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S
tate-of-the-art automatic speech recognition (ASR) systems continue to improve, yet there
remain many tasks for which the technology is inadequate. The core acoustic operation has
essentially remained the same for decades: a single feature vector (derived from the power spec-
tral envelope over a 20–30 ms window, stepped forward by ∼10 ms per frame) is compared to a
set of distributions derived from training data for an inventory of subword units (usually some

variant of phones). While many systems also incorporate time derivatives [16] and/or projections from five
or more frames to a lower dimension [21], [17], the fundamental character of the acoustic features has
remained quite similar. We believe that this limited perspective is a key weakness in speech recognizers.
Under good conditions, human phone error rate for nonsense syllables has been estimated to be as low as
1.5% [1], as compared with rates that are over an order of magnitude higher for the best machine phone
recognizers [13], [23], [26]. In this light, our best current recognizers appear half deaf, only making up for
this deficiency by incorporating strong domain constraints. To develop generally applicable and useful
recognition techniques, we must overcome the limitations of current acoustic processing. Interestingly,
even human phonetic categorization is poor for extremely short segments (e.g., <100 ms), suggesting that
analysis of longer time regions is somehow essential to the task. This is supported by information theoretic
analysis, which shows discriminative dependence conditional on underlying phones between features sepa-
rated in time by up to several hundred milliseconds [6], [28].

In mid-2002, we began working on a Defense Advanced Research Projects Agency (DARPA) sponsored
project known as the “Novel Approaches” component of the Effective Affordable Reusable Speech-to-text
(EARS) program. The fundamental goal of this multisite effort was to “push” the spectral envelope away from
its role as the sole source of acoustic information incorporated by the statistical models of modern speech
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recognition systems (SRSs), particularly in the context of the
conversational telephone speech recognition task. This ultimate-
ly would require both a revamping of acoustical feature extrac-
tion and a fresh look at the incorporation of these features into
statistical models representing speech. So far, much of our effort
has gone towards the design of new features and experimentation
with their incorporation in a modern speech-to-text system. The
new features have already provided significant improvements in
such a system in the 2004 NIST evaluation of recognizers of con-
versational telephone speech. The development of statistical
models to best incorporate the long time features is being
explored, but development is still in its early stages. 

BACKGROUND 
Mainstream speech recognition systems typically use a signal
representation derived from a cepstral transformation of a
short-term spectral envelope. This dependence on the spectral
envelope for speech sound discrimination dates back to the
1950s, as described in [11]. In turn, this style of analysis can be
traced back to the 1930s vocoder experiments of Homer Dudley
[14]. Perhaps more fundamentally, many speech scientists have
observed the relationship between the spectral components of
speech sounds and their phonetic identity. They have further
characterized these sounds by their correspondence to the state
of the speech articulators and the resulting resonances (for-
mants). By this view, one should use pattern recognition tech-
niques to classify new instances of speech sounds based on
their proximity in some spectral (or cepstral) space to speech
sounds collected for training the system. Modern statistical
speech recognition systems are fundamentally elaborations on

this principle; individual training examples are not used direct-
ly for calculating distances but rather are used to train models
that represent statistical distributions. The Markov chains that
are at the heart of these models represent the temporal aspect
of speech sounds and can accommodate differing durations for
particular instances. The overall structure provides a consistent
mathematical framework that can incorporate powerful learn-
ing methods such as maximum likelihood training using expec-
tation maximization [12]. Systems using short-term cepstra for
acoustic features and first-order Markov chains for the acoustic
modeling have been successful both in the laboratory and in
numerous applications, ranging from cell phone voice dialing
to dialog systems for use in call centers.

