by settings various parts of the
impulse response to 0. The direct path portion of each impulse
response was generated from the full reverberant impulse re-
sponse by setting to 0 all samples more than 9.6 ms from its
beginning. Similarly, the early echo portion set to 0 all samples
less than 9.6 ms and more than 32 ms from the beginning, and
the reverberant portion set to 0 all samples less than 32 ms from
the beginning. Note that for the purposes of constructing the
oracle masks, early echoes were considered to be part of the re-
verberation, as they did not make an appreciable difference on
performance.

The DP-Oracle mask is a binary mask that only considers the
target direct-path signal to be desirable. The Oracle mask is the
same, but also considers the reverberation of the target signal
to be desirable. The OracleAllRev mask additionally considers
the reverberation of the interfering signal to be desirable. This
mask is proposed as an idealized comparison for the algorithmic
separations described later in this paper, which tend to success-
fully reject the direct-path signal from the interfering source,
but have more difficulty rejecting its reverberation. For each bi-
nary mask, there is a corresponding Wiener filter mask com-
puted as the ratio of the desirable energy to the total energy at
each time–frequency point.

Algorithmic Separations

These experiments involve our own separation system,
Model-based EM Source Separation and Localization (MESSL)

[22] and three other well known source separation algorithms:
DUET [23], the algorithm of [24], which we refer to as Sawada,
and the algorithm of [25], which we refer to as Mouba. We
implemented all of these systems ourselves as we did not have
access to the authors’ original code.

MESSL [22] jointly separates and localizes sound sources
by probabilistically modeling the interaural parameters of each
source. The interaural level difference (ILD) is modeled as a
diagonal-covariance Gaussian with frequency-dependent mean
and standard deviation. The interaural time difference (ITD) is
modeled as a hidden multinomial that is only observed in the
interaural phase difference (IPD), which is modeled with a mix-
ture of diagonal covariance Gaussians, each with frequency-de-
pendent means and standard deviations. The hidden ITD vari-
ables constrain the IPD observations to be approximately linear
with frequency. MESSL treats the interaural level and phase dif-
ferences as independent variables, so they only interact through
the mask that each generates. Additionally, all points in the spec-
trogram are assumed to be independent of one another when
conditioned on the interaural parameters (ILD, ITD, and IPD).
Typically, only the IPD parameters are initialized; this initial-
ization is set by a cross-correlation estimate of the source ITD.
Other parameters (e.g., ILD parameters) are first estimated from
the regions that the initial IPD selects as relevant. Two versions
of MESSL were evaluated here. The first, denoted MESSL-G,
used an explicit “garbage source” model to absorb reverbera-
tion and a prior on the ILD parameters to more reliably estimate
them in reverberation. The second, denoted MESSL-WW, did
not use the garbage source or ILD prior.

Two-stage frequency-domain blind source separation [24],
which we refer to as Sawada, is a combination of ideas from
model-based separation and independent component analysis
(ICA) that can separate underdetermined mixtures. In the first
stage, blind source separation is performed on each frequency
band of a spectrogram separately using a probabilistic model of
mixing coefficients. In the second stage, the sources in different
bands are unpermuted using k-means clustering on the poste-
rior probabilities of each source and then refined by matching
sources in each band to those in nearby and harmonically related
bands. The first stage encounters problems when a source is not
present in every frequency and the second encounters problems
if sources’ activities are not similar enough across frequency.

