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ABSTRACT

We introduce the Ideal Interaural Parameter Mask as an upper bound
on the performance of source separation algorithms that are based
purely on the differences between two channels. With three addi-
tions to our Model-based EM Source Separation and Localization
system, its performance approaches that of the IIPM upper bound to
within 0.9 dB. These additions battle the effects of reverberation, by
absorbing reverberant energy and forcing the ILD to be larger than
it might otherwise be. The third addition was an oracle reliability
measure, in the hope that estimating parameters from more reliable
regions of the spectrogram would improve separation, but it was
not consistently useful.

Index Terms— Underdetermined source separation, time-
frequency masking, ideal binary mask, reverberation

1. INTRODUCTION

Underdetermined mixtures are sound recordings where there are
more sources than microphones. Mathematically, they are difficult
to separation, but one promising approach to separating such mix-
tures is the generation of time-frequency masks from the interaural
parameters of a binaural recording [1, 2]. Reverberation is known
to decrease the performance of these algorithms, but overcoming
these limitations is still an open problem.

The Ideal Binary Mask, also known as the oracle binary mask,
has been proposed as an upper bound on the performance of source
separation algorithms that generate binary time-frequency masks
[3]. It is ideal because it uses knowledge of the pre-mixed signals
to create the optimal mask in terms of signal-to-noise ratio of the
separation. In this paper, we propose a similar upper bound on
algorithms that perform time-frequency masking using only point-
wise interaural parameters.

This upper bound, which we call the Ideal Interaural Parameter
Mask (IIPM), has access to the pre-mixed signals, but creates a
time-frequency mask based solely on interaural level and phase
differences (ILD and IPD, respectively). All points at a given
frequency having a particular ILD and IPD must be either included
or excluded from the mask as a single unit. By comparing the
performance of such an estimator to that of the ideal binary mask,
it is possible to determine the separation power of the interaural
parameters in reverberation and additional separation performance
that must be sought through other means, e.g. monaural source
separation techniques, source modeling, dereverberation, etc.
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We also make a number of changes to our Model-Based EM
Source Separation and Localization (MESSL) system [2] to better
compensate for the effects of reverberation and show that the up-
dated model approaches the performance limit of the IIPM. These
changes include explicitly modeling reverberation as a separate
source, called the “garbage” source, and adding a prior distribution
to the ILD parameters for each source based on its estimated lo-
cation. We also modified MESSL to learn model parameters only
from highly reliable regions of the spectrogram, i.e. those regions
that have a high direct-to-reverberant ratio (DRR), but found that in
general it did not aid separation much.

Several authors have examined the use of supervised learning
for source separation, techniques that are related to the IIPM. Per-
haps the first, [4] trained classifiers to distinguish between target
and interfering sources in anechoic mixtures. Taking an approach
similar to the current one, [5] learned a histogram over ILD and
ITD for sources in known positions and compared them to a gen-
eral background model. They used an auditory spectrogram with
cross-correlations in each band, whereas we examine the short-time
Fourier transform and the phase relationships between individual
complex samples. Three different oracle algorithms were compared
in [6] for three different types of source separation problems: in-
stantaneous mixtures, single-channel time-frequency masking, and
multi-channel time-frequency masking.

2. SOURCE SEPARATION SYSTEMS

In this paper, we compare two different source separation systems,
the IIPM and MESSL. We now describe these two algorithms in
detail.

2.1. Ideal Interaural Parameter Mask

The DUET algorithm [1] separates sources by clustering time-
frequency points based on their interaural parameters from a record-
ing. It constructs a histogram of interaural parameters, with points
weighted by their energy, and then selects each prominent peak in
the histogram as the interaural parameters of one source. It then
creates a mask for each source that retains only time-frequency
points with interaural parameters near the selected peak.

The Ideal Interaural Parameter Mask uses DUET’s interaural
parameterization to construct a mask similar to the IBM. From
knowledge of the separated sources, the IIPM creates models for
the interaural parameters weighted by the target and interferer ener-
gies. Specifically, we model them with kernel density estimators
(KDEs) [7], nonparametric models similar to histograms.
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Figure 1: Example kernel density estimates in dB of (a) target energy, (b) interferer energy, (c) energy ratio between target and interferer, the
line indicates the decision boundary at 0 dB. From the 4125 Hz band for the target at 0◦ and interferer at 90◦.

