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ABSTRACT

In this paper, we present methods to improve the generalization
capabilities of a classification-based approach to polyphonic piano
transcription. Support vector machines trained on spectral features
are used to classify frame-level note instances, and the indepen-
dent classifications are temporally constrained via hidden Markov
model post-processing. Semi-supervised learning and multicondi-
tioning are investigated, and transcription results are reported for
a compiled set of piano recordings. A reduction in frame-level
transcription error score of 10% was achieved by combining mul-
ticonditioning and semi-supervised classification.

1. INTRODUCTION

Music transcription is the process of creating a score (i.e. a sym-
bolic representation of the notes played) from a piece of audio.
The ability to generate a list of the note times and pitches from a
recording has numerous practical applications ranging from musi-
cological analysis to content-based music retrieval tasks. Although
expert musicians are capable of transcribing polyphonic pieces of
music, the process is often arduous for complex recordings. As
such, a number of systems have been developed that attempt to
automatically generate music transcriptions. Unfortunately, the
harmonic spectral structure at the core of musical consonance of-
ten results in constructive and destructive interference, making the
transcription of polyphonic music a very challenging problem.

Moorer presented the first system for transcribing simultane-
ous notes in [1]. Since then, a number of models for polyphonic
transcription have been presented in both the frequency domain
[2] and the time domain [3]. Over time, the number of constraints
required of the input audio by a given system has generally been
reduced, and the overall transcription accuracy has gradually im-
proved. More recently, systems such as [4] combined harmonic
analysis with pattern recognition techniques in order to achieve
relatively high transcription accuracy on complex, polyphonic pi-
ano and pop recordings.

In [5], a classification approach to music transcription was pre-
sented in which generic classifiers – rather than models specif-
ically designed to exploit the structure of musical tones – were
used to detect the presence or absence of a particular note. The
classification-based system compared favorably to model-based
systems when both training and test recordings were made with
the same set of pianos; however, it did not generalize as well when
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presented with piano recordings from different environments, per-
haps with slightly different tuning. Common to many supervised
learning tasks, the classifier performance is limited by the amount
and diversity of the labeled training data available; however, a
great deal of relevant but unlabeled audio data exists. In this pa-
per we seek to exploit this vast pool of unlabeled data, and to im-
prove the value of the limited labeled data we have, to make the
classification-based music transcription system generalize better to
unseen recording conditions and instruments.

2. CLASSIFICATION-BASED TRANSCRIPTION

A supervised classification system infers the correct note transcrip-
tions based only on training from labeled examples. The base au-
dio representation is the short-time Fourier transform magnitude
(spectrogram), upon which a set of support vector machines are
trained to classify the presence or absence of each note in a given
frame (which may contain other notes). The independent per-note
classifications are smoothed in time with a hidden Markov model
(HMM) post-processing stage.

2.1. Audio Data and Features

Supervised training of a classifier requires a corpus of labeled fea-
ture vectors. In general, greater quantities and variety of training
data will give rise to more accurate and successful classifiers. In
the classification-based approach to transcription, then, the biggest
problem becomes collecting suitable training data. In this pa-
per, we investigate using synthesized MIDI audio and live piano
recordings to generate training data and evaluate our system on
validation and testing sets composed of piano recordings in differ-
ent environments.

The labeled training data used in our experiments consisted of
92 randomly selected songs from the Classical Piano Midi Page,
http://www.piano-midi.de/ . The MIDI files were con-
verted from the standard MIDI file format to monaural audio files
with a sampling rate of 8 kHz using the synthesizer in Apple’s
iTunes. In order to identify the corresponding ground-truth tran-
scriptions, the MIDI files were parsed into data structures contain-
ing the relevant audio information (i.e. tracks, channels numbers,
note events, etc). Target labels were determined by sampling the
MIDI transcript at the precise times corresponding to the analysis
frames of the synthesized audio. In addition to the synthesized au-
dio, 20 training recordings were made from a subset of the MIDI
files using a Yamaha Disklavier playback grand piano. The MIDI
performances were recorded as monaural audio files at a sampling
rate of 44.1 kHz, and the piano recordings were time-aligned to
the MIDI score by identifying the maximum cross-correlation be-
tween the recorded audio and the synthesized MIDI audio. In ad-
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dition to the labeled training audio, 54 unlabeled polyphonic piano
files were collected from 20 different recording environments to be
used in the semi-supervised learning experiments.

