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Abstract

In this paper we present a discriminative model for polyphonic piano

transcription. Support Vector Machines trained on spectral features are

used to classify frame-level note instances. The classifier outputs are tem-

porally constrained via hidden Markov models, and the proposed system

is used to transcribe both synthesized and real piano recordings. A frame-

level transcription accuracy of 68% was achieved on a newly generated test

set, and direct comparisons to previous approaches are provided.

1 Introduction

Music transcription is the process of creating a musical score (i.e. a symbolic
representation) from an audio recording. Although expert musicians are capa-
ble of transcribing polyphonic pieces of music, the process is often arduous for
complex recordings. As such, the ability to automatically generate transcrip-
tions has numerous practical implications in musicological analysis and may
potentially aid in content-based music retrieval tasks.

The transcription problem may be viewed as identifying the notes that have
been played in a given time period (i.e. detecting the onsets of each note).
Unfortunately, the harmonic series interaction that occurs in polyphonic music
significantly obfuscates automated transcription. Moorer [1977] first presented
a limited system for duet transcription. Since then, a number of acoustical
models for polyphonic transcription have been presented in both the frequency
domain [Rossi et al., 1997, Sterian, 1999, Dixon, 2000] and the time domain
[Bello et al., 2002].

These methods, however, rely on a core analysis that assumes a specific audio
structure; namely that musical pitch is produced by periodicity at a particular
fundamental frequency in the audio signal. For instance, the system of Klapuri
[2005] estimates multiple fundamental frequencies from spectral peaks using a
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computational model of the human auditory periphery. Then, discrete hidden
Markov models (HMMs) are iteratively applied to extract melody lines from the
fundamental frequency estimations [Ryynänen and Klapuri, 2005].

The assumption that pitch arises from harmonic components is strongly
grounded in musical acoustics, but it is not necessary for transcription. In many
fields (such as automatic speech recognition) classifiers for particular events are
built using the minimum of prior knowledge of how they are represented in
the features. Marolt [2004] presented such a classification-based approach to
transcription using neural networks, but a filterbank of adaptive oscillators was
required in order to reduce erroneous note insertions. Bayesian models have also
been proposed for music transcription [Godsill and Davy, 2002, Cemgil et al.,
2005, Kashino and Godsill, 2004]; however, these inferential treatments, too,
rely on physical prior models of musical sound generation.

In this paper, we pursue the insight that prior knowledge is not strictly
necessary for transcription by examining a discriminative model for automatic
music transcription. We propose a supervised classification system that infers
the correct note labels based only on training with labeled examples. Our
algorithm performs polyphonic transcription via a system of Support Vector
Machine (SVM) classifiers trained from spectral features. The independent
classifications are then temporally smoothed in an HMM post-processing stage.
We show that a classification-based system provides significant advantages in
both performance and simplicity over acoustic model approaches.

The remainder of this paper is structured as follows: We describe the gen-
eration of our training data and acoustic features in Section 2. In Section 3,
we present a frame-level SVM system for polyphonic pitch classification. The
classifier outputs are temporally smoothed by a note-level HMM as described
in Section 4. The proposed system is used to transcribe both synthesized piano
and recordings of a real piano, and the results, as well as a comparison to pre-
vious approaches, are presented in Section 5. Finally, we provide a discussion
of the results and present ideas for future developments in Section 6.

2 Audio Data and Features

Supervised training of a classifier requires a corpus of labeled feature vectors.
In general, greater quantities and variety of training data will give rise to more
accurate and successful classifiers. In the classification-based approach to tran-
scription, then, the biggest problem becomes collecting suitable training data.
In this paper, we investigate using synthesized MIDI audio and live piano record-
ings to generate training, testing, and validation sets.

2.1 Audio Data

MIDI was created by the manufacturers of electronic musical instruments as
a digital representation of the notes, timing, and other control information
required to synthesize a piece of music. As such, a MIDI file amounts to a
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Figure 1: Note distributions for the training and test sets.

digital music score that can be converted into an audio rendition. The MIDI
data used in our experiments was collected from the Classical Piano Midi Page,
http://www.piano-midi.de/ . The 130 piece data set was randomly split into
92 training, 25 testing, and 13 validation pieces. Table 5 gives a complete list
of the composers and pieces used in the experiments.