Despite these successes, there are still significant limita-
tions to speech recognition performance, particularly for con-
versational speech and/or for speech with significant acoustic
degradations from noise or reverberation. For this reason, we
have proposed methods that incorporate different (and larger)
analysis windows, which will be described below. We note in
passing that we and many others have already taken advantage
of processing techniques that incorporate information over
long time ranges, for instance for normalization (by cepstral
mean subtraction [2] or relative spectral analysis (RASTA)
[18]). We also have proposed features that are based on speech
sound class posterior probabilities, which have good properties
for both classification and stream combination.

TEMPORAL REPRESENTATIONS FOR EARS 
Our goal is to replace (or augment) the current notion of a
spectral-energy-based vector at time t with variables based on

[FIG1] Posterior-based feature generation system. Each posterior stream is created by feeding a trained multilayer perceptron (MLP)
with features that have different temporal and spectral extent. The “PLP Net” is trained to generate phone posterior estimates given
roughly 100 ms of telephone bandwidth speech after being processed by PLP analysis over nine frames. HATs processing is trained for
the same goal given 500 ms of log-critical band energies. The two streams of posteriors are combined (in a weighted sum where each
weight is a scaled version of local stream entropy) and transformed as shown to augment the more traditional PLP features. The
augmented feature vector is used as an observation by the Gaussian mixture hidden Markov model (GMHMM) system.
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posterior probabilities of speech categories for long and short
time functions of the time-frequency plane. These features may
be represented as multiple streams of probabilistic information.
Other analyses that use time and frequency windows will inter-
mediate between these extremes. For all the reasons described
earlier, it is desirable to extend the acoustic analysis to signifi-
cantly larger time windows
than are typically used.

As a specific example, we
are working with narrow
spectral subbands and long
temporal windows (up to 500
ms or more, sufficiently long
for two or more syllables). In
one successful instantiation of these ideas, we used the tem-
poral trajectory of logarithmic spectral energy in a single crit-
ical band as the input vector for a multilayer perceptron,
which then generates class posterior probability estimates.
This structure is referred to as TempoRAl patterns (TRAPs)
[19]. We developed this approach for use in a multistream
combination system alongside conventional features, using
simple functions of the posterior estimates as intermediate
features. This yielded promising results for small tasks like
numbers recognition, as reported in [20]. In recent years, we
have begun to apply related
techniques to the recogni-
tion of conversational tele-
phone speech. As reported in
[10], a variant of this
approach called hidden acti-
vation TRAPs (HATs) has led
to relative reductions in
error of around 8% when
these features are combined
with posterior estimates
from perceptual linear pre-
diction (PLP) and its first
two derivatives and incorpo-
rated in the SRI decipher
system (reducing the word
error rate (WER) from 25.6%
to 23.5% on the 2001 NIST
evaluation set). These results
carried over to the full SRI
evaluation system as well. In
fact, on the 2004 NIST evalu-
ation set, the system incor-
porating these features
achieved an 18.3% WER, a
9.9% reduction in error from
the 20.3% achieved by the
same system without these
new features. 

The subsystem for feature
generation that achieved

these results is shown in Figure 1, and the HATs component is
illustrated in Figure 2.

In addition to the large-vocabulary recognition work men-
tioned earlier, we have also used small vocabulary tasks to fur-
ther develop the temporal features beyond those based on the
sequence of framewise log energies used by the TRAPs and HATs

approaches. We have designed
features based on linear pre-
diction coefficients calculated
on the spectrum, which form a
mathematical dual to the
more familiar time-domain
linear predictive coding (LPC)
models; we call this frequency-

domain linear prediction (FDLP) [3]. These features constitute a
parametric model of the temporal envelope without any frame-
rate subsampling. They can capture fine temporal detail about
transients that is lost in conventional frame-based features.
While the poles in conventional LPC can describe sharp spectral
resonances very precisely, in the dual domain the poles of the
linear predictor can be taken as parametric descriptions of indi-
vidual sharp peaks in the temporal (Hilbert) envelope, without
any implicit envelope smoothing or downsampling. Such tran-
sients occur during stop bursts and other rapid articulation

[FIG2] Hidden activation TRAP component. The posterior stream is created by feeding a “merging”
multilayer perceptron (MLP) with the output from the hidden activation layers of three-layer MLPs
that were each trained on a different critical band spectrum (referred to as “MLP-OL” or MLP minus
the output layer in the figure).
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changes in speech. This parametric representation (which has
the useful property of automatically selecting the most “impor-
tant” transients within its analysis window when fitting a limit-
ed-order model) allows us to
investigate the importance of
this aspect of the signal in
speech recognizers for the
first time.

