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Abstract 
Speech activity detection (SAD) on channel transmissions is a 
critical preprocessing task for speech, speaker and language 
recognition or for further human analysis. This paper presents a 
feature combination approach to improve SAD on highly 
channel degraded speech as part of the Defense Advanced 
Research Projects Agency’s (DARPA) Robust Automatic 
Transcription of Speech (RATS) program. The key contribution 
is the feature combination exploration of different novel SAD 
features based on pitch and spectro-temporal processing and the 
standard Mel Frequency Cepstral Coefficients (MFCC) acoustic 
feature. The SAD features are: (1) a GABOR feature 
representation, followed by a multilayer perceptron (MLP); (2) a 
feature that combines multiple voicing features and spectral flux 
measures (Combo); (3) a feature based on subband 
autocorrelation (SAcC) and MLP postprocessing and (4) a 
multiband comb-filter F0 (MBCombF0) voicing measure. We 
present single, pairwise and all feature combinations, show high 
error reductions from pairwise feature level combination over the 
MFCC baseline and show that the best performance is achieved 
by the combination of all features. 
Index Terms: speech detection, channel-degraded speech, 
robust voicing features 

1. Introduction 
Speech activity detection (SAD) on noisy channel transmissions 
is a critical preprocessing task for speech, speaker and language 
recognition or for further human analysis. SAD tackles the 
problem of separation between speech and background noises 
and channel distortions such as spurious tones, etc. 

Numerous methods have been proposed for speech detection. 
Some simple methods are based on comparing the frame energy, 
zero crossing rate, periodicity measure, or spectral entropy with a 
detection threshold to make the speech/nonspeech decision. 
More advanced methods include long-term spectral divergence 
measure [1, 2], amplitude probability distribution [3], and low-
variance spectrum estimation [4]. 

This paper presents a feature combination approach to 
improve speech detection performance. The main motivation is 
to improve the baseline acoustic feature performance with 
different novel pitch and spectro-temporal processing features by 

exploring the complementary information from the presence of a 
pitch structure or from a different spectro-temporal 
representation. We combine an MFCC acoustic feature with four 
speech activity detection features: (1) a GABOR feature 
representation followed by a multilayer perceptron that produces 
a speech confidence measure; (2) a Combo feature that combines 
multiple voicing features and a spectral flow measure; (3) a 
feature based on subband autocorrelation (SAcC) and MLP 
postprocessing and (4) a multiband comb-filter F0 (MBCombF0) 
voicing measure estimated from a multiple filterbank 
representation. We present speech detection results for highly 
channel-degraded speech data collected as part of the DARPA 
RATS program. We show gains from feature level combination, 
resulting in significant error reductions over the MFCC baseline. 

The RATS program aims at the development of robust 
speech processing techniques for highly degraded transmission 
channel data, specifically for SAD, for speaker and laguage 
identification and keyword spotting. The data was collected by 
the Linguistic Data Consortium (LDC) by retransmitting 
conversational telephone speech through eight different 
communication channels [12] using multiple signal 
transmitters/transceivers, listening station receivers and signal 
collection and digitization apparatus. The RATS rebroadcasted 
data is unique in that it contains a wide array of real transmission 
distortions such as: band limitation, strong channel noises, 
nonlinear speech distortions, frequency shifts, high energy non 
transmission bursts, etc. 

The SAD system is based on a smoothed log likelihood ratio 
between a speech Gaussian mixture model (GMM) and a 
background GMM. The SAD model is similar to the one 
presented by Ng et. al. [11], however we used different model 
and likelihood smoothing parameters. The long span feature and 
dimensionality reduction technique differ from the one from Ng, 
instead of Heterosedastic linear discrimination (HLDA) we used 
a Discrete cosine transform (DCT) technique. In Ng’s paper the 
DCT component is used but on the MLP SAD subcomponent. 
Finally the types of features differ as well. In our work we 
present the standard acoustic features as well as four different 
types of features ranging from spectro-temporal to voicing 
derived features, whereas Ng’s paper a combination of standard 
acoustic feature and cortical based features. 