The MIDI files were converted from the standard MIDI file format to monau-
ral audio files with a sampling rate of 8 kHz using the synthesizer in Apple’s
iTunes. In order to identify the corresponding ground truth transcriptions, the
MIDI files were parsed into data structures containing the relevant audio in-
formation (i.e. tracks, channels numbers, note events, etc). Target labels were
determined by sampling the MIDI transcript at the precise times corresponding
to the analysis frames of the synthesized audio.

In addition to the synthesized audio, piano recordings were made from a
subset of the MIDI files using a Yamaha Disklavier playback grand piano. 20
training files and 10 testing files were randomly selected for recording. The
MIDI file performances were recorded as monaural audio files at a sampling
rate of 44.1 kHz. Finally, the piano recordings were time-aligned to the MIDI
score by identifying the maximum cross-correlation between the recorded audio
and the synthesized MIDI audio.

The first minute from each song in the data set was selected for experimenta-
tion which provided us with a total of 112 minutes of training audio, 35 minutes
of testing audio, and 13 minutes of audio for parameter tuning on the validation
set. This amounted to 56497, 16807, and 7058 note instances in the training,
testing, and validation sets respectively. The note distributions for the training
and test sets are displayed in Figure 1.

2.2 Spectral Features

We applied the short-time Fourier transform to the audio files using N = 1024
point Discrete Fourier Transforms (i.e. 128 ms), an N -point Hanning window,
and an 80 point advance between adjacent windows (for a 10 ms hop between
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successive frames). In an attempt to remove some of the influence due to timbral
and contextual variation, the magnitudes of the spectral bins were normalized
by subtracting the mean and dividing by the standard deviation calculated in
a 71-point sliding frequency window. Note that the live piano recordings were
down-sampled to 8 kHz using an anti-aliasing filter prior to feature calculation
in order to reduce the spectral dimensionality.

Separate one-versus-all (OVA) SVM classifiers were trained on the spectral
features for each of the 88 piano keys with the exception of the highest note,
MIDI note number 108. For MIDI note numbers 21 to 83 (i.e. the first 63 piano
keys), the input feature vector was composed of the 255 coefficients correspond-
ing to frequencies below 2 kHz. For MIDI note numbers 84 to 95, the coefficients
in the frequency range 1 kHz to 3 kHz were selected, and for MIDI note numbers
95 to 107, the frequency coefficients from the range 2 kHz to 4 kHz were used
as the feature vector. In [Ellis and Poliner, 2006], a number of spectral feature
normalizations were attempted for melody classification; however, none of the
normalizations provided a significant advantage in classification accuracy. We
have selected the best performing normalization from that experiment, but as
we will show in the following section, the greatest gain in classification accuracy
is obtained from a larger and more diverse training set.

3 Frame Level Note Classification

The Support Vector Machine is a supervised classification system that uses a
hypothesis space of linear functions in a high dimensional feature space in order
to learn separating hyperplanes that are maximally distant from all training
patterns. As such, SVM classification attempts to generalize an optimal deci-
sion boundary between classes of data. Subsequently, labeled training data in
a given space are separated by a maximum-margin hyperplane through SVM
classification.

Our classification system is composed of 87 OVA binary note classifiers that
detect the presence of a given note in a frame of audio, where each frame is
represented by a 255-element feature vector as described in Section 2. We took
the distance-to-classifier-boundary hyperplane margins as a proxy for a note-
class log-posterior probability. In order to classify the presence of a note within
a frame, we assume the state to be solely dependent on the normalized frequency
data. At this stage, we further assume each frame to be independent of all other
frames.