As in DUET, these kernel density estimates are created by
weighting the observation at each time-frequency point by the en-
ergy of the signal at that point. Let x(ω, t) = [α(ω, t) φ(ω, t)]T be
the interaural level and phase differences of the mixture at frequency
ω and time t. The KDEs describing the target and interference in-
teraural parameters are, respectively,

kTω(x′) =
X

t

wT (ω, t)N (x′ |x(ω, t),ΣT (ω, t)) (1)

kIω(x′) =
X

t

wI(ω, t)N (x′ |x(ω, t),ΣI(ω, t)) (2)

where wT and wI are the energy of the individual target and in-
terferer observations, and the covariance functions ΣT and ΣI are
diagonal and are set using Silverman’s rule-of-thumb [8, p. 48].
Note that both KDEs are formed from the same points, the interau-
ral parameters from the mixture, but weight those points differently
using knowledge of the unmixed sources. We use the bounded
error complexity reduction of [9] to remove redundant kernels in
the estimator while minimally distorting the modeled density. See
Figure 1 for an example of target and interferer KDEs and the deci-
sion boundary they induce at one particular frequency. The IIPM is
then created according to

MIIPM (ω, t) =

(
1 kT ω(x(ω,t))

kIω(x(ω,t))
≥ γ

0 otherwise
(3)

where γ is a user-defined threshold. To continue the analogy with
the Ideal Binary Mask, we use γ = 1, meaning that a point in the
interaural spectrogram is included if the KDE of the target power
at that pair of interaural parameters is larger than the KDE of the
interferer power.

We compare two different IIPMs in this paper. The first sep-
arates signals using the interaural parameters calculated directly
from each of the signals involved in a given mixture. We refer to
this IIPM as the “training” IIPM. If the bandwidth of the kernels
were infinitely small, this IIPM would revert to the Ideal Binary
Mask. This can be thought of as over-fitting the density estimator
to the particular mixture under analysis, and would have a very low
leave-one-out cross-validation likelihood. Our measure avoids this
by setting the bandwidths according to the rule-of-thumb estimate,
which tends to create favorable leave-one-out cross-validations.

The second IIPM uses interaural parameters calculated from
different sources, passed through the same impulse responses as the

sources being separated. We refer to this IIPM as the “testing” IIPM.
It still uses oracle knowledge of the unmixed signals to construct
the KDEs, but to a lesser extent than the “training” IIPM does and
it is guaranteed not to over-fit the test data. We trained on a separate
set of seven five-digit sentences from the target speaker, a total of
14 seconds of audio, which exhausted our memory resources. The
threshold in each band implicitly includes an estimate of the signal-
to-noise ratio, so if the per-band SNR is significantly different
between the testing and training conditions, the threshold might
need to be adjusted. We used similar utterances from the same
speaker in the two conditions, so we did not adjust the threshold.

2.2. MESSL

To compare to this upper bound, we have made a number of
changes to our Model-Based EM Source Separation and Local-
ization (MESSL) algorithm [2]. This algorithm jointly separates
and localizes sound sources by probabilistically modeling the in-
teraural parameters of each source. The ILD, measured in dB, is
modeled as a Gaussian. The IPD is modeled with a mixture of
Gaussians, where the mean of each Gaussian is constrained to be
linear with frequency and some aspects of phase wrapping are taken
into account.

As described in [2], MESSL treats the interaural level and phase
differences as independent variables. Only the IPD parameters are
typically initialized, from a cross-correlation estimate of the source
ITDs. Other parameters of each source (e.g. the ILD parameters)
are first estimated from the regions that the initial IPD selects as
relevant, so the IPD and ILD only interact through the mask that
each generates. Additionally, each point in the spectrogram is
assumed to be an independent observation and all points in the
spectrogram are treated equally in estimating parameters.

We now describe the modifications that we have made to
MESSL to better separate sources in reverberation. The interaural
parameters of reverberation differ from those of direct-path signals,
even when both originate from the same source. Late reverbera-
tion tends to act as a diffuse sound source [10], meaning that its
interaural parameters depend only on frequency and microphone
separation, and not on the source signal or position. This implies
that a single model of interaural parameters can be used for all of
the reverberation in a mixture, no matter how many direct-path
signals are present.