The validation set used to tune the parameters in our experi-
ments was collected from the real world computing (RWC) database
[6], and the ground-truth transcripts for the three validation files
were aligned by Cont [7].Our test set consisted of 19 piano record-
ings made from three different pianos including six pieces from
the test set generated by Marolt [4], two pieces created by Scheirer
[8], and 11 pieces recorded on a Roland HP 330e digital piano
downloaded from the Classical Piano Midi Page. In some cases,
limitations in the MIDI file parsing resulted in a constant time
scale between labels and audio, so a compensating scaling con-
stant was estimated to maximize the alignment between the time-
compensated transcript and a noisy transcription of the audio made
by the baseline SVM system.

We applied the short-time Fourier transform to the audio files
using N = 1024 point Discrete Fourier Transforms (i.e. 128 ms),
an N -point Hanning window, and an 80 point advance between
adjacent windows (for a 10 ms hop between successive frames).
In an attempt to remove some of the influence due to timbral and
contextual variation, the magnitudes of the spectral bins were nor-
malized by subtracting the mean and dividing by the standard de-
viation calculated in a 71-point sliding frequency window. Note
that the live piano recordings were down-sampled to 8 kHz using
an anti-aliasing filter prior to feature calculation in order to reduce
the spectral dimensionality.

2.2. Frame-Level Note Classification

The support vector machine (SVM) is a supervised classification
system that uses a hypothesis space of linear functions in a high
dimensional feature space to learn separating hyperplanes that are
maximally distant from all training points, or that minimizes the
extent to which training patterns fall on the wrong side of the
boundary. As such, SVM classification attempts to generalize an
optimal decision boundary between classes of data.

Our classification system is composed of 87 one-versus-all
(OVA) binary note classifiers that detect the presence of a given
note in a frame of audio, where each frame is represented by a
255-element feature vector. For MIDI note numbers 21 to 83 (i.e.
the first 63 piano keys), the input feature vector was composed of
the 255 spectral coefficients corresponding to frequencies below
2 kHz. For MIDI note numbers 84 to 95, the spectral coefficients
in the frequency range 1 kHz to 3 kHz were selected, and for MIDI
note numbers 95 to 107, the coefficients from the range 2 kHz to
4 kHz were used as the feature vector. We took the distance-to-
classifier-boundary hyperplane margins as a proxy for a note-class
log-posterior probability. In order to classify the presence of a note
within a frame, we assume the state to be solely dependent on the
normalized frequency data. At this stage, we further assume each
frame to be independent of all other frames.

The SVMs were trained using Sequential Minimal Optimiza-
tion [9], as implemented in the Weka toolkit [10]. A linear kernel
was selected for the experiments, and the fixed penalty parameter,
C, was optimized over a global grid search on the validation set
using a subset of the training data. In previous experiments [5],
more advanced kernels (e.g. radial basis functions) were used to
perform classification; however, the higher-order kernels typically
resulted in modest performance gains at the cost of a significant
increase in computational complexity.

2.3. Hidden Markov Model Post-Processing

The obvious fault with classifying each frame independently is
that the inherent temporal structure of the music is not exploited.
We attempted to incorporate the sequential structure that may be
inferred from musical signals by using hidden Markov models
to capture temporal constraints. Similarly to our data-driven ap-
proach to classification, we learned the temporal structure directly
from the training data by modeling each note class independently
with a two-state, on/off, HMM. The state dynamics, transition ma-
trix and state priors were estimated from our ‘directly observed’
state sequences – the ground-truth transcriptions of the training
set.

If the model state at time t is given by qt, and the classifier
output label is ct, then the HMM will achieve temporal smoothing
by finding the most likely (Viterbi) state sequence i.e. maximizingY

t

p(ct|qt)p(qt|qt−1) (1)

where p(qt|qt−1) is the transition matrix estimated from ground-
truth transcriptions. We estimate p(ct|qt), the probability of seeing
a particular classifier label ct given a true pitch state qt, with the
likelihood of each note being ‘on’ according to the output of the
classifiers. Thus, if the acoustic data at each time is xt, we may
regard our OVA classifier as giving us estimates of

p(qt|xt) ∝ p(xt|qt)p(qt) (2)

i.e. the posterior probabilities of each HMM state given the lo-
cal acoustic features. By dividing each (pseudo)posterior by the
prior of that note, we get scaled likelihoods that can be employed
directly in the Viterbi search for the solution of equation 1.

3. GENERALIZED LEARNING

Although the classification-based system performs well on differ-
ent recordings made from the same set of pianos in the same envi-
ronment, the success of the transcription system does not translate
well to novel pianos and recording environments. In particular,
slight differences in tuning have been identified as problematic. In
this section, we propose methods for improving generalization by
learning from unlabeled training data and by augmenting the value
of the data for which we have labels.

