
ANALYZING SONG STRUCTURE WITH SPECTRAL CLUSTERING

Brian McFee
Center for Jazz Studies
Columbia University

brm2132@columbia.edu

Daniel P.W. Ellis
LabROSA

Columbia University
dpwe@ee.columbia.edu

ABSTRACT

Many approaches to analyzing the structure of a musical
recording involve detecting sequential patterns within a self-
similarity matrix derived from time-series features. Such
patterns ideally capture repeated sequences, which then
form the building blocks of large-scale structure.

In this work, techniques from spectral graph theory are
applied to analyze repeated patterns in musical recordings.
The proposed method produces a low-dimensional encod-
ing of repetition structure, and exposes the hierarchical re-
lationships among structural components at differing lev-
els of granularity. Finally, we demonstrate how to apply
the proposed method to the task of music segmentation.

1. INTRODUCTION

Detecting repeated forms in audio is fundamental to the
analysis of structure in many forms of music. While small-
scale repetitions — such as instances of an individual chord
— are simple to detect, accurately combining multiple small-
scale repetitions into larger structures is a challenging al-
gorithmic task. Much of the current research on this topic
begins by calculating local, frame-wise similarities over
acoustic features (usually harmonic), and then searching
for patterns in the all-pairs self-similarity matrix [3].

In the majority of existing work on structural segmenta-
tion, the analysis is flat, in the sense that the representation
does not explicitly encode nesting or hierarchical structure
in the repeated forms. Instead, novelty curves are com-
monly used to detect transitions between sections.

1.1 Our contributions

In this paper, we formulate the structure analysis problem
in the context of spectral graph theory. By combining local
consistency cues with long-term repetition encodings and
analyzing the eigenvectors of the resulting graph Lapla-
cian, we produce a compact representation that effectively
encodes repetition structure at multiple levels of granular-
ity. To effectively link repeating sequences, we formulate
an optimally weighted combination of local timbre consis-
tency and long-term repetition descriptors.

c© Brian McFee, Daniel P.W. Ellis.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Brian McFee, Daniel P.W. Ellis. “Ana-
lyzing song structure with spectral clustering”, 15th International Society
for Music Information Retrieval Conference, 2014.

To motivate the analysis technique, we demonstrate its
use for the standard task of flat structural annotation. How-
ever, we emphasize that the approach itself can be applied
more generally to analyze structure at multiple resolutions.

1.2 Related work

The structural repetition features used in this work are in-
spired by those of Serrà et al. [11], wherein structure is de-
tected by applying filtering operators to a lag-skewed self-
similarity matrix. The primary deviation in this work is
the graphical interpretation and subsequent analysis of the
filtered self-similarity matrix.

Recently, Kaiser et al. demonstrated a method to com-
bine tonal and timbral features for structural boundary de-
tection [6]. Whereas their method forms a novelty curve
from the combination of multiple features, our feature com-
bination differs by using local timbre consistency to build
internal connections among sequences of long-range tonal
repetitions.

Our general approach is similar in spirit to that of Gro-
hganz et al. [4], in which diagonal bands of a self-similarity
matrix are expanded into block structures by spectral anal-
ysis. Their method analyzed the spectral decomposition
of the self-similarity matrix directly, whereas the method
proposed here operates on the graph Laplacian. Similarly,
Kaiser and Sikora applied non-negative matrix factoriza-
tion directly to a self-similarity matrix in order to detect
blocks of repeating elements [7]. As we will demonstrate,
the Laplacian provides a more direct means to expose block
structure at multiple levels of detail.

2. GRAPHICAL REPETITION ENCODING

Our general structural analysis strategy is to construct and
partition a graph over time points (samples) in the song.
Let X = [x1, x2, . . . , xn] ∈ Rd×n denote a d-dimensional
time series feature matrix, e.g., a chromagram or sequence
of Mel-frequency cepstral coefficients. As a first step to-
ward detecting and representing repetition structure, we
form a binary recurrence matrix R ∈ {0, 1}n×n, where

Rij(X) ··=

{
1 xi, xj are mutual k-nearest neighbors
0 otherwise,

(1)
and k > 0 parameterizes the degree of connectivity.