Like MESSL, the algorithm of [25], which we refer to as
Mouba, uses EM clustering to separate sources from binaural
recordings. This algorithm needs access to certain coefficients
describing the relationship between ILD, ITD, and azimuth,
which can be extracted offline from head-related transfer func-
tions. It is not particularly sensitive to the exact values of these
coefficients, however, so the same values generally work for
different heads. Using these coefficients, the algorithm maps
the ILD at each point in the spectrogram to an azimuth, with
which it disambiguates each IPD-to-ITD mapping. The ITD is
then mapped to azimuth at each spectrogram point and these
azimuth values (after weighting by the energy at that spectro-
gram point) are clustered using a Gaussian mixture model. The
means of the Gaussians are the estimated source locations and
the posterior probabilities of each azimuth coming from each
Gaussian are used to construct a spectral mask.
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The Degenerate Unmixing Estimation Technique (DUET)
[11], [23] creates a two-dimensional histogram of the interaural
level and time differences observed over an entire spectrogram.
It then smooths the histogram and finds the largest peaks,
which should correspond to the sources. DUET assumes
that the interaural level and time differences are constant at all
frequencies and that there is no spatial aliasing, conditions that
can be met to a large degree with free-standing microphones
close to one another. With dummy head recordings, however,
the ILD varies with frequency and the microphones are spaced
far enough apart that there is spatial aliasing above approxi-
mately 1 kHz. Frequency-varying ILD scatters observations
of the same source throughout the histogram as does spatial
aliasing, making sources harder to localize and isolate.

While all four of these systems are compared in Section III,
only Sawada and MESSL, the best performing algorithms, are
compared after that to avoid clutter. No modifications were
made to the algorithms; they were all required to localize the
sources before separating them, if necessary.

III. AUTOMATIC SPEECH RECOGNITION

As described in, e.g., [26]–[31], automatic speech recognition
(ASR) systems have been incorporated into and used to evaluate
source separation systems. Perhaps the earliest example of eval-
uating source separation with ASR was the work of [4]. While
a speech recognition system can give a good idea of how well
a source separator is doing, depending on the application, the
ultimate goal might be presenting the separations to humans, in
which case intelligibility would be paramount. If used carefully,
however, ASR results can be a reasonable proxy for actual intel-
ligibility measurements, which are costly and time-consuming
to perform.

A. ASR Setup

While many papers describe a single recognizer with which a
number of different separators are tested [32], [33], we instead
train a different recognizer for each separation system. Speech
recognizers can be easily “distracted” by artifacts of source sep-
arators that are not disruptive to intelligibility. This can be mit-
igated, however, by training a new recognizer on the output of
each separator, because the recognizer is able to account for the
particular artifacts of each separator in its statistical modeling.
While this might not be feasible for a real-world system that se-
lects different separation front-ends for different conditions, it
should be feasible for a system with a dedicated source sepa-
rator on the front end and it gives the “fairest” comparison of
ASR performance in ideal situations. Moreover, we have found
in pilot studies that recognizers trained with signals from mul-
tiple separators are generally good at recognizing speech from
both, possibly at the cost of requiring a larger model.

All of these experiments were conducted using the HTK
speech recognition framework, and all of the recognizers had
the same structure and number of parameters. Each separator
reconstructed the waveform as best it could, and this waveform
was fed into the recognition system; as a result, missing data
[27] was not accounted for. The recognizers modeled each of
the 11 words separately with a linear 16-state HMM. The only
grammatical constraint was that there must be five digits in

each sentence. Each state modeled its output using a mixture of
eight Gaussians. The features used in the recognition process
were 13-dimensional MFCCs including , MFCC deltas, and
MFCC double-deltas. Two different recognizers were trained
for each algorithm, one on only anechoic separations, and one
on only reverberant separations. A recognizer trained on both
anechoic and reverberant separations performed comparably.

As described in Section II-B, the training, test, and tuning
sets used separate sets of target utterances to prevent memoriza-
tion of the targets. They did use the same maskers, but because
these were never recognized, they should not affect the results.
The mixtures were randomized in the training set at different
TMRs to train the recognizer with as many different contexts of
each digit as possible. Even though there were only 75 original
training utterances, the use of these different contexts should
justify training on 512 separations.

While humans asked to transcribe five digits tend to make
mostly substitution errors, this ASR system makes a combina-
tion of insertion and substitution errors. We thus had to eval-
uate it differently than humans are evaluated. Specifically, we
used the fraction of digits that were correctly identified (COR)
after the system’s transcription and the true transcription were
aligned using the minimum edit distance with equal weights.