3.1. Semi-supervised Learning

Millions of music recordings exist, yet only a very small fraction
of them are labeled with corresponding transcriptions. Since the
success of our classification-based transcription system is so heav-
ily dependent on the quantity and diversity of the available training
data, we have attempted to incorporate more of the data available
to train new classification systems by applying different techniques
to assign labels to unlabeled data.

Nearest neighbor clustering is a simple classification system in
which a label is assigned to a particular point based on its proxim-
ity, using a given distance metric, to its k-nearest neighbors in the
feature space. For each frame-level feature vector calculated from
the unlabeled data set, a set of 87 binary labels was generated by
calculating the Euclidian distance to each point in the training data
for a given note class and assigning the label of the (majority vote
of the) k-nearest neighbors to the unlabeled point. For each note,
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an equal number of positive and negative training instances gen-
erated from the unlabeled data was added to the original training
data set, and a new system of SVM classifiers was trained.

In our semi-supervised SVM approach, labels are assigned to
unlabeled data by classifying the unlabeled points with our base-
line SVM system. Frames were added to the training data pro-
vided their classified distance to the training boundary fell within
a certain range. As an alternative to using the raw classifier output
as a proxy for sampling selection, the HMM post-processing stage
may be applied to the output of the unlabeled data classification. In
some cases, the inclusion of the HMM stage results in class assign-
ment updates due to temporal context, thus improving the insight
of the trained classifier in ambiguous cases. Again, for each note,
an equal number of positive and negative training instances gener-
ated from the unlabeled data was added to the original training set
in order to create updated classifiers.

3.2. Multiconditioning

The quantity and diversity of the training data was extended by
resampling the audio to effect a global pitch shift. Each record-
ing from the training set was resampled at rates corresponding to
frequency shifts of a fraction of a semitone in order to account
for differences in piano tunings. The corresponding ground-truth
labels were unaffected (since the target note class remained the
same); however, the time axis was linearly interpolated in order to
adjust for the time scaling. Symmetrically shifted frequency data
was added to the original training set to make additional classifiers.

4. EXPERIMENTS

4.1. Evaluation Metrics

For each of the evaluated algorithms, a 10 ms frame-level com-
parison was made between the system output and the ground-truth
transcript. We used the frame-level transcription error score, which
is based on the “speaker diarization error score” defined by NIST
for evaluations of ‘who spoke when’ in recorded meetings [11],
to evaluate the proposed systems. We start with a binary ‘piano-
roll’ matrix, which consists of one row for each note considered,
and one column for each 10 ms time-frame. At every time frame,
the intersection of Nsys reported pitches and Nref ground-truth
pitches counts as the number of correct pitches Ncorr; the total
error score, integrated across all time frames t is then:

Etot =

PT
t=1 max

`
Nref (t), Nsys(t)

´
−Ncorr(t)PT

t=1 Nref (t)
(3)

which is normalized by the total number of active note-frames in
the ground-truth. Under this scheme, transcribing all notes as per-
manently silent will entail an error score of 1.0.

Frame-level transcription error is the sum of three compo-
nents. The first is substitution error, defined as:

Esubs =

PT
t=1 min

`
Nref (t), Nsys(t)

´
−Ncorr(t)PT

t=1 Nref (t)
(4)

which counts, at each time frame, the number of ground-truth
notes for which the correct transcription was not reported, yet some
note was reported – which can thus be considered a substitution.

The remaining components are “miss” and “false alarm” errors:

Emiss =

PT
t=1 max

`
0, Nref (t)−Nsys(t)

´PT
t=1 Nref (t)

(5)

Efa =

PT
t=1 max

`
0, Nsys(t)−Nref (t)

´PT
t=1 Nref (t)

(6)

These equations sum, at the frame level, the number of ground-
truth reference notes that could not be matched with any system
outputs (i.e. misses after substitutions are accounted for) or system
outputs that cannot be paired with any ground-truth (false alarms
beyond substitutions) respectively. Note that a conventional false
alarm rate (false alarms per non-target trial) would be both mis-
leadingly small and ill-defined here, since the total number of non-
target instances (note-frames in which that particular note did not
sound) is very large, and can be made arbitrarily larger by includ-
ing extra notes that are never used in a particular piece. We also
note that, the error measure is a score rather than a probability or
proportion – i.e. it can exceed 100% if the number of insertions
(false alarms) is very high.