Ideally, repeated structures should appear as diagonal
stripes in R. In practice, it is beneficial to apply a smooth-



ing filter to suppress erroneous links and fill in gaps. We
apply a windowed majority vote to each diagonal of R, re-
sulting in the filtered matrix R′:

R′ij ··= maj {Ri+t,j+t| t ∈ −w,−w + 1, . . . , w} , (2)

where w is a discrete parameter that defines the minimum
length of a valid repetition sequence.

2.1 Internal connectivity

The filtered recurrence matrix R′ can be interpreted as an
unweighted, undirected graph, whose vertices correspond
to samples (columns ofX), and edges correspond to equiv-
alent position within a repeated sequence. Note, however,
that successive positions (i, i + 1) will not generally be
connected in R′, so the constituent samples of a particular
sequence may not be connected.

To facilitate discovery of repeated sections, edges be-
tween adjacent samples (i, i + 1) and (i, i − 1) are intro-
duced, resulting in the sequence-augmented graph R+:

∆ij ··=

{
1 |i− j| = 1

0 otherwise
, (3)

R+
ij
··= max(∆ij , R

′
ij). (4)

With appropriate normalization,R+ characterizes a Markov
process over samples, where at each step i, the process ei-
ther moves to an adjacent sample i±1, or a random repeti-
tion of i; a process exemplified by the Infinite Jukebox [8].

Equation (4) combines local temporal connectivity with
long-term recurrence information. Ideally, edges would
exist only between pairs {i, j} belonging to the same struc-
tural component, but of course, this information is hidden.
The added edges along the first diagonals create a fully
connected graph, but due to recurrence links, repeated sec-
tions will exhibit additional internal connectivity. Let i and
j denote two repetitions of the same sample at different
times; then R+ should contain sequential edges {i, i+ 1},
{j, j + 1} and repetition edges {i, j}, {i + 1, j + 1}. On
the other hand, unrelated sections with no repetition edges
can only connect via sequence edges.

2.2 Balancing local and global linkage

The construction of eq. (4) describes the intuition behind
combining local sequential connections with global repe-
tition structure, but it does not balance the two competing
goals. Long tracks with many repetitions can produce re-
currence links which vastly outnumber local connectivity
connections. In this regime, partitioning into contiguous
sections becomes difficult, and subsequent analysis of the
graph may fail to detect sequential structure.

If we allow (non-negative) weights on the edges, then
the combination can be parameterized by a weighting pa-
rameter µ ∈ [0, 1]:

Rµij ··= µR′ij + (1− µ)∆ij . (5)

This raises the question: how should µ be set? Return-
ing to the motivating example of the random walk, we opt

for a process that on average, tends to move either in se-
quence or across (all) repetitions with equal probability. In
terms of µ, this indicates that the combination should as-
sign equal weight to the local and repetition edges. This
suggests a balancing objective for all frames i:

µ
∑
j

R′ij ≈ (1− µ)
∑
j

∆ij .

Minimizing the average squared error between the two terms
above leads to the following quadratic optimization:

min
µ∈[0,1]

1

2

∑
i

(µdi(R
′)− (1− µ)di(∆))

2
, (6)

where di(G) ··=
∑
j Gij denotes the degree (sum of inci-

dent edge-weights) of i in G. Treating d(·) ··= [di(·)]ni=1

as a vector in Rn+ yields the optimal solution to eq. (6):

µ∗ =
〈d(∆), d(R′) + d(∆)〉
‖d(R′) + d(∆)‖2

. (7)

Note that because ∆ is non-empty (contains at least one
edge), it follows that ‖d(∆)‖2 > 0, which implies µ∗ > 0.
Similarly, if R′ is non-empty, then µ∗ < 1, and the result-
ing combination retains the full connectivity structure of
the unweighted R+ (eq. (4)).

