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As part of the broader question of how it is that human listeners can be so successful at extracting
a single voice of interest in the most adverse noise conditions (the ‘cocktail-party effect’), a great
deal of attention has been focused on the problem of separating simultaneously presented
vowels, primarily by exploiting assumed differences in fundamental frequency (f0) (see (de
Cheveigné, 1993) for a review).

While acknowledging the very good agreement with experimental data achieved by some of this
models (e.g. Meddis & Hewitt, 1992), we propose a different mechanism that does not rely on the
different period of the two voices, but rather on the assumption that, in the majority of cases, their
glottal pitch pulses will occur at distinct instants.

A modification of the Meddis & Hewitt model is proposed that segregates the regions of spectral
dominance of the different vowels by detecting their synchronization to a common underlying
glottal pulse train, as will be the case for each distinct human voice.  Although phase dispersion
from numerous sources complicates this approach, our results show that with suitable integra-
tion across time, it is possible to separate vowels on this basis alone.

The possible advantages of such a mechanism include its ability to exploit the period fluctuations
due to frequency modulation and jitter in order to separate voices whose f0s may otherwise be
close and difficult to distinguish.  Since small amounts of modulation do indeed improve the
prominence of voices (McAdams, 1989), we suggest that human listeners may be employing
something akin to this strategy when pitch-based cues are absent or ambiguous.

Although this process has many parts, none of them per-
fectly understood, we can list a few of the major techniques
presumably employed in such circumstances:

(a) Visual verbal cues such as lip-reading;
(b) Other visual cues such as facial expression;
(c) Context, limiting the range of possible interpreta-

tions that can possibly be placed upon other evi-
dence;

(d) Acoustic information isolated by spatial cues
(interaural time differences and interaural spectral
intensity differences).  This is most often what is
suggested by the ‘Cocktail Party Effect’;

(e) Acoustic information isolated from the total sound
mixture on the basis of cues other than those related
to spatial location.

This last category, though defined in a rather indirect
manner, is of considerable interest since it is the only
method available (apart from semantic context) when
visual and spatial information is removed, for instance

1. INTRODUCTION

Although we are exposed to many sounds in everyday life,
arguably the most important input to our sense of hearing
is the speech of others.  As with all hearing tasks, a major
obstacle to the recognition and interpretation of such
sounds is the isolation of the signal of interest (e.g. a
particular spoken phrase) from any simultaneous inter-
fering sound.  These may be extraneous noise such as
traffic or ringing telephones, or they may be other voices
which are of less interest than the particular object of our
attention.  This latter case is particularly common, and in
signal detection terms it is the most difficult : isolating a
target from noise with the same average characteristics.
This makes it difficult to design a mechanism to remove
the interference from the target.

Yet this is something we do with an almost incredible
effectiveness.  The loosely-defined set of processes referred
to as the ‘Cocktail-Party Effect’ enable us to engage in
spoken communication in the most adverse circumstances.
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over a telephone link or listening to a radio broadcast.
Experience in such situations reveals that we are able to do
a reasonable job of ‘hearing out’ individual voices without
binaural or other cues.

There has been considerable interest in and research into
this problem in the past few decades, motivated by the
potential usefulness of devices that could enhance ‘desired’
but corrupted speech, as well as perhaps by curiosity about
the strategy employed by our own perceptual mechanisms.
One popular line of inquiry starts with the observation that
a major attribute of much speech is its pseudoperiodic
nature : ‘voiced’ speech is perceived as having a pitch,
which corresponds to the approximate periodicity of the
sound pressure waveform.  When we are presented with a
mixture of voiced speech from two or more independent
sources, we can perhaps exploit the fact that the different
voices are likely to have distinct pitches as a basis for
attending to one and discarding the rest.  Informal intro-
spection reinforces this idea of pitch as a primary organiz-
ing attribute in speech.

While a number of different approaches have been taken to
the problem of automatically separating voices based on
the differences in their periodicity, this paper describes
what we believe to be a new, additional method to help in
separation.  We have been particularly struck by the
enhanced prominence of sounds with slight frequency
modulation compared to completely unmodulated tones, as
very plainly demonstrated by McAdams (1984, 1989).
Considering the frequency modulation characteristics of
natural speech sounds, we speculated that there may be
mechanisms in the auditory system that are able to detect
the short-term cycle-to-cycle fluctuations in the fundamen-
tal period of real speech, and use these to help separate
distinct, simultaneous voices.  We will describe the algo-
rithm that we have developed to exhibit these qualities,
and its effectiveness at this task, which exceeded our
preliminary expectations.  Due to its dependence on vari-
ability over a very short time scale, this approach may be
considered a time-domain algorithm in contrast to the
harmonic-tracking frequency-domain approaches which
have been popular.

In section 2, we discuss the nature of pitch-period variation
in real speech as motivation for the new approach.  In
section 3, we briefly review some previous work in vowel
separation, then explain the basis of our new technique.
Section 4 gives some examples of the preliminary results
we have obtained.  The issues raised by the model are
discussed in section 5.  We conclude in section 6 with
suggestions concerning how this work might be further
validated and developed.

2. A MOTIVATION — PITCH-PULSE VARIATION
IN REAL SPEECH

McAdams made a very compelling demonstration of the
capacity of the auditory system to segregate vowels based
on differences in fundamental frequency (McAdams 1984,
1989).  Three different synthetic vowels with different
fundamental frequencies are mixed together.  The result-
ing sound is a dense chord with no obvious vowel identity.
However, by adding frequency modulation at a rate of a few
Hertz and a depth of a few percent to any one of the vowels,
it can be made to ‘jump out’ of the mixture, gaining a very
clearly discernible pitch and phonemic identity.  This
demonstrates that the auditory system is able to hear out
different vowels without any visual, spatial or contextual
cues, but that some other cue, such as frequency modula-
tion, is needed to identify the spectral energy belonging to
a particular voice.

This result has generated a great deal of interest.  In the
context of ‘Auditory Scene Analysis’, it is interpreted as the
common frequency modulation attribute of the distinct
spectral regions causing  the vowel to be grouped together.
This suggests a mechanism where modulation rate is
calculated for each frequency channel in the auditory
system and compared across channels for matches.  How-
ever, experiments by Carlyon (1991) showed the situation
to be more complex, since prominence due to modulation
can only be obtained for harmonically-related partials, not
for inharmonic complexes.  Still other results by
Summerfield & Culling (1992) found that, while modula-
tion of one vowel against a static background aided identi-
fication, if both target and background are modulated,
even at different rates, the segregation falls back to that
achievable with static target and masker.  Thus the rules
governing the benefit of frequency modulation must be
quite complex to account for these results.