4.2. Experiments

In our first semi-supervised learning experiment, each frame of au-
dio in the unlabeled data set was assigned the label of its k-nearest
neighbors. From each song in the unlabeled set and for each note
in the classification system 50 negative training instances and 50
positive training instances (when available) were added to the orig-
inal set of training data This addition resulted in an approximate
increase in the quantity of training data of 50%. The amount of
training data used was held constant while the number of nearest
neighbors, k, was varied from 1 to 7 in odd increments. A clas-
sification system of SVMs was trained from each of the updated
training sets; however, each resulted in a negligible change in tran-
scription error on the validation set.

The baseline SVM system was then used to estimate transcrip-
tions for each song in the unlabeled data set. Positive training in-
stances were selected by varying the range of the distance to classi-
fier boundary used for sampling selection. While holding the 50%
increase in training data constant, we attempted sampling from a
series of ranges by performing a grid search over the distance to
classifier boundary, the best of which resulted in a 0.8% decrease
in total error score on the validation set. In addition to the sampling
different distance to classifier ranges to generate training instances,
the HMM post-processing stage was applied to the raw classifier
transcriptions on the unlabeled data set. From each song, 50 pos-
itive and negative instances were selected for each note class and
additional classifiers were trained resulting in an 1.1% point re-
duction in the total error on the validation set. In order to demon-
strate the variation in classifier performance due to the addition of
semi-supervised training instances, the amount of estimated train-
ing data was varied as a fraction of percent increase in total data
from 10-100% (in 10% increments) resulting in a monotonically
decreasing reduction in the total error score on the validation set
up to 1.9% for the training instances generated from the output of
the SVM classifier with HMM smoothing.

We trained four additional classifiers in order to investigate
the effects of generating training data from resampled audio. Each
recording from the training set was resampled at symmetric rates
corresponding to ± 0.5, 1.0, 1.5, 2.0% deviations from the orig-
inal tone. In this experiment, the amount of resampled training
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Table 1: Transcription error results on the 19 song test set.

Frame-level transcription
System Etot Esubs Emiss Efa

SVM (baseline) 69.7 15.8 36.3 17.6
k-NN 70.5 15.1 37.3 18.1
SVM 68.9 10.2 49.7 9.0
SVM + HMM 68.5 15.6 33.9 19.0
MC 63.0 12.4 39.5 11.1
MC + SVM + HMM 59.1 8.6 38.6 12.3

data was held constant, while the range of resampled audio used to
train the classifiers was varied. Incorporating the resampled audio
resulted in 3.1%, 1.2%, 1.1%, and 0.9% respective reductions in
the total frame-level error on the validation set. We suspect that
the resampling rates closer to the original tone provide an advan-
tage in performance because they are more likely to be in line with
mild instrument detuning. The top performing resampled classi-
fier was then used to generate labels for the unlabeled data set.
The transcriptions were temporally smoothed via the HMM, and
the estimated labels were sampled (5o positive and negative in-
stances per class) to create additional training data for a final set of
classifiers. The combination of the semi-supervised learning with
the resampling technique resulted in an improvement of 4.7% on
the validation set.

The parameters for each of the generalization techniques were
optimized on the validation set based on frame-level transcription
error, and the top performing classifier from each of the proposed
systems was used to classify the 19 songs in the test set. The cor-
responding frame-level transcription and note onset detection re-
sults are displayed in Table 1. We note that the top performing
system provided a 10% reduction in frame-level error on the test
set. Finally both the baseline system and the system that com-
bining training data from multiconditioning and semi-supervised
learning were used to classify 10 additional songs recorded on the
piano used to create the training recordings. While the inclusion
of the diversifying training data results in a mild performance re-
duction of 0.4% on the original instruments, the improvement in
generalization seems to warrant the addition.

5. DISCUSSION

We have shown that a modest reduction in total transcription er-
ror may be achieved by combining multiconditioning and semi-
supervised learning to generate additional training data for a classification-
based music transcription system. The proposed methods demon-
strate that limited quantities of training data may be augmented
to reduce classification error. We recognize that semi-supervised
method for selecting training instances is somewhat ad hoc. For
instance, an optimal method for semi-supervised classification is
presented [12] in which the misclassification error for each unla-
beled feature vector is calculated for both the case where the point
is a positive instance and the cases where the point is a negative
instance of a given class. The label assigned to the each unlabeled
point corresponds class that results in the smallest structural risk.
We plan to further investigate the application of transductive learn-
ing; however, the proposed method in which we combine tempo-
ral smoothing to the classification outputs allows us to incorporate

additional knowledge that is unavailable in the independent classi-
fication setting. As such, methods such as learning from the cases
in which the SVM and the HMM disagree may allow us to more
efficiently and effectively learn note classification boundaries, and
we plan to pursue this insight in our future work.
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