2. Features Description 
This section describes specific aspects of each of the four SAD-
specific features: GABOR, Combo, SAcC and MBCombF0. 

2.1. GABOR Feature 

The GABOR with MLP feature is computed by processing a Mel 
spectrogram by 59 real-valued spectro-temporal filters covering 
a range of temporal and spectral frequencies. Each of these filters 
can be viewed as correlating the time-frequency plane with a 
particular ripple in time and frequency. Because some of these 
filters yield very similar outputs for neighboring spectral 
channels, only a subset of 449 GABOR features is used for each 
time frame. As the final preprocessing step, mean and variance 
normalization of the features over the training set is performed. 
GABOR features are described in [5].  

Next, a MLP is trained to predict speech/nonspeech labels 
given 9 frames of the 449 GABOR features, or 4,041 inputs. The 
MLP uses 300 hidden units and 2 output units. The size of the 
hidden layer is chosen so that each MLP parameter has 
approximately 20 training data points. Although the MLP is 
trained with a softmax nonlinearity at the output, during feature 
generation the values used are the linear outputs before the 
nonlinearity. The resulting 2 outputs are then mean and variance 
normalized per file, and used as the input features to the 
classification backend. 

2.2. Combo Feature 

This section describes the procedure for extracting a 1-
dimensional feature vector that has been shown to possess great 
potential for speech/non-speech discrimination in harsh acoustic 
noise environments [6]. This “combo” feature is efficiently 
obtained from a linear combination of four voicing measures as 
well as the perceptual spectral flux (SF). The perceptual SF and 
periodicity are extracted in the frequency domain, whereas the 
harmonicity, clarity, and prediction gain are time domain 
features.  

The combo feature includes the following: (1) Harmonicity 
(also known as harmonics-to-noise ratio) is defined as the 
relative height of the maximum autocorrelation peak in the 
plausible pitch range. (2) Clarity is the relative depth of the 
minimum average magnitude difference function (AMDF) valley 
in the plausible pitch range. Computing the AMDF from its 
exact definition is costly; however, it has been shown [7] that the 
AMDF can be derived (analytically) from the autocorrelation. (3) 
Prediction gain is defined as the ratio of the signal energy to the 
linear prediction (LP) residual signal energy. (4) Periodicity, in 
the short-time Fourier transform domain, is the maximum peak 
of the harmonic product spectrum (HPS) [8] in the plausible 
pitch range. (5) Perceptual SF measures the degree of variation 
in the subjective spectrum across time. In short-time frames, 
speech is a quasistationary and slowly varying signal, that is, its 
spectrum does not change rapidly from one frame to another. 

After extracting the features, a 5-dimensional vector is 
formed by concatenating the voicing measures along with the 
perceptual SF. Each feature dimension  is normalized by its 
mean and variance over the entire waveform. The normalized 5-
dimensional feature vectors are linearly mapped into a 1-
dimensional feature space represented by the most significant 
eigenvector of the feature covariance matrix. This is realized 
through principal component analysis (PCA), and by retaining 

the dimension that corresponds to the largest eigenvalue. The 1-
dimensional feature vector is further smoothed via a 3-point 
median filter and passed to the next stage for speech activity 
detector.  

2.3. MBCombF0 Feature 

The voicing feature is the estimated degree of voicing of each 
frame computed by the MBCombF0 algorithm, which is a 
modification of the correlogram-based F0 estimation algorithm 
described in [9]. The processing sequence of the MBCombF0 is 
the following. A frame length of 100 ms is used. First, the input 
signal is downsampled to 8 kHz and split into four subbands that 
cover 0 to 3.4 kHz. Each subband has a 1-kHz bandwidth and 
overlaps the adjacent filter by 0.2 kHz. Envelope extraction is 
then performed on each subband stream, followed by 
multichannel comb-filtering with comb filters of different 
interpeak frequencies.  