2.3 Edge weighting and feature fusion

The construction above relies upon a single feature rep-
resentation to determine the self-similarity structure, and
uses constant edge weights for the repetition and local edges.
This can be generalized to support feature-weighted edges
by replacing R′ with a masked similarity matrix:

R′ij 7→ R′ijSij , (8)

where Sij denotes a non-negative affinity between frames
i and j, e.g., a Gaussian kernel over feature vectors xi, xj :

Srep
ij
··= exp

(
− 1

2σ2
‖xi − xj‖2

)
Similarly, ∆ can be replaced with a weighted sequence

graph. However, in doing so, care must be taken when se-
lecting the affinity function. The same features used to
detect repetition (typically harmonic in nature) may not
capture local consistency, since successive frames do not
generally retain harmonic similarity.

Recent work has demonstrated that local timbre differ-
ences can provide an effective cue for structural boundary
detection [6]. This motivates the use of two contrasting
feature descriptors: harmonic features for detecting long-
range repeating forms, and timbral features for detecting
local consistency. We assume that these features are re-
spectively supplied in the form of affinity matrices Srep and
Sloc. Combining these affinities with the detected repeti-
tion structure and optimal weighting yields the sequence-
augmented affinity matrix A:

Aij ··= µR′ijS
rep
ij + (1− µ)∆ijS

loc
ij , (9)

where R′ is understood to be constructed solely from the
repetition affinities Srep, and µ is optimized by solving (7)
with the weighted affinity matrices.



3. GRAPH PARTITIONING AND
STRUCTURAL ANALYSIS

The Laplacian is a fundamental tool in the field of spec-
tral graph theory, as it can be interpreted as a discrete ana-
log of a diffusion operator over the vertices of the graph,
and its spectrum can be used to characterize vertex con-
nectivity [2]. This section describes in detail how spectral
clustering can be used to analyze and partition the repeti-
tion graph constructed in the previous section, and reveal
musical structure.

3.1 Background: spectral clustering

Let D denote the diagonal degree matrix of A:

D ··= diag(d(A)).

The symmetric normalized Laplacian L is defined as:

L ··= I −D−1/2AD−1/2. (10)

The Laplacian forms the basis of spectral clustering, in
which vertices are represented in terms of the eigenvectors
of L [15]. More specifically, to partition a graph into m
components, each point i is represented as the vector of
the ith coordinates of the first m eigenvectors of L, corre-
sponding to the m smallest eigenvalues. 1 The motivation
for this method stems from the observation that the multi-
plicity of the bottom eigenvalue λ0 = 0 corresponds to the
number of connected components in a graph, and the cor-
responding eigenvectors encode component memberships
amongst vertices.

In the non-ideal case, the graph is fully connected, so
λ0 has multiplicity 1, and the bottom eigenvector trivially
encodes membership in the graph. However, in the case
of A, we expect there to be many components with high
intra-connectivity and relatively small inter-connectivity at
the transition points between sections. Spectral clustering
can be viewed as an approximation method for finding nor-
malized graph cuts [15], and it is well-suited to detecting
and pruning these weak links.

Figure 1 illustrates an example of the encoding pro-
duced by spectral decomposition of L. Although the first
eigenvector (column) is uninformative, the remaining bases
clearly encode membership in the diagonal regions depicted
in the affinity matrix. The resulting pair-wise frame sim-
ilarities for this example are shown in Figure 2, which
clearly demonstrates the ability of this representation to it-
eratively reveal nested repeating structure.

To apply spectral clustering, we will use k-means clus-
tering with the (normalized) eigenvectors Y ∈ Rn×M as
features, where M > 0 is a specified maximum number
of structural component types. VaryingM — equivalently,
the dimension of the representation — directly controls the
granularity of the resulting segmentation.

1 An additional length-normalization is applied to each vector, to cor-
rect for scaling introduced by the symmetric normalized Laplacian [15].