B. Results

The results of the ASR experiment for ground truth separa-
tions can be seen in Fig. 1. Human performance from [14] on
the unprocessed mixtures is shown as the thick gray line and the
performance of the recognizer trained and tested directly on the
unprocessed mixtures is shown in the line with square markers.
In Fig. 1(a), because there is no reverberation, the masks that
treat reverberation differently are identical, and thus all of the
binary masks lead to exactly the same performance and all of
the Wiener masks lead to exactly the same performance. Note
that the Wiener masks have an advantage of a few dB over the
binary masks in terms of the 50% correct point on their curves,
known as the speech reception threshold (SRT). The recognizers
perform at close to human levels, particularly those trained with
Wiener masks, and significantly better than recognizers trained
and tested on the mixtures.

In reverberation, the results are slightly different. In Fig. 1(b),
the difference between the Wiener and binary masks is still
maintained. The Wiener masks significantly outperform the
human subjects, achieving approximately the same perfor-
mance that they do in anechoic conditions, while the binary
masks perform comparably to the humans, although also simi-
larly to their performance in anechoic conditions. There is only
a slight difference in performance between the masking systems
that include and exclude the target reverberation, but notably,
including the masker’s reverberation significantly decreases
performance for both mask types. The WienerAllRev mask
performs slightly better than the mixtures, but the OracleAllRev
mask only provides as much information to the recognizer as
the unseparated mixtures.

The results of the ASR experiment for algorithmic separa-
tions can be seen in Fig. 2. Once again, human performance is
indicated by the thicker gray line and the performance on un-
processed mixtures is indicated by the line with square markers.
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Fig. 3. Intelligibility of source separations as a function of target-to-masker ratio in reverberation for three subjects. The thick gray lines shows the intelligibility
of unprocessed mixtures. Error bars show 1 standard error. (a) Subject 1. (b) Subject 2. (c) Subject 3.

Fig. 2(a) shows that the performance in anechoic conditions of
Sawada, MESSL-G, and MESSL-WW is quite close to human
performance. Mouba is able to achieve some improvement, but
DUET only achieves improvement at TMRs close to 0 dB.

In reverberation, however, ASR performance on the separa-
tions is quite close to that of the mixtures, i.e., the separation
systems only help a little bit. Sawada, Mouba, and both MESSL
systems are clustered together, with a decrease in SRT of per-
haps 3–4 dB over the mixtures. DUET actually performs worse
than the mixtures, meaning that it makes the target speech less
recognizable than before it was applied.

We examine some possible causes of this lack of im-
provement in subsequent sections for these same separations.
Section V examines the effects of some of these masking
algorithms on the energy in the direct-path, early echo, and
reverberation components of the target and masker sources.
Section VI examines objective measures of speech intelligi-
bility and quality.

IV. INTELLIGIBILITY OF SEPARATIONS

In addition to running automatic speech recognition on the
resulting separations, we also directly measured the intelligi-
bility of the reverberant separations for human listeners. While
this experiment was more limited than the experiment in [14]
in both the number of subjects and number of TMRs tested, it
provides another interesting comparison of the separation al-
gorithms. Because of the similarity of the binary and Wiener
ground truth systems, we will only examine the performance of
the three binary ground truth separators. Because of their better
performance, we will only compare Sawada, MESSL-G, and
MESSL-WW in this and subsequent sections, and because it is
a more difficult and realistic task, we will also only examine the
performance of these systems on the reverberant mixtures.

Three native English-speaking, college-age, female subjects
were recruited to perform the follow-up experiment. All sub-
jects had their audiograms measured to confirm their hearing
thresholds were within 15 dB of normal thresholds for all fre-
quencies between 250 and 8000 Hz. All subjects gave written
informed consent to participate in the experiments, as approved
by the Charles River Institutional Review Board.