The SVMs were trained using Sequential Minimal Optimization [Platt, 1998],
as implemented in the Weka toolkit [Witten and Frank, 2000]. A Radial Basis
Function (RBF) kernel was selected for the experiments, and the γ and C pa-
rameters were optimized over a global grid search on the validation set using a
subset of the training set. In this section, all classifiers were trained using the
92 MIDI training files and classification accuracy is reported on the validation
set.

Our first classification experiment was to determine the number of training
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Figure 2: Variation of classification accuracy with number of randomly selected
training frames per note, per excerpt.

instances to include from each audio excerpt. The number of training excerpts
was held constant, and the number of training instances selected from each piece
was varied by randomly sampling an equal number of positive and negative
instances for each note. As displayed in Figure 2, the classification accuracy
begins to approach an asymptote within a small fraction of the potential training
data. Since the RBF kernel requires training time on the order of the number of
training instances cubed, 100 samples per note class, per excerpt was selected as
a compromise between training time and performance for the remainder of the
experiments. A more detailed description of the classification metrics is given
in Section 5.

The observation that random sampling approaches an asymptote within a
couple of hundred samples per excerpt (out of a total of 6000 for a 60 s ex-
cerpt with 10 ms hops) can be explained by both signal processing and acoustic
considerations. Firstly, adjacent analysis frames are highly overlapped, sharing
118 ms out of a 128 ms window, and thus their feature values will be very highly
correlated (10 ms is an unnecessarily fine time resolution to generate training
frames, but it is the standard used in evaluation). Furthermore, musical notes
typically maintain approximately constant spectral structure over hundreds of
milliseconds; a note should maintain a steady pitch for some significant fraction
of a beat to be perceived as well-tuned. As we noted in Section 2, there are on
average 8 note events per second in the training data. Each note may contribute
a few usefully different frames due to variations in accompanying notes. Thus
we expect many clusters of largely redundant frames in our training data, and
random sampling down to 2% (roughly equal to the median prior probability of
a specific note occurrence) is a reasonable approximation.

A second experiment examined the incremental gain from adding novel train-
ing excerpts. In this case, the number of training excerpts was varied while
holding constant the number of training instances per excerpt. The dashed line
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Figure 3: Variation of classification accuracy with the total number of excerpts
included, compared to sampling the same total number of frames from all ex-
cerpts pooled.

in Figure 3 shows the variation in classification accuracy with the addition of
novel training excerpts. In this case, adding an excerpt consisted of adding
100 randomly-selected frames per note class (50 each positive and negative in-
stances). Thus, the largest note classifiers are trained on 9200 frames. The solid
curve displays the result of training on the same number of frames randomly
drawn from the pool of the entire training set. The limited timbral variation is
exhibited in the close association of the two curves.

4 Hidden Markov Model Post Processing

An example ‘posteriorgram’ (time-versus-class image showing the pseudo-posteriors
of each class at each time step) for an excerpt of Für Elise is displayed in the top
pane of Figure 4. The posteriorgram clearly illustrates both the strengths and
weaknesses of the discriminative approach to music transcription. The success
of the approach in estimating the pitch from audio data is clear in the majority
of frames. However, the result also displays the obvious fault of the approach
of classifying each frame independently of its neighbors: the inherent temporal
structure of music is not exploited. In this section, we attempt to incorporate
the sequential structure that may be inferred from musical signals by using
hidden Markov models to capture temporal constraints.

Similarly to our data-driven approach to classification, we learn temporal
structure directly from the training data. We model each note class indepen-
dently with a two-state, on/off, HMM. The state dynamics, transition matrix
and state priors are estimated from our ‘directly observed’ state sequences – the
ground-truth transcriptions of the training set.