Nevertheless, the original McAdams demonstration re-
mains a fascinating piece of evidence.  While there are
doubtless several different reasons why a modulated tone
might be more ‘prominent’ than a static one, we were
interested in the possibility that there might be grouping
or fusion mechanisms in the auditory system that actually
worked better in the presence of modulation than on purely
static tones.  This speculation is based in part on the
informal observation that even for nominally unmodulated
tones (such as a slowly-pronounced word, or a sung musical
note), there is a significant qualitative difference between
the sound produced by a human speaker, and the sound of
an absolutely static machine-generated tone although their
spectral envelopes may be closely matched.  The major
factor in this distinction is that even when producing a
steady pitch, there is a certain amount of cycle-to-cycle
variation in human vocalization which is absent in the
machine-generated version.  Thus we were curious to
investigate the possibility of an auditory grouping scheme
that might be particularly well suited to handling this kind
of natural sound, where every cycle has some variation.  We
sought to develop a model of a mechanism of this kind.

If we are interested in a process that is sensitive to the
short-term fluctuations found in natural speech, it is useful
to have some quantitative results describing the nature of
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this variation, which McAdams called ‘jitter’.  We recorded
some examples of human-produced steady vowels (where
the speaker was attempting to produce an unmodulated
sound).  We then extracted the cycle lengths for these
sounds using a matched filter based on an ‘average’ pitch
cycle waveform to locate a fixed reference point in each
cycle.  Since we used the vowel /ah/ with a relatively flat
spectrum, it was possible to extract cycle lengths with good
accuracy.

The result was a series of cycle times with peak variation
of about 2% of the average length.  Treating these as
samples of a continuous modulation function (a slight
approximation since the sampling was not exactly uni-
form), we were able to calculate the spectrum of the
modulation.  A typical modulation contour and its spec-
trum are shown in figure 1.

We see that the modulation is broad-band.  While there is
a strong low-frequency component to the pitch variation
peaking at around 3 Hz (which we might call vibrato or
pitch modulation, since the tendencies extend across enough
cycles to be perceived as a change in pitch), there is almost
as much variation on a cycle-to-cycle basis, with a largely
white (flat) spectrum. This is the particular component to
which we were referring by the term ‘jitter’ above.

Smoothing (i.e. low-pass filtering) the modulation contour
produces a pitch modulation curve, and the difference
between this and the actual modulation contour can be
thought of as the high-frequency (6-30 Hz) jitter residual.
We experimented with constructing new vowels based on
combinations of different amounts of both these compo-
nents, resynthesizing vowels that varied from having no
modulation at all, to vowels where either or both of the
modulation components were exaggerated by a factor of up
to eight.  Informal listening suggested that while either
type of modulation increased the naturalness of the syn-
thetic vowels, it was only the combination of them both —
i.e. a broadband cycle length variation — that sounded
truly natural and non-mechanical.  (Other research de-
scribing the nature of modulation in natural voicings
includes the work by Cook (1991) on singing voices.)

This result is significant because the experiments of Carlyon
and Summerfield that measured the impact of ‘frequency
modulation’ on various perceptual abilities used simple
sinusoidal modulation, in order to have stimuli that were
easy to describe, generate and control.  However, it might
be that the auditory system has evolved to make use of
some of the properties of natural sounds that were not well
duplicated by such narrowband modulation, such as the
short term variation we have termed jitter.  If this is the
case (and we will argue that the main model of this paper
has this property) then it may be that these experiments
have involved stimuli that prevented the full segregation
benefits of modulation from being obtained.

A possible distinction between slow
frequency modulation and jitter stimuli

By way of supporting our suggestion that complex tones
with low frequency (≤ 8 Hz) narrowband frequency modu-
lation might not allow the optimum performance of modu-
lation-detecting mechanisms in the auditory system, we
will sketch an idea of the kind of processing that might find
broadband jitter-like modulation easier to segregate than
smooth fm.  Consider a system that can detect period
changes between adjacent cycles that exceed some fixed
percentage.  With sinusoidal modulation, the peak adja-
cent cycle-length variation occurs at the maximum slope
i.e. at the zero crossing of the modulation function.  Broad-
band ‘white’ modulation - for instance, samples from a
Gaussian distribution - will achieve the same level of cycle-
to-cycle modulation with a far smaller ‘mean’ variation;
however, if the threshold for detecting adjacent-cycle varia-
tion is bigger than the mean variation, steps of this size will
occur relatively infrequently, with the expected time be-
tween such extreme modulation events depending on how
far up the ‘tail’ of the distribution the threshold lies.

Now consider an auditory grouping unit that is observing
various partials and trying to organize them into separate
sounds.  The aspect of this unit crucial to the current
argument is that it accumulates evidence across time.  In
particular, if it has evidence that certain partials should be
grouped together in time slice tn, it can remember this
evidence and continue to group the partials involved for

figure 1: Cycle length modulation function extracted from real speech (a sustained /ah/), and its Fourier transform.
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many subsequent time steps, even though no further
evidence may be observed. (In the interests of robustness,
this association should ‘wear off’ eventually, in some un-
specified fashion).

We present this unit with a combination of two modulated
vowels.  If the vowels are sinusoidally modulated to a
sufficient depth that the adjacent-cycle-variation detector
is triggered, or if the sensitivity of this detector is adjusted
to trigger at some minimum rate, this triggering will occur
for a significant chunk of every half cycle (since the second
derivative of this modulation, the rate at which the cycle-
to-cycle variation changes, is smallest when the variation
itself is at a maximum).  We might imagine that the
modulation detector is overloaded, and since both vowels
are highly modulated for quite a large proportion of each
cycle, it may be harder to find disambiguating time-slices
where the harmonics of only one of the vowels are highly
modulated thereby establishing the independent identity
of that vowel.  The size of the hypothetical time slice used
for evidence collection relative to the modulation period
will be a factor in this situation.

By contrast, if the modulation of the two vowels is accord-
ing to a white Gaussian jitter function, then the threshold
of the adjacent-cycle-variation detector can be adjusted to
provide events that are sufficiently infrequent to allow the
evidence observer a clear look at each event, yet suffi-
ciently regular that enough evidence is collected to main-
tain a confident arrangement of the stimuli across time.

This arises because of the different probability distribution
of instantaneous cycle-to-cycle variation under the two
schemes, as illustrated in figure 2 below:  The sinusoidal
modulation is sharply bimodal, making it very difficult to
adjust a threshold to achieve a particular density of cycle-
variation events.  By contrast, the Gaussian modulation
has long, shallow tails making such a task far easier.

This example is intended merely to illustrate a simple
scenario that highlights an important difference between
narrowband and broadband cycle length modulation.  This
example is not a particularly good description of the model
that is the main subject of this paper, since the tracking of
individual components is a very inappropriate way to
consider the perception of formant-structured sounds like
vowels.  However, the general idea of irregularly spaced
disambiguation events is central to our model, and will be
re-introduced later.

figure 2: Examples of modulation patterns according to sinusoidal and Gaussian functions, along with their
theoretical distribution functions.
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3. THE GLOTTAL-PULSE SYNCHRONY MODEL
AS AN ALTERNATIVE TO PERIODICITY
METHODS

A brief review of previous work in double
vowel separation

Vowel separation seems a tantalizingly tractable problem,
since the presumed different fundamental frequencies
should form a powerful basis for segregation.  Such a
technique was described by Parsons (1976), which sought
to separate two voices by identifying both pitches and using
this to segregate the harmonics belonging to each talker in
a narrow-band short-time Fourier transform.

de Cheveigné (1993) describes this and many subsequent
models based both on that kind of frequency domain
representation, and on equivalent time-domain processing
such as comb filters, which he prefers largely for reasons of
physiologic plausibility.  He classifies the processing per-
formed by these methods as either enhancement (where the
target is identified and boosted relative to the interference)
or cancellation (where the interfering voice is identified
and subtracted).  He proposes a model of the latter, includ-
ing hypothetical neural circuitry, on the basis that signal
separation is most useful when the interference, but not
the target, is readily identified.