Each subject was presented with separations from six
algorithms (the three binary masking algorithms, Sawada,
MESSL-G, and MESSL-WW) at three different TMRs. Each
subject was presented with the same 64 mixtures for each

algorithm at each TMR. The specific values of the TMRs used
for each algorithm were selected based on preliminary piloting
experiments. The signals presented to the subjects were each
algorithm’s best estimate of the target digit string in a rever-
berant mixture. These signals were presented to the subjects
over ER-1 insert-ear headphones (Etymotic Research, Inc.) in a
sound isolated booth. Subjects were asked to transcribe the five
digits they heard and were required to enter five digits on every
trial with attention to order, and were instructed to guess if they
were unsure. Feedback was not provided.

Due to the large number of audio presentations (1152 in total),
the experiment was divided into two sessions occurring on two
different days. Each session tested a subset of three of the six
source separation algorithms. To mitigate any potential learning
effects, two of the subjects tested the Sawada, DP-Oracle, and
OracleAllRev algorithms in the first session, and the Oracle,
MESSL-G, and MESSL-WW algorithms in the second session.
The other subject was presented with these two groups of al-
gorithms in reverse order. Additionally, the order of the com-
bination of algorithm and TMR within session was randomized
from trial to trial. The proportion of correctly reported digits was
computed from these results.

A. Results

The results of these intelligibility experiments can be seen in
Fig. 3 for each of the three subjects and each algorithm. As can
be seen from the individual plots, the subjects are generally in
agreement with each other and two results are clear. The first is
that the DP-Oracle and Oracle masks create separations that are
substantially more intelligible than the other four masks, but that
are quite comparable to one another. The second is that the algo-
rithmic separations have intelligibilities that are quite similar to
the OracleAllRev mask, and quite similar to the intelligibility of
the unprocessed mixtures. These results are qualitatively similar
to the automatic speech recognition results, although quantita-
tively different.

V. DERTM: ATTENUATIONS OF SIX SIGNAL COMPONENTS

We now describe a novel evaluation metric for mask-based
separations, which we refer to as DERTM: Direct-path, Early
echoes, and Reverberation of Target and Masker. As mentioned
in Section II-C, a reverberant mixture of two sources contains
at least six signals of interest. Each of the two sources con-
tains a direct-path, an early echo, and a reverberant portion. The
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Fig. 4. Initial levels of the six different types of energy: Target direct-path,
target reverberation, masker direct-path, masker reverberation. Error bars show
1 standard error.

DERTM analysis measures the attenuation of each of these six
signals by a given mask, revealing differences in a mask’s effect
on each. This is possible because all of the masks under eval-
uation contain values between 0 and 1, meaning that they only
delete energy, they do not add it1. Furthermore, because the mix-
tures are synthesized, we have access to the original versions of
these six signals for every mixture. It is informative to compare
this analysis for each algorithm to the ASR and intelligibility
results in Sections III and IV.

The results of this analysis are shown in Fig. 5 for each al-
gorithm as the attenuation of each of these signals relative to
the initial levels shown in Fig. 4. Examining the oracle masks
in the top row, it can be seen that each preserves most of the
energy it considers desirable while not entirely canceling un-
desirable energy. Oracle masks are not able to perfectly pass or
attenuate signals because they can only apply a single weighting
to each time–frequency point. All of the energy in a given point,
whether desirable or not, must be treated identically.

The DP-Oracle mask is able to attenuate the other signals by
a wide margin relative to the target signal’s direct-path com-
ponent, especially those of the masker. The early echo energy
from the target is attenuated by only 5 dB because it shares
many of the same time–frequency points as the direct-path en-
ergy. The late reverberation from the target is attenuated by
10 dB and the fact that it is not attenuated more indicates the
presence of overlap-masking [34]. The three signal components
from the masking source are attenuated significantly, especially
when they have larger initial energies. The direct-path is atten-
uated most, possibly because it is initially louder than the other
signals.