If the model state at time t is given by qt, and the classifier output label is
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Figure 4: Top: Posteriorgram (pitch probabilities as a function of time) for
an excerpt of Beethoven’s Für Elise. Bottom: The HMM smoothed estimation
(dark gray) plotted on top of the ground truth labels (light gray; overlaps are
black).

ct, then the HMM will achieve temporal smoothing by finding the most likely
(Viterbi) state sequence i.e. maximizing

∏

t

p(ct|qt)p(qt|qt−1) (1)

where p(qt|qt−1) is the transition matrix estimated from ground-truth transcrip-
tions. We estimate p(ct|qt), the probability of seeing a particular classifier label
ct given a true pitch state qt, with the likelihood of each note being ‘on’ accord-
ing to the output of the classifiers. Thus, if the acoustic data at each time is xt,
we may regard our OVA classifier as giving us estimates of

p(qt|xt) ∝ p(xt|qt)p(qt) (2)

i.e. the posterior probabilities of each HMM state given the local acoustic
features. By dividing each (pseudo)posterior by the prior of that note, we get
scaled likelihoods that can be employed directly in the Viterbi search for the
solution of equation 1.

HMM post-processing results in an absolute improvement of 2.8% yielding
a frame-level classification accuracy of 70% on the validation set. Although
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the improvement in frame-level classification accuracy is relatively modest, the
HMM post-processing stage reduces the total onset transcription error by over
7%, primarily by alleviating spurrious onsets. A representative result of the
improvement due to HMM post processing is displayed in the bottom pane of
Figure 4.

5 Transcription Results

In this section, we present a number of metrics to evaluate the success of our
approach. In addition, we provide empirical comparisons to the transcription
systems proposed by Marolt [2004] and Ryynänen and Klapuri [2005]. It should
be noted that the Ryynänen and Klapuri system was developed for general
music transcription, and the parameters have not been tuned specifically for
piano music.

5.1 Frame-Level Transcription

For each of the evaluated algorithms, a 10 ms frame-level comparison was made
between the algorithm (system) output and the ground-truth (reference) MIDI
transcript. We start with a binary ‘piano-roll’ matrix, with one row for each note
considered, and one column for each 10 ms time-frame. There is, however, no
standard metric that has been used to evaluate work of this kind: we report two,
one based on previous piano transcription work, and one based on analogous
work in multi-party speech activity detection. The results of the frame-level
evaluation are displayed in Table 1.

The first measure is a frame-level version of the metric proposed by Dixon
[2000], defined as Overall Accuracy:

Acc =
TP

(FP + FN + TP )
(3)

where TP (“true positives”) is the number of correctly transcribed voiced frames
(over all notes) FP (“false positives”) is the number of unvoiced note-frames
transcribed as voiced, and FN (“false negatives”) is the number of voiced note-
frames transcribed as unvoiced. This measure is bounded by 0 and 1, with 1
corresponding to perfect transcription. It does not, however, facilitate an insight
into the trade-off between notes that are missed and notes that are inserted.

The second measure, frame-level transcription error score, is based on the
“speaker diarization error score” defined by NIST for evaluations of ‘who spoke
when’ in recorded meetings [National Institute of Standards and Technology,
2004]. A meeting may involve many people, who, like notes on a piano, are often
silent but sometimes simultaneously active (i.e. speaking). NIST developed
a metric that consists of a single error score which further breaks down into
substitution errors (mislabeling an active voice), “miss” errors (when a voice
is truly active but results in no transcript), and “false alarm” errors (when
an active voice is reported without any underlying source). This three-way
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decomposition avoids the problem of ‘double-counting’ errors where a note is
transcribed at the right time but with the wrong pitch; a simple error metric as
used in earlier work, and implicit in Acc, biases systems towards not reporting
notes, since not detecting a note counts as a single error (a “miss”), but reporting
an incorrect pitch counts as two errors (a “miss” plus a “false alarm”). Instead,
at every time frame, the intersection of Nsys reported pitches and Nref ground-
truth pitches counts as the number of correct pitches Ncorr; the total error score,
integrated across all time frames t is then:

Etot =

∑T

t=1
max

(

Nref (t), Nsys(t)
)

− Ncorr(t)
∑T

t=1
Nref (t)

(4)

which is normalized by the total number of active note-frames in the ground-
truth, so that reporting no output will entail an error score of 1.0.