We have experimented
with different methods of
incorporating this informa-
tion into a conventional rec-
ognizer. Our best results come from modeling the envelope in
four octave-wide frequency bands over relatively long windows
(300 ms) and then selecting the poles that represent temporal
features in the center of the window and using their individual
magnitudes as values. Augmenting our baseline PLP system
with these features reduced the WER on a natural numbers
recognition task (Numbers-95) from 5.0% to 3.8% (a 24% rela-
tive improvement). In subsequent work, we incorporated the
FDLP model into the TRAP framework, yielding the LP-TRAP
[4]. Here we modeled the temporal envelope of 15 critical
bands over longer windows (1 s). The all-pole polynomials were
converted to cepstral coefficients for recognition. Using this
method, we improved the WER of the spectrogram-based TRAP
baseline from 5.9% to 5.3% (a 10% relative improvement) on
the Numbers-95 task. Although both error rates were worse
than the PLP-based system (since PLP has a number of advan-
tages over purely spectral-based front ends), this initial result
suggested that the all-pole polynomials might be a good way to
represent spectral trajectories as part of a larger system.

STABILITY OF RESULTS 
It is standard fare for conference papers to report the success
of method Y (in comparison to method X) on some particu-

lar test. In the best cases, this result follows from some prin-
ciples that are likely to apply to future cases. However, it is
particularly gratifying if the observed results hold over a

range of cases and if one can
observe phenomena (other
than final score on a single
task) that appear to demon-
strate some reason for the
utility of the new method.
We believe that we can now
make such claims for the
incorporation of long-term,

posterior-based features ASR. To begin with, we have
observed improvements for a range of conversational tele-
phone speech recognition systems, with increasing amounts
of training data and corresponding system complexity (and
reduced baseline error rate) as indicated in Table 1.
“Switchboard” and “Fisher” refer to earlier and later data col-
lection approaches for the data that was distributed by the
Linguistic Data Consortium (LDC). Note that the
Switchboard and Fisher conversational data is extremely dif-
ficult to recognize due to their unconstrained vocabulary,
speaking style, and range of telephones used. In addition to
the consistent WER reductions provided by the new features,
we also observed improved low-level classification perform-
ance for long-duration speech sounds like diphthongs. All of
this work actually began with experiments on very different
(and much smaller) tasks, in particular on recognition of nat-
ural numbers (e.g., 8, 18, 80, etc.). Results for these experi-
ments were also consistent with what we observed for the
more difficult conversational speech recognition task. As
noted above for the newer FDLP and LP-TRAP approaches, we
continue to do early experiments with small tasks to permit
many experiments, but we take the best (and most developed)
of these methods and validate their generality on large tasks.

The first results row corresponds to experiments from a
reduced task using utterances primarily composed of the most
frequent words [9]. Both the Switchboard and Fisher collections
consisted of impromptu conversations between randomly select-
ed volunteers that were, however, sparked by suggested topics. A
key practical difference between the data sets is that the
Switchboard data was carefully transcribed, while the later
Fisher set was transcribed with a quicker approach that was not
quite as accurate.