Next, reliable comb-channels are selected individually for 
each subband using a 3-stage selection process. The first 
selection stage is based on the comb-channel's harmonic-to-
subharmonic-energy ratio in the respective subband, those with a 
peak magnitude greater than one. In the second stage, comb-
channels and their corresponding subharmonic channels (with an 
interpeak frequency that is half of the former) are retained if both 
are present in this initial selected set. In the final selection stage, 
channels whose maximum autocorrelation peak location 
(computed from their comb-filtered outputs) is close to their 
corresponding comb-filters' fundamental period are selected. A 
subband summary correlogram is then derived from the weighted 
average of selected energy-normalized autocorrelation functions. 
Finally, the four subband summary correlograms are combined 
using a subband reliability weighting scheme to form the 
multiband summary correlogram. The weighting of each 
subband depends on its maximum harmonic-to-subharmonic-
energy ratio and the number of the subband summary 
correlogram whose maximum peak location is similar to its own. 
Time-smoothing is then applied to the multiband summary 
correlogram as described in [9], and the maximum peak 
magnitude of the resulting summary correlogram is the 
MBCombF0 voicing feature extracted.  

2.4. SAcC Feature 

The SAcC feature (for Subband Autocorrelation Classification) 
[10] is derived from our noise-robust pitch tracker. SAcC 
involves an MLP classifier trained on subband autocorrelation 
features to estimate, for each time frame, the posterior 
probability over a range of quantized pitch values, and one "no-
pitch" output. We trained a RATS-specific MLP by using the 
consensus of conventional pitch trackers applied to the clean 
(source) signal to create a ground truth for each of the noisy 
(received) channels; we trained a single MLP for all channels. 
For this system, we used only the "no-pitch" posterior as a 
feature to indicate the absence of voiced speech in the signal 
frame. 

2.5. Feature Figures 

Figure 1 shows a plot of the channel-degraded waveform for 
channel A, spectrogram, labels, and the GABOR, Combo, SAcC 
and MBCombF0 feature outputs per frame. Rectangles 
superimposed on the waveform highlight the speech regions. 



Notice the highly channel-degraded waveform and low signal to 
noise ratio (SNR). The labels are 1 for speech, 0 for non-speech 
and -1 for no transmission regions. The no transmission regions 
are high energy white noise type of sounds interleaved between 
valid signal transmissions. It is clear the GABOR features are 
much smoother with a long time span. Other SAD features are 
frame-based so they have a more dynamic behavior. However 
they all achieve good detection of the speech regions. 
Interestingly the three voicing based features provide somewhat 
different outputs. 
 

 
Figure 1: Waveform, spectrogram, ground truth speech  and 
nonspeech labels, GABOR, Combo, SAcC and MBCombF0 

features. Speech regions marked in black rectangles. 

3. SAD Description 
The SAD system is based on a frame-based smoothed likelihood 
ratio (LLR) setup. The LLR is computed between speech and 
nonspeech Gaussian mixture models (GMM). Then the LLR is 
smoothed with a multiple window median filter of length 51 
frames. Finally the speech regions are obtained from the 
smoothed LLR frames which are higher than a given threshold. 
No padding was used to artificially extend the speech regions. 

Additionally we used long range modeling using a 1-
dimensional Discrete Cosine Transform (DCT). For each feature 
dimension we first created a window of multiple frames. Next 
we computed the DCT transform and only preserved a subset of 
the initial DCT coefficients to obtain the desired number of 
features. This results in a low-dimensional representation of the 
feature modulation within the multi-frame window. We found 
that a 30 frame window was optimal for most features. We then 
concatenated the DCT dimensionality-reduced features for all 
dimensions and applied waveform level mean and variance 
normalization.  