Frame-level transcription error is the sum of three components. The first is
substitution error, defined as:

Esubs =

∑T

t=1
min

(

Nref (t), Nsys(t)
)

− Ncorr(t)
∑T

t=1
Nref (t)

(5)

which counts, at each time frame, the number of ground-truth notes for which
the correct transcription was not reported, yet some note was reported – which
can thus be considered a substitution. It is not necessary to designate which
incorrect notes are substitutions, merely to count how many there are. The
remaining components are “miss” and “false alarm” errors:

Emiss =

∑T

t=1
max

(

0, Nref (t) − Nsys(t)
)

∑T

t=1
Nref (t)

(6)

Efa =

∑T

t=1
max

(

0, Nsys(t) − Nref (t)
)

∑T

t=1
Nref (t)

(7)

These equations sum, at the frame level, the number of ground-truth reference
notes that could not be matched with any system outputs (i.e. misses after
substitutions are accounted for) or system outputs that cannot be paired with
any ground truth (false alarms beyond substitutions) respectively. Note that a
conventional false alarm rate (false alarms per non-target trial) would be both
misleadingly small and ill-defined here, since the total number of non-target
instances (note-frames in which that particular note did not sound) is very large,
and can be made arbitrarily larger by including extra notes that are never used
in a particular piece.

The error measure is a score rather than some probability or proportion –
i.e. it can exceed 100% if the number of insertions (false alarms) is very high.
In line with the universal practice in the speech recognition community we feel
this is the most useful measure, since it gives a direct feel for the quantity of
errors that will occur as a proportion of the total quantity of notes present.
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Table 1: Frame level transcription results on our full synthesized-plus-recorded
test set.

Algorithm Acc Etot Esubs Emiss Efa

SVM 67.7% 34.2% 5.3% 12.1% 16.8%
Ryynänen and Klapuri 46.6% 52.3% 15.0% 26.2% 11.1%
Marolt 36.9% 65.7% 19.3% 30.9% 15.4%
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Figure 5: Left:Variation of classification accuracy with number of notes present
in a given frame and relative note frequency. Right: Error score composition as
a function of the number of notes present.

It aids intuition to have the errors break down into separate, commensurate
components that add up to the total error, expressing the proportion of errors
falling into the distinct categories of substitutions, misses, and false alarms.

As displayed in Table 1, our discriminative model provides a significant
performance advantage on the test set with respect to frame-level accuracy
and error measures – outperforming the other two systems on 33 out of the 35
test pieces. This result highlights the merit of a discriminative model for note
identification. Since the transcription problem becomes more complex with the
number of simultaneous notes, we have also plotted the frame-level classification
accuracy versus the number of notes present for each of the algorithms in the left
panel of Figure 5; the total error score (broken down into the three components)
with the number of simultaneously occurring notes for the proposed algorithm
is displayed in right panel. As expected, there is an inverse relationship between
the number of notes present and the proportional contribution of false alarm
errors to the total error score. However, the performance degradation is not as
severe for the proposed method as it is for the harmonic-based models.

In Table 2, a breakdown of the transcription results is reported between
the synthesized audio and piano recordings. The proposed system exhibits the
most significant disparity in performance between the synthesized audio and
piano recordings; however, we suspect this is because the greatest portion of
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Table 2: Classification accuracy comparison for the MIDI test files and live
recordings. The MIDI SVM classifier was trained on the 92 MIDI training
excerpts, and the Piano SVM classifier was trained on the 20 piano recordings.
Numbers in parentheses indicate the number of test excerpts in each case.

Algorithm Piano (10) MIDI (25) Both (35)
SVM (Piano only) 59.2% 23.2% 33.5%
SVM (MIDI only) 33.0% 74.6% 62.7%
SVM (both) 56.5% 72.1% 67.7%
Ryynänen and Klapuri 41.2% 48.3% 46.3%
Marolt 38.4% 40.0% 39.6%

Table 3: Frame level transcription results on recorded piano only (ours and
Marolt test sets).

Algorithm / test set Acc Etot Esubs Emiss Efa

SVM / our piano 56.5% 46.7% 10.2% 15.9% 20.5%
SVM / Marolt piano 44.6% 60.1% 14.4% 25.5% 20.1%
Marolt / Marolt piano 46.4% 66.1% 15.8% 13.2% 37.1%
Ryynänen and Klapuri / Marolt piano 50.4% 52.2% 12.8% 21.1% 18.3%
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Table 4: Note onset transcription results.