SOME PRACTICAL CONSIDERATIONS 
At this point, we have consistently seen the advantage in aug-
menting cepstral features with features that span much
longer stretches of time, using discriminatively trained neu-
ral networks to transform the raw representations into poste-
rior probabilities of phonetic classes and constraining the
network trainings to emphasize the temporal trajectories of
narrowband components of the speech signal. A number of
difficulties remain, however. As we have experimented with
larger and larger training sets, we have found that our new

RELATIVE 
REDUCTION 
IN WER % 
ADDING 

TRAINING BASELINE LONG-TERM 
DATA TEST SET WER % FEATURES
SWITCHBOARD, 1.4 H SUBSET OF 43.8% 10.5%

23 H 2001 NIST EVAL SET

SWITCHBOARD, 2001 NIST EVAL SET 39.1% 10.0%
64 H

SWITCHBOARD 2001 NIST EVAL SET 30.8% 7.1%
+ “FISHER,” 
200 H
MALE ONLY

SWITCHBOARD 2004 NIST EVAL SET 20.3% 9.9%
+ FISHER, 
2,000 H

[TABLE 1]  RESULTS FROM A SERIES OF EXPERIMENTS WITH
INCREASINGLY COMPLEX BASELINE SYSTEMS
USING INCREASINGLY LARGE AMOUNTS OF
TRAINING DATA.

MAINSTREAM SPEECH RECOGNITION
SYSTEMS TYPICALLY USE A SIGNAL
REPRESENTATION DERIVED FROM

A CEPSTRAL TRANSFORMATION OF
A SHORT-TERM SPECTRAL ENVELOPE. 
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features provide the best improvement when they are trained
using the same amount of data that has been used to train
the hidden Markov models (HMMs). However, we also
achieved our best improve-
ments when the network
size grew proportionately
with the training data. This
implies a quadratic growth
in training time, which can
be a great burden for experi-
mentation. For our current
experiments, we have
addressed this problem through a combination of small
remedies: the use of hyperthreading on dual CPUs, gender-
specific training, preliminary network training passes with
fewer training patterns, and customization of the learning
regimen to reduce the number of epochs. Despite the success
of these measures, in the long term it may become important
to find ways to improve the scaling properties of these meth-
ods, for instance by using selected subsets of the data for
later training passes. Extending to clusters with more CPUs
can help to some extent, though communication speed
between processors limits the effectiveness of this approach.
For the moment, however, our methods have proven suffi-
cient to scale up from tens of hours to thousands of hours of
training material. Figure 3 illustrates the key idea behind
these methods, namely, the incorporation of smaller amounts
of training material for early, large-learning-rate passes.

Similarly, new computational paradigms modeling multi-
ple streams and their statistical dependencies come at
increased computational and memory costs beyond those
required by simple HMMs. These costs are higher because of
the larger model size for coupled state and observation
spaces, suggesting the need for faster probabilistic inference
algorithms and judicious model selection methods for con-
trolling model complexity.

STATISTICAL MODELING FOR THE NEW FEATURES
The results reported thus far were all obtained with HMM-based
systems, which appear to have been adequate for the task of esti-
mating and utilizing statistics from the new signal representa-
tions. In principle, however, HMMs are not well suited to
long-term features. The HMM and frame-based cepstra have co-
evolved as ASR system components and hence are very much
tuned to each other. The use of HMMs as the core acoustic mod-
eling technology might obscure the gains from new features,
especially those from long time scales; this may be one reason
why progress with novel techniques has been so difficult. In par-
ticular, systems incorporating new signal processing methods in
the front end are at a disadvantage when tested using standard
HMMs. Additionally, the standard way to use longer temporal
scales with an HMM is simply to use a large analysis window and
a small (e.g., 10 ms) frame step, so that the frame rate is the
same as for the small analysis window. The problem with this
approach is that successive features at the slow time scale are

even more correlated than those at the fast time scale, leading
to a bias in posteriors. Models that do not represent the high
correlation between successive frames effectively overcount the

evidence about the underlying
speech classes, creating a need
for artificially weighting prob-
ability scores depending on
the different time scales (i.e.,
longer time scales should have
lower weight because of the
higher correlation due to win-
dow overlap).