Some recent research has focused on modeling the separa-
tion strategies employed by the auditory system, which is
also our objective in the current paper.  Some approaches
seek to duplicate the behavior of human subjects in given
psychoacoustic tests.  The models of Assmann and
Summerfield (1989, 1990) match human identification
rates for static vowel pairs by finding vowel pitches and
extracting the harmonic spectra, but work within the
constraints of an ‘auditory filterbank’ (Moore & Glasberg,
1983).  Since this filterbank is unable to resolve the indi-
vidual high-frequency harmonics, this information is ex-
tracted from a subsequent autocorrelation stage at the lag
corresponding to the appropriate pitch.

The Meddis & Hewitt (1992) model similarly consists of an
auditory filterbank followed by a nonlinear ‘inner hair cell’
model providing rectification and dynamic range compres-
sion and generating auditory nerve ‘firing probabilities’
which are autocorrelated in each channel.  Their vowel
separation strategy sorted channels of the filterbank ac-
cording to the dominant periodicity observed in the
autocorrelation - i.e. the ‘pitch’ in that particular channel.
Autocorrelation provides a particularly effective mecha-
nism for projecting the shared fundamental periodicity in
different frequency channels onto a common feature, since
every formant of a given vowel will have a peak in its
autocorrelation centered at the lag corresponding to the
period - reflecting the fact that the vowel sound, and hence
any subrange in its spectrum - is periodic in that cycle time.
In the Meddis & Hewitt model, the dominant periods from
each channel are pooled to provide the pitch estimates, and
then individual channels are attached to one or other of the
detected pitches accordingly.  This model was capable of
very close agreement with the performance of human
listeners for identification rate as a function of fundamen-
tal frequency separation of static vowels.

Summerfield and Assmann (1991) attempted to isolate
which particular consequence of pitch difference aided the
separation of two voices.  By careful control of each har-
monic, they constructed artificial stimuli which exhibited
either harmonic frequency separation or formant burst
temporal separation without most other attributes of double
vowels.  They found that neither of these qualities was
sufficient to obtain the gain in recognition accuracy af-
forded by conventional synthesis of vowels with 6% fre-
quency difference.  However, they did not experiment with
modulation of the artificial vowel spectra, which would
have been particularly relevant to this paper.

All the methods make a pseudoperiodic assumption for the
input signal i.e. they treat the signal as perfectly periodic,
at least over some short analysis window. (However, the
time-varying ‘corellograms’ of Duda et al (1990) are in-
tended to exploit the dynamic nature of the sound as a basis
for separation).  All the separation procedures involve the
explicit extraction of the pitch of one or both vowels.  These
aspects are very reasonable, since aperiodic ‘vowels’ (a
formant synthesizer excited by a free-running Poisson
process perhaps) would not be perceived as voice-like.
However, we were curious about the possibility of tech-
niques for detecting and extracting sounds that did not
assume perfect periodicity over some analysis window,
with the attendant loss of efficiency when handling real,
jittered, sounds — particularly as such real sounds are
sometimes easier to segregate than their truly periodic
imitations.

The new method - detecting formants by
glottal-pulse synchrony (GPS)

The central idea behind the algorithm we are going to
describe is that the different regions of spectral energy that
originate in a particular voice may be grouped together by
observing the time synchronization of different formant
regions excited by the same glottal pulse.  Whereas meth-
ods such as those mentioned above have exploited features
in the Fourier domain or the autocorrelation arising from
the periodic nature of glottal excitation, we are interested
in grouping the energy associated with each individual
pulse, not the combined effect of successive pulses.  This
follows naturally from our interest in variations between
individual cycles, but it seems to preclude us from using the
strong cues of periodicity normally employed.  We will
explain how we can manage without them below, but first
we review some important aspects of voiced sounds upon
which the new method relies.

The method of production of voiced sounds in people is
approximately as follows:  air pressure from the lungs is
obstructed by the vocal cords in the glottis, which periodi-
cally open and flap shut in a form of relaxation oscillator.
The resulting pulses of air flow form an excitation to the
upper throat, mouth and nose cavities which act as resona-
tors, so that the resulting pressure radiation has the same
periodicity as the glottal pulses, but with a dynamically
modified spectrum.  By moving the tongue and other
articulators we change the nature of this spectrum and
thereby produce the different vowels of speech.  Math-
ematically, we may describe this production in the well-
known source-filter formulation:
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s t( ) = e t( ) ∗ v t( ) (1)

where s t( )  is the radiated voice signal, e t( )  is the glottal

pulse excitation.  v t( ) is the slowly-varying vocal tract
transfer function, here approximated as a time-invariant

impulse response.    e t( )  is well approximated as an
impulse train at least over a bandwidth of a few kilohertz,
yielding:-

e t( ) = Aiδ t − ti( )
i

∑ (2)

where { ti } are the near-periodic instants of glottal pulsa-

tion, each of amplitude { Ai }, and thus

s t( ) = Aiv t − ti( )
i

∑ (3)

i.e. the output waveform is the superposition of individual
vocal tract impulse responses shifted in time by the glottal
pulses.  Ignoring the nasal branch, the vocal tract can be
modeled as a single concatenation of tubes of varying cross-
section, which results in an all-pole structure for the filter’s
Laplace transform,

V s( ) = K

s − sj( )
j

∏
(4)

 or, equivalently, an impulse response consisting solely of
damped resonances:

v t( ) = aj ⋅ exp −t τ j( ) ⋅ cos ω jt + φj( )
j

∑ (5)

where the resonant frequencies {ω j }, amplitudes { aj } and
decay times { τ j } are determined by the geometry and

losses associated with the resonant cavities in the vocal
tract.

If we now look at the time waveform and time-frequency
analysis (spectrogram) of some example speech, we can see
the kinds of features we would expect according to this
analysis.  Figure 3 shows 100 milliseconds (about 10 cycles)
of a male voice pronouncing the vowel /ah/.  The top panel
is the pressure waveform as a function of time, showing the
large amplitude burst at the start of each cycle, as the vocal
tract is initially excited by a release of pressure through the
glottis.  This then decays away approximately exponen-
tially in a complex mixture of resonances until the start of
the next cycle.  The lower panel shows a wideband short-
time Fourier analysis on the same time scale, with a
vertical (linear) frequency scale, and gray density showing
the energy present at each time-frequency co-ordinate.
Since the analysis window was much shorter than the cycle
length, we do not see any of the harmonics of the
psuedoperiodic voice, but rather we see a broadband stripe
of energy at each glottal pulse.  This stripe varies in
intensity with frequency, showing peaks at (in this case)

around 1000, 4000 and 7000 Hz;  these are the center
frequencies of the vocal tract resonances we have described
above, normally known as the formants of the voiced
speech.