Algorithm 1 Boundary detection
Input: Laplacian eigenvectors Y ∈ Rn×m,
Output: Boundaries b, segment labels c ∈ [m]

n

1: function BOUNDARY-DETECT(Y )
2: ŷi ← Yi,·/‖Yi,·‖ � Normalize each row Yi,·
3: Run k-means on {ŷi}ni=1 with k = m
4: Let ci denote the cluster containing ŷi
5: b← {i| ci 6= ci+1}
6: return (b, c)

3.2 Boundary detection

For a fixed number of segment types m, segment bound-
aries can estimated by clustering the rows of Y after trun-
cating to the first m dimensions. After clustering, segment
boundaries are detected by searching for change-points in
the cluster assignments. This method is formalized in Al-
gorithm 1. Note that the number of segment types is dis-
tinct from the number of segments because a single type
(e.g., verse) may repeat multiple times throughout the track.

3.3 Laplacian structural decomposition

To decompose an input song into its structural components,
we propose a method, listed as Algorithm 2, to find bound-
aries and structural annotations at multiple levels of struc-
tural complexity. Algorithm 2 first computes the Laplacian
as described above, and then iteratively increases the set
of eigenvectors for use in Algorithm 1. For m = 2, the
first two eigenvectors — corresponding to the two smallest
eigenvalues of L — are taken. In general, for m types of
repeating component, the bottom m eigenvectors are used
to label frames and detect boundaries. The result is a se-
quence of boundaries Bm and frame labels Cm, for values
m ∈ 2, 3, . . . ,M .

Note that unlike most structural analysis algorithms, Al-
gorithm 2 does not produce a single decomposition of the
song, but rather a sequence of decompositions ordered by
increasing complexity. This property can be beneficial in
visualization applications, where a user may be interested
in the relationship between structural components at mul-
tiple levels. Similarly, in interactive display applications, a
user may request more or less detailed analyses for a track.
Since complexity is controlled by a single, discrete param-
eter M , this application is readily supported with a mini-
mal set of interface controls (e.g., a slider).

However, for standardized evaluation, the method must
produce a single, flat segmentation. Adaptively estimating
the appropriate level of analysis in this context is somewhat
ill-posed, as different use-cases require differing levels of
detail. We apply a simple selection criterion based on the
level of detail commonly observed in standard datasets [5,
12]. First, the set of candidates is reduced to those in which
the mean segment duration is at least 10 seconds. Subject
to this constraint, the segmentation level m̃ is selected to
maximize frame-level annotation entropy. This strategy
tends to produce solutions with approximately balanced
distributions over the set of segment types.



Time →

Ti
me
 
→

Recurrence matrix R

Time →

Ti
me
 
→

Affinity matrix A

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

Ti
me
 
→

Eigenvectors of L

−1.0
−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

Figure 1. Left: the recurrence matrix R for The Beatles — Come Together. Center: the sequence-augmented affinity
matrix A; the enlarged region demonstrates the cumulative effects of recurrence filtering, sequence-augmentation, and
edge weighting. Right: the first 10 basis features (columns), ordered left-to-right. The leading columns encode the primary
structural components, while subsequent components encode refinements.

m=1 m=2 m=3 m=4 m=5

m=6 m=7 m=8 m=9 m=10

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Pair-wise frame similarities
(
Y Y T

)
using the first 10 components for The Beatles — Come Together. The first

(trivial) component (m = 1) captures the entire song, and the second (m = 2) separates the outro (final vamp) from the
rest of the song. Subsequent refinements separate the solo, refrain, verse, and outro, and then individual measures.

4. EXPERIMENTS

To evaluate the proposed method quantitatively, we com-
pare boundary detection and structural annotation perfor-
mance on two standard datasets. We evaluate the perfor-
mance of the method using the automatic complexity esti-
mation described above, as well as performance achieved
for each fixed value of m across the dataset.