Algorithm Acc Etot Esubs Emiss Efa

SVM 62.3% 43.2% 4.5% 16.4% 22.4%
Ryynänen and Klapuri 56.8% 46.0% 6.2% 25.3% 14.4%
Marolt 30.4% 87.5% 13.9% 41.9% 31.7%

the training data was generated using synthesized audio. In addition, we show
the classification accuracy results for SVMs trained on MIDI data and piano
recordings alone. The specific data distributions perform well on more similar
data, but generalize poorly to unfamiliar audio. This clearly indicates that the
implementations based only on one type of training data are overtrained to the
specific timbral characteristics of that data and may provide an explanation for
the poor performance of neural network-based system. However, the inclusion of
both types of training data does not come at a significant cost to classification
accuracy for either type. As such, it is likely that the proposed system will
generalize to different types of piano recordings when trained on a diverse set
of training instances.

In order to further investigate generalization, the proposed system was used
to transcribe the test set prepared by Marolt [2004]. This set consists of six
recordings from the same piano and recording conditions used to train his neural
net and is different from any of the data in our training set. The results of this
test are displayed in Table 3. The SVM system commits a greater number
of substitution and miss errors compared to its performance on the relevant
portion of our test set, reinforcing the possibility of improving the stability and
robustness of the SVM with a broader training set. Marolt’s classifier, trained
on data closer to his test set than to ours, outperforms the SVM here on the
overall accuracy metric, although interestingly with a much greater number
of false alarms than the SVM (compensated for by many fewer misses). The
system proposed by Ryynänen and Klapuri outperforms the classifiaction-based
approaches on the Marolt test set; a result that underscores the need for a diverse
set of training recordings for a practical implementation of a discriminative
approach.

5.2 Note Onset Detection

Frame-level accuracy is a particularly exacting metric. Although offset esti-
mation is essential in generating accurate transcriptions, it is likely of lesser
perceptual importance than accurate onset detection. In addition, the problem
of offset detection is obscured by relative energy decay and pedaling effects. In
order to account for this and to reduce the influence of note duration on the
performance results, we report an evaluation of note onset detection.

To be counted as correct, the system must “switch on” a note of the correct
pitch within 100 ms of the ground-truth onset. We include a search to asso-
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ciate any unexplained ground-truth note with any available system output note
within the time range in order to count substitutions before scoring misses and
false alarms. We use all the metrics described in Section 5.1, but the statistics
are reported with respect to onset detection accuracy rather than frame-level
transcription accuracy. The note onset transcription statistics are given in Ta-
ble 4. We note that even without a formal onset detection stage, the proposed
algorithm provides a slight advantage over the comparison systems on our test
set.

6 Discussion

We have shown that a discriminative model for music transcription is viable
and can be successful even when based on a modest amount of training data.
The proposed system of classifying frames of audio with SVMs and temporally
smoothing the output with HMMs provides advantages in both performance and
simplicity when compared to previous approaches. Additionally, the system may
be easily generalized to learn many musical structures or trained specifically for
a given genre or composer. A classification-based system for dominant melody
transcription was recently shown to be successful in [Ellis and Poliner, 2006].
As a result, we believe that the discriminative model approach may be extended
to perform multiple instrument polyphonic transcription in a data association
framework.

We recognize that separating the classification and temporal constraints is
somewhat ad hoc. Recently, Taskar et al. [2003] suggested an approach to ap-
ply maximum margin classification in a Markov framework, but we expect that
solving the entire optimization problem would be impractical for the scope of
our classification task. Furthermore, as shown in Section 3, treating each frame
independently does not come at a significant cost to classification accuracy.
Perhaps the existing SVM framework may be improved by optimizing the dis-
criminant function for detection, rather than maximum-margin classification as
proposed in [Schlkopf et al., 2001].