The decomposition of the voice into a succession of time-
shifted impulse responses implied in (3) above leads us to
consider this same display applied to just one glottal pulse.
The signal in figure 4 was generated by exciting a 10-pole
LPC model of the voice above with a single impulse.  What
we see is an approximation to an isolated stripe out of the
pattern on a somewhat stretched time-base.  It is not hard
to imagine reconstructing the entire pattern by superpos-
ing time-shifted copies of this lone example, as suggested
by equation 3.

In the context of this presentation of speech sound, the idea
behind the glottal-pulse synchrony (GPS) technique is
simple to explain:  The problem of extracting a voice from
interfering sound is essentially the problem of identifying
the formant peaks of that voice, since the particular pho-
neme being conveyed is encoded in the frequencies of those
peaks.  If there are numerous energy peaks in the received
spectrum, how can segregate target and interference?  In
light of the images and analysis above, perhaps we can
group together all the formants that belong to a particular
voice by detecting the way that they are all time-aligned in
vertical stripe structures, which is to say that they are all
synchronized to the same pulse of glottal energy exciting
the speaker’s vocal tract.  If we can at least organize the
composite sound into disjoint sets of formants arising from
different speakers, our segregation problem is simplified
into choosing which of these is the target voice, and which
are interference.  While this process is clearly easier to
postulate than to accomplish, it is the basis of the technique
we have developed which we will describe in more practical
terms presently.  Specifically, our algorithm detects sets of
spectral regions that appear to exhibit synchronized peaks
in energy, as if in response to a common excitation.  Al-
though these associations exist only over a very brief time,
it is possible to use them to separate out voices across time
by imposing weak continuity constraints on the formants
in a voice to extend these near-instantaneous spectral
associations across time into complete phonemes or words.

It is interesting to contrast this approach with
autocorrelation methods, in particular the vowel segrega-
tion model of Meddis and Hewitt (1992) (MH), since their
model was the inspiration for this work and shares several
components (thanks to their generous policy of making
source code available).  Both models start with an approxi-
mation to the cochlea filterbank followed by an element
that calculates the probability of firing of a given inner hair
cell on the Basilar Membrane.  The MH model then calcu-
lates the autocorrelation of this probability function in
each channel to find the dominant periodicity within each
channel.  Thus each channel is first processed along the
time dimension to measure the period between moments of
high firing probability, and only then are the channels that
share a given periodicity grouped across frequency to form
the complete vowel.  (In the two vowel case, this is done for
the ‘dominant’ periodicity or autocorrelation peak of the
entire population;  the remaining channels are presumed
to belong to the other vowel).  However in the GPS method
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figure 3: Wideband spectrogram of a section of the long vowel /ah/.  Time goes left to right; the top panel shows the
actual waveform; the bottom panel has (linear) frequency as the vertical axis, and the gray density shows the amount

figure 4: As figure 3, but showing the impulse response of an all-pole model based on the /ah/ vowel.  Note the
expanded timescale (22 milliseconds across the figure compared with 170 ms in figure 3).
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the first dimension of processing for each burst is across
frequency to find other, co-synchronous events.  Only after
grouping on this basis are the spectra traced through time
to form more complete sounds.  Thus there is a contrast
between the order of across-frequency and along-time pro-
cessing between the two models.

The importance of this difference becomes apparent when
one considers the processing of signals with significant
cycle-to-cycle variation (such as the jitter discussed in
section 2).  In order to obtain a reliable and consistent
estimate of the periodicity in a given channel, the MH
autocorrelation function must have a time window extend-
ing over several cycles.  But variation within those cycles
will compromise the calculation of a single peak periodic-
ity; since the MH method is rather sensitive to the form of
the peaks in the autocorrelation, any jitter in the input
signal can only serve to hinder their grouping scheme by
blurring the period estimates for each channel.  This
appears to be at odds with the enhanced perceptual promi-
nence and naturalness conferred by moderate jitter in
signals.

On the other hand, the GPS method is quite impervious to
the spacing between successive pulses, and any variation
that might occur.  All it relies upon is the consistent
alignment of the formant bursts on the individual glottal
pulses, and sufficiently frequent bursts to allow tracking
through time.  In this way, cycle length variation will not
compromise the detection of the voice.  Indeed, as we will
argue below, it can be a strong cue to the segregation
between two close voice sounds.

Synchrony skew

We have suggested an algorithm which distinguishes a
voice burst from background noise by the consistent time
alignment of each of its spectral formant peaks.  Implicit in
this is the assumption that ‘time alignment’ denotes exact
synchronization, and if this was in fact the nature of the
signal, the grouping of formants might be a simple matter:
whenever a formant burst is detected, simply look across
the spectrum for other simultaneous bursts.  However, the
real situation is not so simple, as formant bursts at differ-
ent frequencies, despite originating in a single compact
glottal event, may be quite widely dispersed in time before
they reach the auditory processing centers.  Some of the
factors contributing to this dispersion are:-

(a) The phase spectrum of the vocal tract.  Even the
simple all-pole cascade model can introduce signifi-
cant dispersion across frequency;

(b) The dispersive effects of the transmission path from
speaker to ear, including effects of reflections and
diffractions;

(c) Frequency or place-dependent delays in the func-
tion of the ear, most notably the propagation delay
down the Basilar membrane.

While (c) should be constant and is doubtless subject to
static compensation in the auditory system, is does strike
a final blow against the superficially attractive idea that we
might be able to implement the GPS algorithm without
resorting to delay lines.  But in any case the unpredictable
and very significant effects of (a) and (b) mean that no

simple solution will suffice; rather than simply causing
simultaneous formant bursts in different channels, the cue
of common glottal excitation will appear as a constant,
often small, but initially unknown time skew between the
channels.  Thus the problem is complicated into finding
both the channels that carry bursts in a synchronized
pattern, and the interchannel timing relations that consti-
tute that pattern.

Evidently, we will not be able to deduce these timings by
observing a single vowel burst, even if we make assump-
tions about the maximum possible interchannel timing
difference; we cannot distinguish between formants of the
target voice and energy peaks from the interfering noise
which happen to fall inside our window, suggesting a
completely spurious formant.  (In the two-vowel situation,
such an occurrence is very likely.)  The solution is to store
all the timings implied by the energy bursts in the window
as potential components of a formant spectrum, but to
refrain from actually using them as the basis for a sepa-
rately grouped voice until the timings have been confirmed
by repeated observations.