The Oracle mask classifies the reverberation from the target
source as desirable and it attenuates this reverberation much
less than the DP-Oracle mask, although it does not preserve
it as well as it preserves the direct-path. It also attenuates the
masking source less than the DP-Oracle mask does, especially
at higher TMRs. The OracleAllRev mask performs quite differ-
ently from the two other oracle masks. It does a much better job
of preserving all five of its target signals, but also does a much

1Note that this does not account for the potential “transformation” of masker
energy into target energy, as in [3], although such a transformation is probably
less likely to happen in pure speech-speech mixtures than in the speech-noise
mixtures those authors examined

worse job of attenuating the direct-path masker signal. Instead
of a consistent fall off with decreasing TMR, its performance is
relatively constant at low TMRs.

In general shape, Sawada et al.’s algorithm performs very
similarly to OracleAllRev under this metric. Sawada et al.’s al-
gorithm attenuates all of the sources slightly more than Ora-
cleAllRev, although it does a better job attenuating target and
masker reverberation and early echoes relative to target direct-
path. It consistently rejects the direct-path portion of the masker
signal. MESSL-WW performs similarly for high TMRs, but
clearly begins to break down for TMRs below 10 dB. The
convergence of the six lines for very low TMRs is perhaps the
clearest indication of such a breakdown over all the metrics that
will be discussed in this paper. It indicates that MESSL is pro-
ducing a mask that attenuates the entire mixture by 6 dB, i.e.,
is not selective at all. For higher TMRs, its performance is still
not quite as good as Sawada’s; in particular, it does not reject as
much reverberation from either source or the direct-path of the
masking source as Sawada’s algorithm.

MESSL-G also fails for very low TMRs, but it does so in a
different manner than MESSL-WW. Instead of attenuating all
six components by 6 dB or so, it actually attenuates all of the
signals by up to 20 dB except for the masker direct-path. Exam-
ining the problem in closer detail, what appears to happen is that
a failed localization results in both of the non-garbage sources
modeling the masker source and the garbage source absorbs the
target.

VI. OBJECTIVE MEASURES

This section examines the performance of these systems
under a number of standard objective measures of speech
quality and intelligibility, in addition to a novel measure
proposed here. We performed these measurements both with
and without a pre-emphasis high pass filter, but no significant
differences were noted, so this section only reports results that
do not use pre-emphasis.

A. BSS_EVAL Metrics

The first objective measures of separation performance come
from the Signal Separation Evaluation Campaign [35] and
the BSS_EVAL toolbox [36], which measure certain energy
ratios of interest while properly accounting for scaling and
convolution with short impulse responses. Specifically, there
are three ratios of interest, the signal-to-distortion ratio (SDR),
signal-to-interference ratio (SIR), and signal-to-artifact ratio
(SAR). These three ratios are defined in relation to three
time-domain waveforms created by projecting the estimated
signal onto the space of the original signals: the target signal
embedded in the estimate, , the error due to interfer-
ence, , and the error due to artifacts, .

To describe these signals mathematically, some notation is
required. Denote the set of original, anechoic signals as ,
the anechoic target signal as , and the estimated target
signal as . Define the projection operator
to be the projection of signal onto versions of the signals
shifted by every integral number of samples up to . Thus,
for signals samples long, this projection uses a matrix that is

and rank where is the number of signals .
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Fig. 5. DERTM analysis of masking separations. Energy change due to mask attenuation of six different types of energy: Target direct-path, early echoes, and
reverberation; masker direct-path, early echoes, and reverberation. Shown for ground truth masks (top row) and algorithmic masks (bottom row). Error bars show
1 standard error. (a) DP-Oracle. (b) Oracle. (c) OracleAllRev. (d) Sawada. (e) MESSL-WW. (f) MESSL-G.

This projection results in another length- signal. The three
signals of interest are then defined as

(1)

(2)

(3)

and the three ratios of interest are defined as

(4)

(5)

(6)

where indicates the squared vector 2-norm, i.e., the sum of
squares of all entries. To give some intuition about these defini-
tions, is whatever part of can be explained as a finite
impulse response-filtered version of the target source, where
the filter has taps. The interference error is the part of
that can be explained by filtered versions of the other sources
using filters of the same length. The artifact error is anything
that cannot be attributed to these projections. In these experi-
ments, is 512 samples, which is approximately 21 ms at the
sampling rate of 25 kHz. Thus, only the early echoes should be
explained by the delayed versions of the sources, and later rever-
beration from both sources is counted as artifactual. Any other
noise created by nonlinear processing, such as musical noise or
burbling, is also counted as an artifact.