For most of the experiments we used 256 Gaussian full 
covariance models for speech and nonspeech classes. We trained 
channel dependent models, therefore at test time we ended up 
with 16 models, 8 for speech and 8 for nonspeech. When testing 
SAD features we used 32 Gaussian full covariance models due to 

their reduced feature dimension.  During testing we obtained the 
LLR from the numerator obtained as the sum of the log 
probability of the speech models given the current feature and 
the denominator obtained from the sum of the log probability of 
the nonspeech models given the current feature. 

4. Experiments 

4.1. Data Description 

This section discusses speech detection in RATS data. We 
present the results of each feature in isolation and then the 
feature level combination results.  

The data used belongs to the LDC collections for the 
DARPA RATS program LDC2011E86, LDC2011E99 and 
LDC2011E111. We tested on the Dev-1 and Dev-2 sets. These 
two devsets contain similar data but we found Dev-2 to contain 
speech at lower SNR. The data was annotated with speech and 
background labels. More details are presented in Walker and 
Strassel [12]. 

The audio data was retransmitted using a multilink 
transmission system designed hosted at LDC. Eight 
combinations of analog transmitters and receivers were used 
covering a range of carrier frequencies, modes and bandwidths, 
from 1MHz amplitude modulation to 2.4GHz frequency 
modulation. 

The audio material for retransmission was obtained from 
existing speech corpora such as Fisher English data, Levantine 
Arabic telephone data and RATS program specific collections, 
which included speech in several languages such as English, 
Pashto, Urdu, Levantine Arabic, etc. 

4.2. Error Computation  

The equal error rate (EER) was computed from two error 
measures using SAIC’s RES engine which is the official SAD 
scoring for the RATS program. One error measure is the 
probability of missing speech (Pmiss), and the second is the 
likelihood of wrongly hypothesizing speech (Pfa). These are 
computed as follows:  
 
Pmiss = total_missed_speech / total_scored_speech 
Pfa = total_false_accept_speech / total_scored_nonspeech 
 
where total_missed_speech is the duration of the undetected 
speech regions, and total_scored_speech is the duration of all the 
speech regions. Total_false_accept_speech is the duration of the 
false hypothesized speech segments, and total_scored_nonspeech 
is the total duration of the nonspeech regions. 

4.3. Speech Detection Results 

Table 1 shows the % EER for different input features on Dev-1 
and Dev-2 sets. We first tested all the features in isolation. Next 
in Table 2 we performed a two way combination between MFCC 
and each of the other SAD features. For example in the first case 
we appended the 40 dim MFCC to a 4-dimensional GABOR 
feature, resulting in a 44 dimensional feature vector. Finally on 
Table 2 we performed full feature combination between MFCC 
and the four SAD features resulting in a 56 dimensional feature 
vector. On Table 3 we present the channel specific results from 
the all feature combination system. Notice that channel D is 
missing, as it was officially excluded from scoring. 



Table 1: Single Feature Speech Detection % EER Results. 
Input	  
Features	  

Feat	  
Dim	  

Model	  
Gauss	  

%	  EER	  	  
Dev-‐1	  

%	  EER	  	  
Dev-‐2	  

MFCC	  (baseline)	   40	   256	   2.05	   2.70	  
GABOR	   	  	  4	   	  	  32	   4.00	   5.45	  
Combo	   	  	  4	   	  	  32	   4.20	   4.75	  
SAcC	   	  	  4	   	  	  32	   4.75	   4.90	  
MBCombF0	   	  	  4	   	  	  32	   4.10	   6.15	  

 
Analyzing the results in Table 1 where we first compared the 

performance of the five isolated features. We used the 
performance of the MFCC feature with DCT processing as the 
baseline. It obtained a very low EER on both Dev-1 and Dev-2 
sets. Next we compared the other four SAD features in isolation. 
On Dev-1 GABOR achieves the lowest EER, followed by 
MBCombF0 and finally Combo and SAcC. However on Dev-2 
the best feature is Combo, followed by SAcC, GABOR and 
MBCombF0. This reveals that some features might be able to 
capture better the specific types of distortions in one set but fail 
to generalize to the other set. The increased errors on Dev-2 
might be due to the fact that SNRs are lower than on Dev-1. 
 