This process may be described more formally as seeking to
estimate the conditional probability of a firing in one
channel at a given timing relative to a firing in another
channel.  If peripheral channel n  exhibits firing events at

times { tn,i }, we can define a ‘firing function’ for that chan-
nel:

1 tn,i ≤ t < tn,i + ∆t      for some i
Fn t( ) ={

0 otherwise (6)

(where ∆t  accounts for the temporal resolution of the
detection system).  We would like to estimate the condi-
tional probability of a firing occurring in channel m  at a
specific time-skew τ  relative to a firing in channel n  i.e.

PF n,m,τ( ) = Pr Fn t + τ( ) = 1 Fm t( ) = 1{ } (7)

If we have a set of formants at different frequencies being
excited by the same glottal pulses, we would expect this
conditional probability to be very high for the pairs of
channels involved at the appropriate relative timings.
Thus the approach undertaken by the GPS method is to
continually estimate this conditional probability for many
channel combinations and time skews to find the pairs of
channels that do exhibit a high correlation by this mea-
sure.

Since the vocal tract and hence the formant spectrum of a

given voice are dynamic, the function PF n,m,τ( )  is time
varying and can be estimated at a given instant based on
nearby events.  We can calculate the estimate at a particu-
lar time T  as the ratio of coincidences to the total time the
condition was true:

PFT

^

n,m,τ( ) =
e− T −t α Fn t + τ( ) ⋅ Fm t( )∫ dt

e− T −t α Fm t( )∫ dt
(8)
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The complete Glottal Pulse Synchrony
strategy for grouping vowels

We have now explained the principle of operation of the
model, and can present the functional structure in detail.
Figure 5 shows the entire model in block-diagram form,
from the acoustic signal at the left to a resynthesized
isolated vowel on the right.  As noted above, the first two
stages are taken from the MH model, but the remainder is
different.  We explain each block in turn.

The first stage simulates the frequency analysis of the
cochlea with a linear filterbank based on the ‘gammatone’
approximation to auditory filter shapes (Patterson & Moore,
1986, as referenced in Meddis & Hewitt, 1991).  We used a
filter spacing of between two and five per ERB unit, over a
range 100 Hz to 4 kHz - on the order of 60 overlapping
channels.  The filters are real (not complex), and the
outputs are undecimated, so the data carried to the next
stage is a set of bandpass signals, one per filter.

The next stage is the MH cochlea inner hair cell model,
nominally translating the basilar membrane displacement
(the output of the linear filter) into a probability of firing for
the associated nerve fiber.  This stage approximates the
rectification and adaptation effects observed in the firings
of actual auditory nerves in response to acoustic stimuli.

Following that is our pseudo-‘firing’ module.  The GPS
model is described in terms of detecting formant bursts for
each pitch pulse at different frequencies, therefore we
desire the input spectrum transformed into a representa-
tion that has discrete events for each such burst (at least
within each channel).  We experimented with a variety of
models of hair-cell firing, ranging from a simple Poisson
event generator driven by the firing probability, to models
that included refractory effects such as the Ross (1982) 3rd-
order Poisson model.  However, the noise added by such
stochastic elements was quite overwhelming, presumably
because the effective number of nerve fibers was very small
(one per peripheral channel).  Eventually we decided to
sacrifice physiological resemblance at this stage and de-
vised a deterministic formant-burst event generator that
produces one firing for each local maximum in the firing
probability function over a sliding time window of typically
5 ms.  This does a very satisfactory job of producing one
pulse every pitch cycle in channels where given formants
are dominant.  It is not clear how this function could be
generated in an actual physiological system; nerve fibers
do of course generate firings synchronized to their inputs

Here each event has been weighted by e− T −t α  which
increases the influence of events close to the time for which
we are evaluating the estimated probability.  The time
constant for this simple weighting function is α , which
must be large enough to span several pitch cycles if we are
to include a sufficient number of events in the basis for our
estimate to make it reasonably stable, while still remain-
ing short enough to allow the formant spectrum to be
considered invariant for those events.  (Note however that
the stability of the pitch period over this window has
practically no influence on the result, as we desire).  Thus
α  is around 10-20 milliseconds, larger than any τ  we will

use, and far larger than ∆t .  We may simplify this calcula-

tion as the sampling of one firing function Fm  at the firing

times of the other channel, { tn,i }, normalized to the total
number of firings:

PFT

^

n,m,τ( ) ≈
e

− T −tn,i α

i
∑ Fm tn,i( )

e
− T −tn,i α

i
∑

(9)

If we assume that the estimate at time T  can only look

backwards in time i.e. depend on events for which tn,i< T ,
and if we only update our estimate each time we get a

conditioning event i.e. at each of the { tn,i }, we can recur-

sively calculate PFtn,i

^

n,m,τ( ) from its previous value,

PFtn,i−1

^

n,m,τ( ), as:

PFtn,i

^

n,m,τ( ) = Fm tn,i( ) + e
− tn,i −tn,i−1 α ⋅ PFtn,i−1

^

n,m,τ( )

(10)

This is effectively the calculation we perform with the
histogram ‘plane update’ described in the next subsection.

Mask
& resynth.

Formant
clustering

Co-
synchrony
detector

‘Firing’
event

generator

Gammatone
filterbank

bandpass
signals

Inner hair
cell model

firing
probabilities

formant burst
events

conditional
probability

matrix

formant
signatures

Continuity
tracking

vowel
mixture

time-frequency
mask

vowel

synchmod
1993dec08

figure 5: Block diagram of the complete Glottal Pulse Synchrony (GPS) vowel separation scheme.
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at this level of resolution, though not with such consis-
tency.

It is thus a very reduced spectral representation, consist-
ing of a set of frequency channels containing binary events
once every few milliseconds, that is passed to the next
stage.  This is the co-synchrony detector that is the heart of
the method.  Essentially, it is a three-dimensional histo-
gram, as illustrated in figure 6.  The two major dimensions
are both indexed by peripheral channel (i.e. frequency),
and the third axis is time skew or lag.  Thus each bin is
calculating a value of the estimated conditional probability

function PFT

^

n,m,τ( )  described above i.e. the likelihood
that a firing in peripheral channel n  (indexed along the
vertical axis of the histogram) will follow a firing in channel
m  (the horizontal axis) at a relative time τ  (the short axis
going into the page).  The actual method of updating this
matrix is as follows:  when an event is detected in channel
n , an entire plane of the histogram is updated.  Every other
channel, indexed across m , corresponds to a row in this
plane with a bin for each possible time skew τ .  If there is
an event in the other channel within the range of time
skews considered (i.e. within a couple of milliseconds of the
burst causing the update), the bin appropriate to that time
skew is incremented up to some saturation limit.  All the
bins that do not correspond to events are decremented
unless they are already empty.  Thus every bin in the plane
is changed, unless it is already at a limit of its excursion.
(In practice, most bins will spend most of the time at zero).
This saturating count is a crude approximation to the
exponentially-weighted estimate of equation (10), with the
advantage that it permits the use of small integers for each
element in the array.