Fig. 6 shows the results of the separation systems using
these metrics. The general TMR trend is evident in the plots

of SDR and SIR except for the DP-Oracle and Oracle ground
truth masks. Overall, the OracleAllRev mask performs quite
similarly to the algorithmic separations, especially Sawada’s.
As evidenced from the SAR plot, MESSL’s separations qual-
itatively change for TMRs below 10 dB, in agreement with
the DERTM analysis in Section V. For TMRs above that point,
the SDR performance of MESSL and Sawada are very close
and significantly higher than OracleAllRev. Below that point,
however, Sawada’s algorithm maintains its performance while
MESSL begins to fail. From the DP-Oracle and Oracle masks,
it is clear that better performance is possible, although it is
not clear that such performance is attainable without a priori
knowledge of the signals, especially at very low TMRs.

Under the SIR metric, as seen in Fig. 6(b), Sawada’s al-
gorithm performs significantly better than MESSL for TMRs
below 5 dB. The difference between SIR and SDR is that SIR
does not penalize reverberation, implying that Sawada’s system
might reject more of the interference direct-path signal than
MESSL while passing more reverberation, a hypothesis that
is corroborated by the DERTM analysis. The DP-Oracle and
Oracle results show that a gradual decline of SDR but not SIR
as TMR decreases, possibly because of extra reverberation
from the masking source creeping through the masks.

B. Signal-to-Noise Ratio Metrics

We also compare these systems using two other signal-to-
noise ratio metric. The first, which we refer to as SNR , was
introduced by [37] and subsequently used in [38]. The second,
which we refer to as SNR , has been in wide use and is de-
scribed by [13]. Both of these metrics penalize discarded desir-
able signal and passed undesirable signal. Unlike other metrics
(e.g., [10], [11]), both of these metrics provide a single figure of
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Fig. 6. BSS_EVAL evaluation of ground truth and algorithmic masking systems as a function of target-to-masker ratio. Error bars show 1 standard error.
(a) Source-to-distortion ratio. (b) Source-to-interferer ratio. (c) Source-to-artifact ratio.

TABLE II
COMPARISON OF TWO SNR METRICS FOR EXTREME MASKS

merit. Typically, we measure the signal-to-noise ratio improve-
ment (SNRI), which is the difference between the SNR calcu-
lated for the specified mask and the SNR calculated for a mask
of all 1s.

The SNR metric is calculated by measuring the ratio of the
energy in the original target signal to the energy in the difference
between the original target and the estimated target signal. In the
notation of (1), it is defined as

SNR (7)

Because the energy in the original signal does not change, this
metric has the convenient property of being relatively simple to
optimize, notwithstanding issues of frame overlap [13]. It has
some relatively strange properties in extreme conditions, how-
ever, which are shown in Table II and will be discussed shortly.

SNR is only applicable to mask-based source separation,
and does not require a transformation back into the time domain
from a spectrogram representation. It is similar to SNR , but
with a different numerator. Switching to a spectrogram-based
notation, denote the mask , the desirable signal ,
and the sum of the undesirable signals . Omitting
for readability, SNR is defined as

SNR (8)

where indicates the Frobenius norm of a spectrogram ma-
trix, i.e., the sum of squares of all entries. The “signal” in this
signal-to-noise ratio is the amount of target energy that survives
the mask. The “noise” is a combination of energy rejected from
the target source and energy accepted from the masker.

In this notation, (7) becomes

SNR

(9)

which is quite similar. Because the desirable and undesirable
signals are generally uncorrelated (except when reverberation
from a source in one is assigned to the other), there is little differ-
ence between the addition and subtraction in the denominators
of (8) and (9). The “signal” in SNR is the amount of energy in
the original target signal. This number more or less serves as a
constant baseline against which to compare the “noise,” which is
the difference between the reconstruction and the original target.