We thus use a single “garbage” source to model the reverbera-
tion from all of the sources in a mixture. For example, in a mixture
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Table 1: Overall separation results, averaged across all angles.
Additions to messl are Garbage source, ILD prior, and Reliability.

Algorithm SNRI± 95%

IBM 9.55± 0.25
IIPM training 7.68± 0.18
IIPM testing 6.77± 0.14
MESSL+Garb+ILD prior+Rel 5.97± 0.20
MESSL+Garb+ILD prior 5.86± 0.18
MESSL+Garb 5.39± 0.17
MESSL 4.41± 0.15

of two sources, we instantiate three source models, two for the
direct-path components of the sources and one for the garbage
source capturing the reverberation of both sources. The garbage
source absorbs points that are poorly described by the direct-path
models, and so preserves the integrity of the models and keeps
extraneous points out of the separation masks.

The garbage model uses the same distributions for ILD and IPD
as the source models, but is initialized differently. It is initialized so
that its ILD is a Gaussian with frequency-independent mean of 0 dB
and standard deviation of 9 dB, values that were observed in the
impulse responses we used in the experiments. Its IPD is modeled
as a mixture of Gaussians weighted so that all IPDs are equally
likely. As the parameters are refined, the IPD model grows to
favor certain IPDs at certain frequencies, but there is no discernible
pattern across frequency, as there is with direct-path signals.

The second modification to MESSL is the addition of a prior
on the ILD, which explicitly models its relationship with location.
MESSL models the ILD as a W -dimensional Gaussian with diago-
nal covariance, so we use the conjugate normal-Wishart distribution
as the prior and compute the maximum a posteriori ILD parameters
[11]. The mean of this prior is a caricature of the ILDs that we
observed in our collection. It starts at 0 dB at 0 kHz and increases
linearly to 4 kHz, remaining constant at higher frequencies. Its
value, above 4 kHz is proportional to the ITD of the source, with a
maximum value of 15 dB when the source is 90◦ to the right.

This prior distribution acts like a count of virtual observations
that are factored into the parameter estimation. The precision of
this prior Gaussian, the inverse of the variance, controls the number
of virtual observations. We use a precision that is proportional to
the number of observed frames, meaning that the relative strength
of the prior is preserved regardless of the number of points that are
observed. The actual value was found through testing on a separate
dataset to be 4 virtual observations per 100 spectrogram frames.

The final modification to MESSL is the notion of reliability
of time-frequency points for parameter estimation. Reverberation
diminishes the interaural level difference in proportion to the ratio of
direct to reverberant energy [12]. Thus the true ILD parameters for a
source (those that would be measured if there were no reverberation)
are best estimated from spectral regions with high DRRs.

Because it is an EM algorithm, parameters in MESSL are
estimated using weighted sums of sufficient statistics. Each weight
is the posterior probability of a given point under a given source
model. By multiplying each weight by a corresponding reliability,
reliable points are given more weight in the sum. Points with a
DRR above 0 dB were given a reliability of 0.99, and those below
were given 0.01. The DRR ratio was calculated from the pre-mixed
sources. By cheating, we use this measure as an upper bound

Table 2: Regression results. “Normalized” coefficients apply to
unit-variance predictors, “unnormalized” apply to the predictors in
their original units. Uncertainty intervals are for 95% confidence.

Predictor Unit Normalized Unnormalized

Initial SNR dB −0.57± 0.05 −0.24± 0.02
Garbage src binary 0.44± 0.05 0.87± 0.09
ILD prior binary 0.24± 0.05 0.48± 0.09
Reliability binary 0.16± 0.05 0.33± 0.09
cos(Angle) — −0.14± 0.05 −0.33± 0.12

on performance to determine whether it would be worthwhile to
include estimates of reliability from precedence-effect inspired
monaural features [13] or from the coherence of the signals at the
two ears [14].