Finally, to evaluate the impact of the complexity esti-
mation method, we compare to an oracle model. For each
track, a different m∗ is selected to maximize the evalua-
tion metric of interest. This can be viewed as a simula-
tion of interactive visualization, in which the user has the
freedom to dynamically adapt the level of detail until she
is satisfied. Results in this setting may be interpreted as
measuring the best possible decomposition within the set
produced by Algorithm 2.

4.1 Data and evaluation

Our evaluation data is comprised of two sources:

Beatles-TUT: 174 structurally annotated tracks from the
Beatles corpus [10]. A single annotation is provided
for each track, and annotations generally correspond
to functional components (e.g., verse, refrain, or solo).

SALAMI: 735 tracks from the SALAMI corpus [12]. This
corpus spans a wide range of genres and instrumen-
tation, and provides multiple annotation levels for
each track. We report results on functional and small-
scale annotations.

In each evaluation, we report the F -measure of bound-
ary detection at 0.5-second and 3-second windows. To
evaluate structural annotation accuracy, we report pairwise
frame classification F -measure [9]. For comparison pur-
poses, we report scores achieved by the method of Serrà et



Algorithm 2 Laplacian structural decomposition

Input: Affinities: Srep, Sloc ∈ Rn×n+ , maximum number
of segment types 0 < M ≤ n

Output: Boundaries Bm and frame labels Cm for
m ∈ 2 . . .M

1: function LSD(Srep, Sloc,M )
2: R← eq. (1) on Srep � Recurrence detection
3: R′ ← eq. (2) on R � Recurrence filtering
4: A← eq. (9) � Sequence augmentation
5: L← I −D−1/2AD−1/2
6: for m ∈ 2, 3, . . . ,M do
7: Y ← bottom m eigenvectors of L
8: (Bm, Cm)← BOUNDARY-DETECT(Y )

9: return {(Bm, Cm)}Mm=2

al., denoted here as SMGA [11].

4.2 Implementation details

All input signals are sampled at 22050Hz (mono), and an-
alyzed with a 2048-sample FFT window and 512-sample
hop. Repetition similarity matrices Srep were computed by
first extracting log-power constant-Q spectrograms over 72
bins, ranging from C2 (32.7 Hz) to C8 (2093.0 Hz).

Constant-Q frames were mean-aggregated between de-
tected beat events, and stacked using time-delay embed-
ding with one step of history as in [11]. Similarity matri-
ces were then computed by applying a Gaussian kernel to
each pair of beat-synchronous frames i and j. The band-
width parameter σ2 was estimated by computing the aver-
age squared distance between each xi and its kth nearest
neighbor, with k set to 1 + d2 log2 ne (where n denotes the
number of detected beats). The same k was used to con-
nect nearest neighbors when building the recurrence matrix
R, with the additional constraint that frames cannot link
to neighbors within 3 beats of each-other, which prevents
self-similar connections within the same measure. The ma-
jority vote window was set to w = 17.

Local timbre similarity Sloc was computed by extracting
the first 13 Mel frequency cepstral coefficients (MFCC),
mean-aggregating between detected beats, and then apply-
ing a Gaussian kernel as done for Srep.

All methods were implemented in Python with NumPy
and librosa [1, 14].

4.3 Results

The results of the evaluation are listed in Tables 1 to 3. For
each fixed m, the scores are indicated as Lm. L indicates
the automatic maximum-entropy selector, and L∗ indicates
the best possible m for each metric independently.

As a common trend across all data sets, the automatic
m-selector often achieves results comparable to the best
fixed m. However, it is consistently outperformed by the
oracle model L∗, indicating that the output of Algorithm 2
often contains accurate solutions, the automatic selector
does not always choose them.