These points suggest that we should consider changing the
statistical model. One approach that has been proposed is to
add feature dependencies or explicitly model the dynamics of
frame-based features in various extensions of HMMs [5], [24].
While we have made contributions in this area, we now believe
that a very different approach is needed, one that relaxes the
frame-based processing constraint. We propose instead to
focus on the problem of multistream and multirate process
modeling for two main reasons. First, it is desirable to improve
robustness to corruption of individual streams. The use of
multiple streams introduces more flexibility in characterizing
speech at different time and frequency scales, which we
hypothesize will be useful for both noise robustness and char-
acterizing the variability observed in conversational speech.
Second, the statistical models and features interact, and simple
HMM-based combination approaches (or the other approaches
that do not represent multiscale nature in multiple feature
sequences) might not fully utilize complementary information

[FIG3] Streamlined training schedule for large MLP back-
propagation learning task. A comparatively large learning
rate (typically α = .001) is used with a small fraction of the
total training data (N was about 1,000 hours per gender) to
begin the net training. The schedule parameters were
extrapolated from many smaller experiments. Each of the
four networks ({male,female}X{HATs,PLP Net}) has roughly
eight million parameters and is trained on about 360 million
speech feature vectors.
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in different feature sequences, especially those from long time
scales. In particular, we hypothesize that both the redundancy
reduction and the selection of appropriate-sized modeling
units are important for utilizing TRAPs- or HATs-like, long-
term features in speech recognition.

We have experimented with an acoustic model using a
multirate, coupled HMM architecture for incorporating
acoustic and linguistic information from long time scales
into speech recognition by
joint statistical modeling of
speech at phone and syllable
time scales. In a two-rate,
HMM-based acoustic model,
we modeled speech using
both recognition units and
feature sequences corresponding to phone and syllable time
scales. The short time scale in this model corresponds to the
traditional phone HMMs using cepstral features, whereas the
long time scale characterizes syllable structure and lexical
stress using HATs. We have used the usual short-term spec-
tral (PLP cepstral) features for the short-term scale model-
ing, whereas we used the long-term temporal ones (HATs)
for the long-term scale modeling. Unlike the previously
mentioned HAT features that were trained on phone targets,
these HAT features are trained on broad consonant/vowel
classes with distinction for syllable position (onset, coda,
and ambi-syllabification) for consonants and low/high stress
level for vowels. The HAT features trained on these latter
targets provide much needed complementary information
for multiscale modeling. The modeling units for the two
time scales are phones and broad consonant/vowel phone
classes. Words are represented as two parallel streams of
context-dependent consonant/vowel states in the long time
scale and as the usual context-dependent phone states in the
short time scale.  The alignment between two model

sequences is allowed to vary across segment boundaries cor-
responding to syllable structure, allowing partial asynchrony
in time and in modeling units.

In a medium-vocabulary version of the Switchboard con-
versational telephone speech recognition task, we have found
that the explicit modeling of speech at two time scales via
multirate, coupled HMMs architecture outperforms simple
HMM-based feature concatenation and multistream modeling

without downsampling
approaches; these results
emphasize the importance of
redundancy reduction for
knowledge integration and
the importance of accommo-
dating new features with

new statistical models. The best performance, however, was
obtained by a variable-rate extension in which the number of
observations at one scale corresponding to an observation at
the next coarsest scale can vary [8]. As such, the feature
extraction and statistical modeling are tailored to focus more
on information-bearing regions (e.g., phone transitions) as
opposed to a uniform emphasis over the whole signal space. In
these experiments, we dynamically sampled the coarse features
(HATs) only when they significantly differed from the one occur-
ring before so that, on average, one in three coarse features was
kept. Figure 4 shows a graphical model illustration of a two-
rate model using the variable-rate extension in aligning obser-
vations from different scales.