We note in passing the similarity between this matrix
detecting co-occurrences of firings in different frequency
channels to the binaural co-incidence detector of Colburn
(1977), which detects consistent timing skew between
channels of the same center frequency, but from opposing
ears, as a factor contributing to perceived spatial origin.

+

-

0 relative
timing

firing
channel

other channels

time-
skewed
event

3Dhist
1993oct05

figure 6: The three-dimensional histogram for
estimating the conditional probabilities of firing in pairs
of channels at particular relative timings.

This procedure behaves as follows: Presented with a suc-
cession of pitch bursts with a consistent formant pattern,
the bins corresponding to the relative timings between the
formants for each pair will be incremented on every pitch
cycle, and the other bins will remain at zero.  Thus by
looking for the maximum bin contents along the time skew
axis for each channel m  compared to a single channel n
(i.e. one ‘plane’), we will see which channels have occurred
with a consistent relative timing.  If channel n  contains a
formant of a particular voice, the m s that have large
maximum bin contents (across τ ) will be the other formants
of the same voice, and for each channel pair the τ  of the bin
that contains the maximum will give the relative timing
(phase difference) between those two formants (of no par-
ticular interest to the grouping mechanism, which is mainly
interested in the existence of some consistent relative
timing).

An example of the values in this matrix during a typical
mixed voice sound is shown in figure 7.  Here we see the
histogram collapsed along the time skew dimension.  The
vertical and horizontal co-ordinates are the two frequency
channels n  and m  respectively, and the level of gray shows
the maximum histogram score across τ  for that pair of
channels.  Because the histogram is updated by planes
(horizontal rows in the figure), the image is not quite

figure 7: A ‘snapshot’ of the histogram collapsed along
the time skew axis 0.171 seconds into a mixed vowel.
Each axis is labeled by the center frequencies of the
channels.  Gray density shows the estimated conditional
firing probability.
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symmetric about the n= m  axis;  if there are more firings
in channel A than channel B, then there will be more
updates to the bins in channel A’s row that correspond to
channel B than there are of the bin for channel A in channel
B’s row - although for positive counts, we expect symmetry
i.e. an event in channel A at a time t relative to an event in
channel B will be recorded as counts in the two histogram
bins (A, B, t) and (B, A, -t).

In figure 7, we can see the presence of two independent sets
of synchronized formants, appearing as grid patterns of
dark spots in the grayscale image.  Thus frequencies 120
Hz, 2000 Hz and 6000 Hz (approx.) tend to occur with
consistent time skew, as do 400 Hz, 1000 Hz and 4000 Hz,
but not the intersection i.e. the bins indexed by 1000 Hz
and 2000 Hz are pale indicating no identified regular
timing skew, even though there are evidently firings in
both channels, synchronized to other frequencies.

The next stage of processing is to convert this large map of
conditional probability estimates into a few inferred formant
spectra, accomplished by the next block from figure 5, the
‘formant clustering’ unit.  This considers each row in the
matrix from the previous stage and attempts to find a small
number of formant spectra that, between them, resemble
most of the rows in the matrix.  The algorithm is a
simplified version of k-means clustering:  Starting with an
empty set of output formant spectra or ‘signatures’, we go
through each row of the matrix: If it has a peak value above
a threshold (indicating that it contains some useful co-
occurrence information), it is compared using a distance
metric to each of the current signatures.  If it is close to one,
it is added to that cluster, and the signature is modified to
reflect the contribution of the new row (a shift of the mean
of the cluster).  If the it is not sufficiently close to any of the
signatures, a new signature is created based on that row.
The result of this clustering is a small number (between
zero and five) of candidate formant signatures for each
time step when the clustering is run (every 10 or 20
milliseconds).  Note that since these signatures have a
frequency axis, we are referring to as spectra.  However,
the function of frequency is average conditional firing
probability, and does not reflect  the relative intensity of
the actual formants in the signal (except in so far as more
intense formants will be less affected by interference and
thus more easily detected by synchrony).

The penultimate stage of the model attempts to form
complete voices by tracking formant signatures through
time.  The procedure is that once a voice has been identi-
fied, the formant signature most similar to the last ‘sight-
ing’ of the voice is chosen as a continuation.  Exactly when
to start tracking a new voice is still an unresolved issue;
currently, we track only one voice at a time, and the system
is given a ‘seed’ (a known formant of the target voice at a
particular time) so that it may lock on to the correct set of
signatures.  The result of this tracking is a two dimensional
map, a function of frequency (channel) and time, showing
the contribution of each time-frequency tile to the sepa-
rately-identified voice.  This can then be used as a ‘mask’
for the time-frequency decomposition from the original
linear filterbank, and subband signals masked this way
can be passed through a reconstruction filter to resynthe-
size a sound approximating the separated voice.  (This

approach to resynthesis is borrowed from Brown (1992)).
This is represented by the final block of figure 5, ‘Mask &
resynth’.

4. RESULTS FROM A PRELIMINARY
IMPLEMENTATION

In this section we describe our first results with this
method.  We distinguish this implementation from the
description in the previous section owing to some simplifi-
cations made in the interests of computational efficiency.
The most significant of these is that we did not maintain
the full three-dimensional histogram described above;
rather, for each pair of frequency channels we tracked the
score only for the two most recently observed inter-firing
time skews, but not all the other possible skews.  If, during
a plane update, the calculated time skew to another chan-
nel was close or equal to one of the time skews being
tracked, the histogram score for that skew was incremented
accordingly.  If the new relative timing measurement was
not one of the two being tracked, the worse-scoring of those
two was discarded, and the new time skew tracked instead
from then on.  While this modification complicates the
analysis of the process, it is intended that ‘correct’ time
skew will be detected in situations where there is a strong
correlation between channels, even if there is significant
interference between two voices in one of the channels.

The other simplification concerns the way that voices are
formed through time.  Rather than creating all possible
component voices automatically, or seeding a voice at a
particular time-frequency point and following it forward
from there, our tests involved static vowels that could be
reliably associated with a particular formant throughout
their extent.  It was not necessary to track; we simply
formed voices by taking the vowel signature that contained
the known formant at each time.  Thus these results do not
test the mechanism of tracking voices through time sug-
gested for the ‘Continuity tracking’ block in figure 5.

Despite these simplifications, the results are in line with
our intentions.  Figure 8 illustrates two extended vowels
both separately and mixed together.  The top image of each
pair shows the output of the inner-hair-cell firing probabil-
ity stage, which is approximately a rectified version of the
output of the filterbank.  The horizontal dimension is time
and the vertical axis shows the center frequency of the
corresponding channels of the filterbank.  The firing prob-
ability is shown as gray density, and the resulting image is
similar to a wideband spectrogram, with the addition that
individual cycles of the ringing of each filter can sometimes
be resolved (as a result of the half-wave rectification).  The
second image of each pair is the same sound as represented
by the firing event generator.  The axes are the same as for
the upper image.  Here we can see how each pitch cycle
gives rise to an approximately vertical structure of burst
events, with the white space showing the absence of firing
events between pitch bursts.