Table 1. Beatles (TUT)
Method F0.5 F3 Fpair

L2 0.307 ± 0.14 0.429 ± 0.18 0.576 ± 0.14
L3 0.303 ± 0.15 0.544 ± 0.17 0.611 ± 0.13
L4 0.307 ± 0.15 0.568 ± 0.17 0.616 ± 0.13
L5 0.276 ± 0.14 0.553 ± 0.15 0.587 ± 0.12
L6 0.259 ± 0.14 0.530 ± 0.15 0.556 ± 0.12
L7 0.246 ± 0.13 0.507 ± 0.14 0.523 ± 0.12
L8 0.229 ± 0.13 0.477 ± 0.15 0.495 ± 0.12
L9 0.222 ± 0.12 0.446 ± 0.14 0.468 ± 0.12
L10 0.214 ± 0.11 0.425 ± 0.13 0.443 ± 0.12

L 0.312 ± 0.15 0.579 ± 0.16 0.628 ± 0.13
L∗ 0.414 ± 0.14 0.684 ± 0.13 0.694 ± 0.12

SMGA 0.293 ± 0.13 0.699 ± 0.16 0.715 ± 0.15

Table 2. SALAMI (Functions)
Method F0.5 F3 Fpair

L2 0.324 ± 0.13 0.383 ± 0.15 0.539 ± 0.16
L3 0.314 ± 0.13 0.417 ± 0.16 0.549 ± 0.13
L4 0.303 ± 0.12 0.439 ± 0.16 0.547 ± 0.13
L5 0.293 ± 0.12 0.444 ± 0.16 0.535 ± 0.12
L6 0.286 ± 0.12 0.452 ± 0.16 0.521 ± 0.13
L7 0.273 ± 0.11 0.442 ± 0.16 0.502 ± 0.13
L8 0.267 ± 0.12 0.437 ± 0.16 0.483 ± 0.13
L9 0.260 ± 0.11 0.443 ± 0.16 0.464 ± 0.14
L10 0.250 ± 0.11 0.422 ± 0.16 0.445 ± 0.14

L 0.304 ± 0.13 0.455 ± 0.16 0.546 ± 0.14
L∗ 0.406 ± 0.13 0.579 ± 0.15 0.652 ± 0.13

SMGA 0.224 ± 0.11 0.550 ± 0.18 0.553 ± 0.15

In the case of SALAMI (small), the automatic selec-
tor performs dramatically worse than many of the fixed-m
methods, which may be explained by the relatively differ-
ent statistics of segment durations and numbers of unique
segment types in the small-scale annotations as compared
to Beatles and SALAMI (functional).

To investigate whether a single m could simultaneously
optimize multiple evaluation metrics for a given track, we
plot the confusion matrices for the oracle selections on
SALAMI (functional) in Figure 3. We observe that the
m which optimizes F3 is frequently larger than those for
F0.5 — as indicated by the mass in the lower triangle of
the left plot — or Fpair — as indicated by the upper tri-
angle of the right plot. Although this observation depends
upon our particular boundary-detection strategy, it is cor-
roborated by previous observations that the 0.5-second and
3.0-second metrics evaluate qualitatively different objec-
tives [13]. Consequently, it may be beneficial in practice
to provide segmentations at multiple resolutions when the
specific choice of evaluation criterion is unknown.

5. CONCLUSIONS

The experimental results demonstrate that the proposed struc-
tural decomposition technique often generates solutions which
achieve high scores on segmentation evaluation metrics.
However, automatically selecting a single “best” segmen-
tation without a priori knowledge of the evaluation criteria



2 3 4 5 6 7 8 9 10
m (F3 )

2
3
4
5
6
7
8
9
10

m
 (
F

0
.5
)

F0.5 vs F3

2 3 4 5 6 7 8 9 10
m (F_pair)

2
3
4
5
6
7
8
9
10

m
 (
F

0
.5
)

F0.5 vs F_pair

2 3 4 5 6 7 8 9 10
m (F_pair)

2
3
4
5
6
7
8
9
10

m
 (
F

3
)

F3 vs F_pair

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 3. Confusion matrices illustrating the oracle selection of the number of segment typesm ∈ [2, 10] for different pairs
of metrics on SALAMI (functional). While m = 2 is most frequently selected for all metrics, the large mass off-diagonal
indicates that for a given track, a single fixed m does not generally optimize all evaluation metrics.