In our two-scale multi- and variable-rate models, we
assumed that the coarser scale is about three times slower than
the finer scale. The rate factor, three, was largely determined
from minimum length constraints to cover speech utterances
with left-to-right coarser-scale state topologies without skips.
One interesting and potentially fruitful research direction is a
more careful choice of this sampling rate, according to, for
example, the scale/rate of the larger time-window features.
Another interesting research direction is the multirate acoustic
models with more than two time scales. The third or higher
time scale can represent utterance-level effects such as speak-
ing rate and style, gender, and noise. 

WHAT COULD BE NEXT
The incorporation of temporal information via TRAPs or
HATs appears to complement the more standard front end
well enough to markedly improve recognition performance.
However, this method is clearly a special case of a much
broader class of front ends. In [22], a set of Gabor filters was
applied to a log mel spectrogam, creating sensitivity to spec-
tral, temporal, and spectrotemporal patterns at various
scales. A subset of these filters was then chosen to optimize
classification performance. This resulted in performance
improvements for a small noise robustness task. This
approach could be a candidate for future work in the search
for a more general solution to the question of which combi-
nation of which feature streams would actually be optimal for

[FIG4] A graphical model illustration of a two-scale, variable-
rate model unfolded in time, with the long time scale at the
top. The squares represent hidden states associated with each
scale, whereas the circles represent corresponding
observations. The observations at the long time scale are
irregularly sampled (as compared to regularly sampled short
time scale observations) so as to focus more on temporally
varying regions over the signal space.

WE PROPOSE TO FOCUS ON THE
PROBLEM OF MULTISTREAM AND
MULTIRATE PROCESS MODELING.
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large speech recognition tasks. In a related technique, we are
working to determine optimal window sizes and frame rates
for different regions of speech, thus creating a signal-adap-
tive front end [27]. Incorporating such a subsystem can
require significant changes to the rest of the system, and so
our early work in this area is being conducted using rescor-
ing approaches (e.g., rescoring a list of the N most probable
word sequence hypotheses with probabilities arising from
one or more alternate analysis windows). 

The energy-based representations of temporal trajectories
(or, more generally, of spectrotemporal patterns) could be
replaced by autoregressive models for these components of
the time-frequency plane, such as the FDLP or LP-TRAP
approaches described earlier. We are also looking at combin-
ing the two dual forms of linear prediction, creating a new
representation called perceptual linear prediction squared
(PLP2) [5]. PLP2 is a spectrogram-like signal representation
that is iteratively approximated by all-pole models applied
sequentially in the time and frequency directions of the spec-
trotemporal pattern. First, the Hilbert envelopes in critical-
band subbands are fit (so-called subband FDLP), and then
all-pole models are fit to smooth the energy across subbands.
Note, however, that unlike conventional feature processing, no
frame-based spectral analysis occurs. After a few iterations,
the result converges to a two-dimensional pattern that can be
represented by a series of all-pole vectors in either the time or
the frequency domain. 

Finally, we note the related and impressive work done
recently at IBM on incorporating low-dimensional projections of
high-dimensional, Gaussian-derived posteriors, also incorporated
in the feature vector used for recognition [25]. In this case also
they seem to get significant benefit from posteriors incorporat-
ing information from long time spans.

FINAL WORDS
In [7] we whimsically referred to the increase in error rates as
a goal in speech recognition research. Of course, we did not
mean this literally; rather, we intended to encourage intrepid
exploration of the road “less traveled” [15]. We implored the
reader not to be deterred by initial results that were poorer
than those achieved by more conventional methods, since this
was almost inevitable when wandering from a well-worn path.
However, the goal was always to ultimately improve perform-
ance, and the explorations into relatively uncharted territory
were only a path to that goal. This process can be slow and
sometimes frustrating. But eight years after we told this story,
we are now seeing some of the improvements on large tasks
that we earlier saw hints of in small tasks.
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