3. EXPERIMENTS

We examine the separation performance of the various algorithms
as a function of the angle between two sources. The data used in the
experiment come from [15]. Binaural room impulse responses were
recorded with a KEMAR dummy head in the center of a classroom
with a reverberation time (T60) of 565 ms. The source was 1.2 m
away from the head. One impulse response was recorded every 15◦

from −90◦ to 90◦. The target speaker was always located at 0◦

and the interfering speaker was located at ±15◦, ±45◦, or ±90◦.
The target speech consisted of strings of five digits spoken by

a male with natural intonation. The interfering speech is spoken
by the same male speaker and consists of read sentences from the
TIMIT corpus. At each location the same 32 pairs of target and
interferer utterances were used. These pairs were randomly selected
from 100 digit strings and 55 sentences.

In total eight systems were evaluated. The ideal binary mask
provides an overall ceiling on performance. The IIPM “training”
and “testing” variants described in Section 2.1 provide a ceiling on
interaural parameter-based separation. And MESSL was evaluated
with all eight combinations of the garbage source, ILD prior, and
reliability were tested, although we only report the results of the
four most typical combinations.

3.1. Evaluation

We measure the performance of the various separations with the
signal-to-noise ratio improvement (SNRI), which we have used in
our previous work [2]. In it, energy from the direct-path of the
target utterance that survives the mask is considered “signal” while
energy from the target reverberation or any part of the interferer
utterance that survives the mask is considered “noise” along with
the target direct-path energy that is eliminated by the mask. Be-
cause the mixtures are simulated, we have access to the original
signals and can manipulate the impulse responses. By dividing
each impulse response at 9.6 ms into an initial impulse and subse-
quent reverberation, we are able to create separate versions of the
direct-path and reverberation of each source.

To compare their relative importance, we ran a linear regres-
sion on the SNRI results for all eight combinations of the three
additions to MESSL. The predictors in this regression were various
characteristics of the algorithms used and the mixtures that they
separated. Specifically, they were the initial SNR of the mixture,
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Figure 2: Signal to noise ratio improvement vs separation angle for
MESSL variants, the Ideal Binary Mask, and the Ideal Interaural
Parameter Masks. Error bars show 95% confidence intervals.

use of the garbage source, use of the ILD prior, use of the reliability
measure, and the angle between the target and interferer.

The regression was performed on both normalized and un-
normalized versions of these predictors. The coefficients for the
normalized predictors show the relative importance of the various
predictors on the same scale. The coefficients for the unnormalized
predictors show the partial derivative of the estimate with respect to
each predictor, i.e. the increase in predicted SNRI due to one unit
of increase in each predictor.

4. RESULTS

The value of the IIPM is apparent from Table 1. The enhancements
to MESSL (not including the realiability measure) achieve only
28% of the apparent available improvement between its baseline
and the ideal binary mask. Over the class of separation systems
mediated only by the interaural parameters, our improvements have
brought us to within 0.9 dB of the maximum possible performance,
that of the IIPM, an increase of 61% over its baseline.

Figure 2 shows the SNRI scores for the various algorithms.
The bottom four lines are the four notable variants of MESSL, note
that all of the new features increase performance. The top three
lines are the ideal binary mask, and the training and testing IIPM.
Note the difference in performance between the testing and training
IIPM is approximately 1 dB, indicating that the training IIPM is
still over-fitting the data to some extent.

Table 2 shows the results of the regression analysis. The overall
regression has an R2-statistic of 0.41, and a residual 95% confi-
dence interval of 1.90 dB. The normalized coefficients show that
the greatest influence on the SNR improvement is the initial SNR.
Because it is negative, this coefficient implies that a large initial
SNR leaves less room for SNR improvement. The normalized ver-
sion of that coefficient implies that for every dB of initial SNR, the
SNR improvement decreases by 0.23 dB. Because the predictors
for the three model additions are binary, their unnormalized coeffi-
cients indicate their respective contributions to the SNRI when they

are present. There is a small, but significant effect of the angle of
separation on MESSL separation performance, a results that must
be attributed to the impulse responses used.

5. CONCLUSION

We have introduced the Ideal Interaural Parameter Mask as an up-
per bound on the class of source separation systems mediated only
by the interaural parameters. After making certain improvements
to our MESSL algorithm, its performance approaches the IIPM
upper bound to within 0.9 dB. These additions battle the effects of
reverberation in various ways. The difference between the perfor-
mance of the IIPM and the ideal binary mask indicates that further
underdetermined, reverberant source separation improvements will
probably come from exploiting properties of the signals themselves.
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