In the bottom pair of images, we see the analysis of a
mixture of the vowels at approximately equal perceived
loudness.  The resulting sound is quite complex, although
certain frequency regions are visibly dominated by one or
other of the vowels, such as the 700 Hz formant for the
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figure 8: Firing probability (top of each pair) and firing events (bottom) for the vowels /or/ and /ee/, and their
mixture.
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figure 9: Extracted time-frequency masks for the vowels in figure 8.
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figure 10: Wideband spectrograms for the two original vowels (top row), their mixture (middle), and the
reconstructed vowels from the separation (bottom row).
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vowel /or/ shown at the left of the figure and the 2 kHz
formant for /ee/.

The discriminating formants in these two regions were in
fact the basis of the simplified continuity matching used in
these schemes.  Figure 9 shows the time-frequency masks
derived for the two vowels, by selecting vowel signatures
from the output of the clustering stage that exhibited the
relevant formants.  These masks are dark for time-fre-
quency regions exhibiting high consistency of timing skew
to the ‘seed’ formants, and light for areas that show negli-
gible correlation.  The masks are then multiplied by the
corresponding outputs of the original cochlear filterbank,
which are then combined into a single output signal by an
inverse filter bank.  The sounds produced by these two
masks, i.e. the separated vowels, are shown in figure 10 as
conventional wide-band spectrograms, along with the spec-
trograms of the original vowels and their mixture.  As can
be seen, although each separated signal is missing signifi-
cant regions of energy where it was masked by the other
vowel, the net result has captured much of the character of
the sound, and successfully rejected the interfering sound.
Listening to the outputs confirm that the separation is
good, and the vowels are easily recognized, although obvi-
ously distorted in comparison to the originals.

5. DISCUSSION

We have introduced a detailed model with complex behav-
ior.  It is useful to consider some of the tuning parameters
of the model and their influence.

The cochlear filterbank and inner hair cell firing probabil-
ity models have a profound influence on the model behav-
ior, since they determine what information from the raw
stimulus is available to the rest of the processing. The
frequency selectivity, level adaptation and signal syn-
chrony of these stages are particularly important.  How-
ever, we hope that by using the relatively established
Meddis and Hewitt modules for these stages we can cir-
cumvent extensive arguments and justifications.

The simple operation of the burst-event generation stage,
described in section 3, is dependent only on the time
window over which it operates.  This was set to 5 millisec-
onds to be approximately the period of the highest pitch for
which the system will operate.  Since at most one event can
be generated within this window, this helps ensure the
desired behavior of a single event per channel per pitch
cycle.

In the implementation of the timing-skew histogram, there
are two important parameters of the relative timing di-
mension:  the maximum skew that is registered, and the
timing resolution.  In our implementation, we looked for
events for 5 milliseconds on either side of the update event:
Again, this is intended to capture all events within one
pitch cycle, since it is difficult to imagine a reliable mecha-
nism for tracking time skews that exceed the pitch cycle
time.  The resolution was about one-hundredth of this i.e.
50 microseconds.  If this is made too large, then fine jitter
effects may not be noticed, and the segregation ability of
the process is reduced.  If it is too small, it becomes overly
sensitive to timing noise in the burst detection process, and

also raises questions of plausibility.  However, the human
ability to discriminate azimuth to a few degrees based on
interaural timing differences proves that this level of
timing sensitivity can occur at least in some parts of the
auditory system.  The actual implementation of resolution
in the histogram bins was side-stepped by the parameter-
ized way in which timing was represented in our imple-
mentation.  For a real histogram with actual timing bins,
it would be necessary to use some kind of point-spread
function when incrementing bins to avoid artifactual be-
havior on the boundaries between bins.

Perhaps the most interesting parameter is the sluggish-
ness of the probability estimation process, equivalent to
the time window upon which estimate is based.  In the
integer-only histogram implementation, the exponential
behavior of the recursive estimator in equation (10) has
been approximated with a straight line segment that
causes the time support of the estimate to scale with the
pitch cycle, such that a sudden change in the vocal tract
parameters will be fully reflected in the histogram after
five complete cycles.  While this only approximates the
form of adaptation to new evidence, and makes an implicit
assumption that the spacing between events is some con-
stant period, it possibly provides adaptive behavior more
suitable to our ultimate task of separating the vowels.  A
more careful analysis of the nature of this approximation
is required.

In the original formulation of equations (8) through (10),
the sluggishness was represented by the time window  of
the conditional firing probability estimates.  A larger α
(which would be approximated by a more shallow line
segment, i.e. saturation at a larger level) would give a more
conservative result, requiring more instances to fully ac-
cept a particular timing.  While this would be less often
wrong, it would also be in danger of losing track of rapidly
modulated voice.  In fact, we consider the most interesting
aspect of the present model to be the adaptation to evidence
across time, in contrast to the pseudo-static nature of
previous models.  We can be quite confident that the actual
perceptual system has far more sophisticated strategies
for temporal evidence accumulation than simple one-pole
integrators.  It is interesting none the less to begin to model
these effects.

Given that the GPS model relies exclusively on the tempo-
ral repetitions of between-channel patterns to make its
groupings, it is worth asking whether real speech is suffi-
ciently static to make such a principle feasible.  Our
current model requires some four pitch cycles with essen-
tially constant vocal tract response to lock-on to the pat-
tern.  This is only 50 milliseconds even at low voice pitches,
a reasonable minimum syllabic duration.  However, tran-
sitions can be shorter than this, so it will be interesting to
see how a complete system, including voice tracking through
time, deals with speech that modulates at realistic rates.
With very fast transitions, the speech may be chopped into
sections whose internal connection is reasonably evident,
but with no clear continuity across the transitions.  How-
ever, other mechanisms may be postulated to mend these
discontinuities : two sections of speech with abutting end
and start times are showing evidence of common origin.
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In section two we explored the usefulness of jitter, arguing
that a modulation detector with a variable threshold but
limited time resolution would be able to adjust itself to an
optimal rate of detected events if the modulation was
governed by a Gaussian jitter function (with gradual roll-
off at the extremes of the modulation probability density
function), but such adjustment would be difficult or impos-
sible for sinusoidal modulation with its sharp, bimodal
distribution.  There is another qualitative argument that
may be made in favor of the utility of jitter, in the context
of a sensitive relative-timing detection scheme such as the
current one.  If a periodic signal is composed energy in
different frequency bands which show a consistent relative
timing, then a system to detect relative timing will cor-
rectly observe the signal, as will an alternative system that
first calculates periodicities within each channel (such as
the Meddis & Hewitt model).  However, if the signal
departs from periodicity by some jitter mechanism that,
say, elongates a particular cycle, the relative-timing-based
scheme will not be in the least perturbed, since the delayed
glottal pulse will most likely still excite the same relative
timing amongst the formants — each channel will have its
burst delayed by the same amount, and the pattern is
preserved.  If the system is attempting to segregate two
voices that are close in pitch, this consistency of jitter-
derived displacement of one voice’s formants can effec-
tively disambiguate the voices where period measure-
ments fail.  Thus the presence of jitter, and a detection
scheme that is impervious to its effects, can be particularly
crucial for the perceptual isolation of voices with poor pitch
separation.