A close examination of Figure 4 reveals that many of the note-level classifi-
cation errors are octave transpositions. Although these incorrectly transcribed
notes may have less of a perceptual effect on resynthesis, there may be steps
we could take to reduce these errors. Perhaps more advanced training sample
selection such as selecting members of the same chroma class or frequently oc-
curring harmonically related notes (i.e. classes with the highest probability of
error) would be more valuable counter-examples on which to train the classifier.
In addition, rather than treating note state transitions independently, a more
advanced HMM observation could also reduce common octave errors.

A potential solution to resolve the complex issue of offset estimation may be
to include a hierarchical HMM structure that treats the piano pedals as hidden
states. A similar hierarchical structure could also be used to include contextual
clues such as local estimations of key or tempo. The HMM system described in
this paper is admittedly naive; however, it provides a significant improvement in
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temporal smoothing and greatly reduces onset detection errors. The inclusion
of a formal onset detection stage could further reduce note detection errors
occurring at rearticulations.

Although the discriminative model provides advantages in performance and
simplicity, perhaps the most important result of this paper is that no for-
mal acoustical prior knowledge is required in order to perform transcription.
At the very least, the proposed system appears to provide a front-end ad-
vantage over spectral-tracking approaches, and may fit nicely into previously-
presented temporal or inferential frameworks. In order to facilitate future re-
search using classification-based approaches to transcription, we have made the
training and evaluation data available at http://labrosa.ee.columbia.edu/
projects/piano/ .
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Table 5: MIDI compositions from http://www.piano-midi.de/ . † denotes songs
for which piano recordings were made.

Composer Training Testing Validation
Albéniz España (Prélude†,

Malagueña, Sereneta,
Zortzico) Suite Española
(Granada, Cataluña, Sevilla,
Cádiz, Aragon, Castilla)

España (Tango), Suite
Española (Cuba)

España (Capri-
cho Catalan)

Bach BWV 850† BWV 847† BWV 846
Balakirew Islamej†
Beethoven Appassionata 1-3, Moonlight

(1, 3), Pathetique (1)†, Wald-
stein (1-3)

Für Elise† Moonlight (2),
Pathetique (3)†

Pathetique(2)

Borodin Petite Suite (In the
monastery†, Intermezzo,
Mazurka, Serenade, Noc-
turne)

Petite Suite (Mazurka) Réverie

Brahms Fantasia (2†, 5), Rhapsodie Fantasia (6)†
Burgmueller The pearls†, Thunderstorm The Fountain
Chopin Opus 7 (1†, 2), Opus 25 (4),

Opus 28 (2, 6, 10, 22), Opus
33 (2, 4)

Opus 10 (1)†, Opus 28
(13)

Opus 28 (3)

Debussy Suite bergamasque
(Passepied†, Prélude)

Menuet Clair de Lune

Granados Danzas Españolas (Oriental†,
Zarabanda)

Danzas Españolas (Vil-
lanesca)

Grieg Opus 12 (3), Opus 43 (4),
Opus 71 (3)†

Opus 65 (Wedding) Opus 54 (3)

Haydn Piano Sonata in G major 1† Piano Sonata in G major
2 †

Liszt Grandes Etudes de Paganini
(1†-5)

Love Dreams (3) Grandes Etudes
de Paganini (6)

Mendelssohn Opus 30 (1)†, Opus 62 (3,4) Opus 62 (5) Opus 53 (5)
Mozart KV 330 (1†-3), KV 333 (3) KV 333 (1)† KV 333 (2)
Mussorgsky Pictures at an Exhibition

(1†,3,5-8)
Pictures at an Exhibition
(2,4)

Schubert D 784 (1†,2), D 760 (1-3), D
960 (1,3)

D 760 (4)† D 960 (2)

Schumann Scenes from Childhood (1-3,
5, 6†)

Scenes from Childhood
(4) †

Opus 1 (1)

Tchaikovsky The Seasons (February,
March, April†, May, Au-
gust September, October,
November, December)

The Seasons (January†,
June)

The Seasons
(July)
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