Table 3. SALAMI (Small)
Method F0.5 F3 Fpair

L2 0.151 ± 0.11 0.195 ± 0.13 0.451 ± 0.19
L3 0.171 ± 0.12 0.259 ± 0.16 0.459 ± 0.17
L4 0.186 ± 0.12 0.315 ± 0.17 0.461 ± 0.15
L5 0.195 ± 0.12 0.354 ± 0.17 0.455 ± 0.14
L6 0.207 ± 0.12 0.391 ± 0.18 0.452 ± 0.13
L7 0.214 ± 0.12 0.420 ± 0.18 0.445 ± 0.13
L8 0.224 ± 0.12 0.448 ± 0.18 0.435 ± 0.13
L9 0.229 ± 0.12 0.467 ± 0.18 0.425 ± 0.13
L10 0.234 ± 0.12 0.486 ± 0.18 0.414 ± 0.13

L 0.192 ± 0.11 0.344 ± 0.15 0.448 ± 0.16
L∗ 0.292 ± 0.15 0.525 ± 0.19 0.561 ± 0.16

SMGA 0.173 ± 0.08 0.518 ± 0.12 0.493 ± 0.16

remains a challenging practical issue.

6. ACKNOWLEDGMENTS

The authors acknowledge support from The Andrew W.
Mellon Foundation, and NSF grant IIS-1117015.

7. REFERENCES

[1] Librosa, 2014. https://github.com/bmcfee/librosa.

[2] Fan RK Chung. Spectral graph theory, volume 92.
American Mathematical Soc., 1997.

[3] Jonathan Foote. Automatic audio segmentation using
a measure of audio novelty. In Multimedia and Expo,
2000. ICME 2000. 2000 IEEE International Confer-
ence on, volume 1, pages 452–455. IEEE, 2000.

[4] Harald Grohganz, Michael Clausen, Nanzhu Jiang,
and Meinard Müller. Converting path structures into
block structures using eigenvalue decomposition of
self-similarity matrices. In ISMIR, 2013.

[5] Christopher Harte. Towards automatic extraction of
harmony information from music signals. PhD thesis,
University of London, 2010.

[6] Florian Kaiser and Geoffroy Peeters. A simple fusion
method of state and sequence segmentation for music
structure discovery. In ISMIR, 2013.

[7] Florian Kaiser and Thomas Sikora. Music structure
discovery in popular music using non-negative matrix
factorization. In ISMIR, pages 429–434, 2010.

[8] P. Lamere. The infinite jukebox, November 2012.
http://infinitejuke.com/.

[9] Mark Levy and Mark Sandler. Structural segmenta-
tion of musical audio by constrained clustering. Audio,
Speech, and Language Processing, IEEE Transactions
on, 16(2):318–326, 2008.

[10] Jouni Paulus and Anssi Klapuri. Music structure analy-
sis by finding repeated parts. In Proceedings of the 1st
ACM workshop on Audio and music computing multi-
media, pages 59–68. ACM, 2006.

[11] J. Serrà, M. Müller, P. Grosche, and J. Arcos. Unsuper-
vised music structure annotation by time series struc-
ture features and segment similarity. Multimedia, IEEE
Transactions on, PP(99):1–1, 2014.

[12] Jordan BL Smith, John Ashley Burgoyne, Ichiro Fuji-
naga, David De Roure, and J Stephen Downie. Design
and creation of a large-scale database of structural an-
notations. In ISMIR, pages 555–560, 2011.

[13] Jordan BL Smith and Elaine Chew. A meta-analysis of
the mirex structure segmentation task. In ISMIR, 2013.

[14] Stefan Van Der Walt, S Chris Colbert, and Gael Varo-
quaux. The numpy array: a structure for efficient nu-
merical computation. Computing in Science & Engi-
neering, 13(2):22–30, 2011.

[15] Ulrike Von Luxburg. A tutorial on spectral clustering.
Statistics and computing, 17(4):395–416, 2007.