The main difference between these equations is in the numer-
ators and certain examples highlight these differences, as shown
in Table II. This table shows that SNR tends to estimate higher
values than SNR . In the case of a “separation” that passes
no signal at all, the denominator in SNR is the entire orig-
inal desirable signal, giving a ratio of 0 dB. SNR , on the
other hand, assigns this “separation” an SNR of . Similarly,
when an oracle mask is designed to eliminate all of the target
energy, SNR will assign a very large, negative SNR, while
SNR will assign it some SNR less than the mixture SNR. It
could be 0 dB or it could be less, but it depends on the a priori
ratio between the desirable and undesirable signals. Although it
is easier to optimize, we believe that these characteristics make
SNR less appealing to use than our proposed SNR metric
for evaluation purposes. These theoretical results are corrobo-
rated by Fig. 7, which will now be discussed.

The results of the SNR evaluation can be seen in
Fig. 7(a) and (d). As in Fig. 6(a), the Oracle and DP-Oracle
masks perform much better than the algorithmic masks at low
TMRs, while the OracleAllRev performs very similarly to the
algorithmic masks. Because the basic SNR contour shown
in Fig. 7(d) is so closely related to the initial TMR, Fig. 7(a)
shows the improvement each algorithm provides relative to that
baseline. It can be seen again that for TMRs above 10 dB
MESSL-G performs slightly better than the other algorithms,
but below that TMR, Sawada’s algorithm performs better. Note
that both of these algorithms outperform OracleAllRev by
approximately 1 dB in the regimes in which they perform best.

The results of the SNR evaluation can be seen in
Fig. 7(b) and (e). These results are similar to those of
Fig. 7(a) and (d), but with a number of significant differ-
ences that are more apparent in the improvement results, shown
in subplots Fig. 7(a) and (b). The performance of the three
ground truth masks under both of these metrics is actually
quite similar. The performance of the algorithmic separations
under these metrics is quite different, however. Most notably,
MESSL-G, which other metrics have shown failed for TMRs
below 15 dB, still appears to have improved the SNR by as
much as 7 dB more than MESSL-WW, which did not fail as cat-
astrophically as measured by other metrics. SNR does show
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Fig. 7. Objective evaluations of ground truth and algorithmic masking systems as a function of target-to-masker ratio. Error bars show 1 standard error. (a) SNR
improvement. (b) SNR improvement. (c) PESQ improvement. (d) Final SNR . (e) Final SNR . (f) Final PESQ.

MESSL-WW’s divergence from Sawada and OracleAllRev for
low TMR, but it also shows Sawada’s algorithm as maintaining
a large advantage over OracleAllRev that is not present using
other metrics.

C. PESQ

The final objective measure with which we evaluate these sep-
arations is PESQ. This metric was originally designed to predict
the quality of speech for telephony applications, not its intelli-
gibility. In tests of its efficacy, it has been found to accurately
predict not only the quality of speech isolated from mixtures by
separation algorithms [5], but also ASR performance on speech
isolated from mixtures [6].

PESQ compares a processed signal to its original. In the
case of reverberant source separation, we compare the original,
unmixed, anechoic signal to the signal estimated from the mix-
ture by the source separation algorithms under evaluation. The
crux of PESQ’s computation is a calculation of the difference
between the original signal and the processed signal after both
have been transformed into a psychoacoustically motivated
representation [12, Sec. 10.5.3.3]. It uses a time–frequency
representation with frequencies spaced according to the Bark
scale and amplitudes measured in the sone scale. Differences
between the signals are combined across time and frequency
and positive and negative differences are treated differently,
each being weighted by factors learned from a linear regression
again human quality judgments.