Table 2: Feature Combination Speech Detection % EER Results. 

Input	  
	  Features	  

Feat	  
Dim	  

Model	  
Gauss	  

%	  EER	  	  
Dev-‐1	  

%	  EER	  	  
Dev-‐2	  

MFCC	  +	  GABOR	   44	   256	   1.70	   2.50	  
MFCC	  +	  Combo	   44	   256	   1.85	   2.40	  
MFCC	  +	  SAcC	   44	   256	   1.90	   2.45	  
MFCC	  +	  MBCombF0	   44	   256	   1.65	   2.45	  
MFCC	  +	  All	  SAD	  	   56	   256	   1.55	   2.10	  

 
Analyzing the results on Table 2 we found important error 

reductions on both sets when combining one SAD feature with 
the MFCC feature compared to the baseline MFCC performance. 
On Dev-1 the best pairwise combination is with MBCombF0 
followed by the combination with GABOR. Interestingly this 
reverses the order of performance from Table 1 of each of these 
features in isolation. The combination with Combo and SAcC 
also produces error reductions compared to the baseline. On 
Dev-2 the best pairwise combination with Combo feature, 
followed closely by the combination with SAcC, MBCombF0 
and finally GABOR. This trend in Dev-2 additionally shows that 
these different features in combination and over different testsets 
produce different gains, therefore there is hope that the 
combination of them will result in improved performance 
overall. 

Finally the best performance is found from the all feature 
combination on both devsets. On Dev-1 the relative gain from 
the all feature combination system over the MFCC baseline is 
24.3% and over the best pairwise combination is 6.0%. On Dev-
2 the relative gain from the all feature combination system over 
the MFCC baseline is 22.2% (about the same as on Dev-1) and 
over the best pairwise combination is 12.5%. This means that 
each SAD feature provides different complementary information 
to the baseline MFCC feature. This is a very relevant result as 
three out of the four SAD features (Combo, SAcC and 
MBCombF0) aim at capturing voicing information. Since each 
of these features approach the problem from a different 
perspective and use different processing techniques, which in 
complementary information. 

Table 3: % EER Results by Channel on Dev-1 
from MFCC+All SAD Feature System. 

Input	  
Feature	  

A	   B	   C	   E	   F	   G	   H	  

MFCC	  +	  
All	  SAD	  

2.25	   2.40	   2.35	   2.00	   2.45	   0.70	   1.20	  

 
Finally in Table 3 we present the channel specific results on 

Dev-1 from the all feature combination system which performed 
best on Table 2.  The best performance is achieved on channel G, 
followed by channel H and the rest of the channels with similar 
performance overall. On channel G the signal is very clear and 
SNR is higher compared to other channels. Channel H also 
contains come high SNR recordings. The other channels contain 
different types of distortions and vary in SNR and speech 
degradation types. Overall the performance is similar in those 
highly degraded channels which reveal a consistent behavior of 
the developed SAD. However performance on those degraded 
channels lag behind channels G and H, which reveal that there is 
still work to do to minimize that difference. 

5. Conclusions 
Our feature combination approach results in a highly accurate 
speech detector despite high degradation by channel noise and 
transmission distortions. We found significant gains from 
combining a MFCC acoustic feature with four speech activity 
detection features: GABOR, Combo, SAcC and MBCombF0l. 
These SAD features differ in their processing techniques, one is 
based on spectro-temporal processing and the other three are 
based on voicing measure estimation. Their different processing 
techniques and approaches result in different performance over 
two different test sets. These results result in important gains 
when combining with the baseline feature. Finally we found 
important gains in performance when combining all the features, 
which is the major benefit from the feature combination 
exploration explored in this paper.  
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