The PESQ results on this experiment are shown in
Fig. 7(c) and (f). The absolute PESQ score is shown in
subplot Fig. 7(f) while subplot Fig. 7(c) shows the difference
between this score and the PESQ score of the target source in
the original mixture. Note that all of the algorithms’ lines in
subplot Fig. 7(f) are non-monotonic, with a secondary peak
around 20 dB. This could be due to PESQ’s behavior for

noisy signals, because it was designed for speech. As the TMR
is lowered in the mixture, the original target’s amplitude is
decreased and more of it is lost below the noise floor, leading
to a noisier target signal and a less accurate estimate of quality.

As with the other metrics, the Oracle and DP-Oracle masks
perform qualitatively differently from the other masks. With
PESQ, however, they also perform qualitatively differently from
each other. Most notably, the Oracle mask’s PESQ improve-
ment peaks at a TMR of around 10 dB and declines for TMRs
higher or lower, while the DP-Oracle mask’s PESQ improve-
ment maintains the same level for higher TMRs. This is most
likely due to distortions introduced by reverberation. Thus, the
main cause of decreased PESQ scores for low TMRs is the
masking source, while for high TMRs it is reverberation from
the target source itself.

Of the algorithmic separations, MESSL-G has the highest
PESQ scores across all TMRs. Because of MESSL-G’s failure
at low TMR, as shown by the other metrics, PESQ is probably
not working properly for evaluating mixtures with low TMR.
For TMRs above 15 dB, however, where it appears to be
working, all of the algorithmic masks outperform the Ora-
cleAllRev mask. As can be seen for TMRs above 10 dB, this is
most likely due to ancillary dereveberation that the algorithms
perform. This is also corroborated by the fact that at those
TMRs the algorithms also outperform the Oracle mask, which
includes all of the target source’s reverberation. Note, however,
that in Section III, reverberation from the target source has a
much smaller effect on ASR performance than PESQ estimates
here.

VII. CONCLUSION

This paper compared speech separation performance of a
number of algorithmic and ground truth masks and examined
a number of metrics for evaluating the performance of such
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masks. Automatic speech recognition results should be the best
predictor of intelligibility, but we did not find that ASR results
for any of the masks under evaluation predicted important
aspects of human intelligibility particularly well. Specifically,
while the numerical ASR results for ground truth separations
followed human intelligibility in anechoic conditions, they
were much better than human performance in reverberation.
Algorithmic separations, on the other hand, were also similar
to human performance in anechoic conditions, but much worse
than human performance in reverberation. These results suggest
that the separation algorithms investigated in this paper cannot
reject reverberant energy as well as humans can.

The use of ground truth masks that treat reverberation differ-
ently from direct-path signals supports the idea that poor per-
formance of algorithmic separations comes from a failure to dis-
count reverberant energy. This conclusion is corroborated by the
DERTM analysis, which examines the effect of masks on var-
ious component signals from the mixture. Both of these analyses
imply that while the algorithmic masks successfully suppress
the direct-path signal coming from a masking source, they do
not sufficiently suppress its reverberation.

In examining other metrics that are commonly used in the
literature, we found that the SDR metric from the BSS_EVAL
toolbox agrees well with the ASR results, as does our proposed
SNR metric. Both of these metrics correctly indicate that
MESSL’s separation fails for TMRs below 15 dB, while the
algorithm of Sawada et al. does not. Both metrics are better
predictors of ASR performance than the SIR and SAR metrics
from the BSS_EVAL toolbox and the SNR metric, which do
not indicate the failure of MESSL for very low TMRs.

The failure of MESSL for very low TMRs is most likely due
to the failure of the localization algorithm used to initialize it.
The fact that Sawada’s algorithm does not depend on such an
initialization makes it more robust at these very low TMRs. Al-
though it was not investigated in this paper, it should be possible
to use a hybrid model that initializes MESSL from the mask
generated by Sawada’s algorithm when it detects that its local-
ization has failed, which could yield performance equal to or
better than both of the original algorithms.

Overall, better models of reverberation or other diffuse noise
cancellation mechanisms seem necessary to improve ASR per-
formance significantly in reverberant mixtures. We believe that
such models would also improve the intelligibility of separa-
tions, although this result is not directly addressed by the exper-
iments of this paper.
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