It is important to recognize that the current model is
completely insensitive to pitch cycle length and its stabil-
ity.  This is quite unrealistic, since random jitter at high
levels will rapidly disrupt the stability and clarity of a
sound; something approximating smooth pitch variation is
important for the perception of voice.  Since the GPS model
cannot provide this behavior, it cannot be considered a
sufficient model of voice separation.  Rather, it may be one
of a variety of techniques available to the auditory system,
each used when appropriate to the particular problem at
hand.  Periodicity-based methods may comprise other
alternatives, and there may be still other principles.  This
is entirely consistent with a theory of perception and
cognition based on corroboration between multiple, dispar-
ate mechanisms of indifferent individual reliability, but
capable of excellent performance when successfully com-
bined (a ‘society’ in the sense of Minsky (1986)).

A final comment regards the physiological plausibility of
the method.  One inspiration for the design was the known
cross-correlation mechanisms identified in bat echoloca-
tion systems by Suga (1990).  There, correlations between
certain features of a reflected sonar pulse were mapped
across two dimensions of individual neurons.  The three-
dimensional histogram of the GPS model could perhaps be
implemented with the same building blocks, but the extra
dimension certainly reduces its likelihood of it being a
direct description of a neurological system since the num-
ber of elements involved would be considerable.  It might be
that a low-resolution time-skew axis would make the third
dimension relatively shallow, yet still retain useful behav-

ior.  The ‘two-and-a-half’ dimensional modification we
actually used in our implementation (where the timing
skew is represented explicitly rather than implicitly in an
array of bins) requires less computational complexity, but
a different kind of representation that compromises its
plausibility also.  It may also be unnecessary to compare
every frequency channel against every other, but instead
reduce computation by using a local window to calculate a
diagonal ‘band’ from the middle of our histogram.  This
would still find adjacent pairs of formants (provided both
lay within the window).  These could then be assembled
into complete vowels by transitivity.

6. CONCLUSIONS AND FUTURE WORK

Future tests of the model

This report describes a very preliminary stage of develop-
ment of this model.  There are a number of tests of
immediate interest whose results would guide further
development and refinement.  There are also some inter-
esting psychoacoustical experiments suggested by the pre-
sentation of this algorithm as a potential strategy em-
ployed by the brain.  We will describe some of this planned
future work.

The one example we tried was not terribly difficult: the two
vowels were very distinct in formant structure, and they
had wide pitch separation.  However, the prediction made
in section 5, that exploiting jitter should allow segregation
even with little difference in fundamental frequency, is
relatively easy to test and could reveal a particularly
advantageous application of this technique.

While Meddis & Hewitt’s model achieved an extremely
good match to experimental results on the confusion of
vowels as a function of pitch separation by actual listeners,
their artificial stimuli lacked the kind of jitter that should
be very important in such situations, but which is not well
detected by their model.  Our contention that the currently
proposed system gains advantage by exploiting this jitter
would be tested by generating sets of artificial vowels with
and without simulated jitter of various intensities and
types.  We would expect the GPS model to perform much
better in the presence of wideband jitter, and the MH model
to perform perhaps a little worse compared to unmodulated
vowels.  To be able to conduct the same kinds of tests as
described in the Meddis and Hewitt paper, we would need
to add some kind of vowel classification stage to the output
of the GPS.  This could be done in several ways, for instance
with a low-order cepstral analysis of the separated, resyn-
thesized signal.

The perceptual assertion upon which this entire paper is
founded is that the human auditory system is indeed
sensitive to correlated modulation as caused by glottal
pulse train jitter.  We have argued circumstantially for
this, but it would be more satisfying to have direct psycho-
physical evidence.  One test would be to use the same
collection of synthetic vowel combinations with various
degrees of modulation of different kinds, and to test human
ability to segregate as a function of these parameters.  This
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evidence could provide very strong validation of the physi-
ological relevance of our model, or alternatively demon-
strate its irrelevance!

Another prediction of this kind of mechanism is that
excessive phase dispersion should degrade the coherence
of a signal;  if there is more than one pitch-cycle of addi-
tional timing skew between different formants, then it
becomes much harder to correlate between appropriate
pairs of events (originating from the same glottal pulse).
Although this could still be achieved with a sufficiently
large time dimension for the three-dimensional histogram,
short cuts of the kind we actually used in section 4 would
not be applicable.  We know that moderate phase disper-
sion has little impact on the perceptual quality of a vowel,
but it would be interesting to investigate the point at which
dispersion becomes deleterious, and the perceptual char-
acterization of the impact.

On a similar theme, and in the spirit of Summerfield &
Assmann (1991), it would be possible to generate synthetic
vowels where each formant was excited by a separate pulse
train.  If these pulse trains had the same underlying period
but different superimposed jitter functions, the resulting
synthetic voice would have average jitter characteristics
similar to those of real speech, but without any of the
coherent timing skew detected by the GPS model.  Such
sounds would be poorly fused by the model;  it would be
interesting to test if they were similarly ‘fragile’ for human
listeners.

Conclusions

(1) An argument was made that for certain possible
perceptual mechanisms the random nature of cycle-
to-cycle variation in natural speech could be materi-
ally different from the sinusoidal modulation typi-
cally employed in experiments.

(2) We described in some detail an algorithm by which
the human auditory system might be able to segre-
gate the contributions of each of several voices in an
acoustic mixture based upon the coherent timing
skew between different regions of spectral dominance
of a single voice.  A particular aspect of this strategy
is that it must combine evidence over time (i.e. sev-
eral pitch cycles) in a nonlinear fashion to form a
confident output.

(3) Results from a preliminary implementation of this
model tested with real voice samples show a surpris-
ing ability to segregate voices on this basis alone.

There can not, however, be any doubt that other cues such
as voice pitch are extremely important to the perception
and segregation of voices.  Therefore we propose that if the
current model does in fact reflect some genuine aspect of
human auditory processing (as our future tests may re-
veal), it is only one of a collection of voice-segregation
methods available to human listeners.  Future research
should concentrate not only on the discovery and refine-
ment of individual techniques, but also on the interesting
question of how the auditory system might combine the
results of different processes.

ACKNOWLEDGMENT

This work was generously supported by the MIT Media
Laboratory, in  particular the Television of Tomorrow
consortium.  The author is in the United States as a
Harkness Fellow of the Commonwealth Fund of New York,
whose support is gratefully acknowledged.

We would like to thank Dr. Lowel P. O'Mard and the
Speech and Hearing Laboratory at the Loughborough
University of Technology for making their ‘LUTEar’ audi-
tory model software available, which constituted a signifi-
cant portion of this project.

REFERENCES

Assmann, P. F.  and Summerfield, Q. (1989). “Modeling
the perception of concurrent vowels: Vowels with
the same fundamental frequency,” JASA 85(1), 327-
338.

Assmann, P. F.  and Summerfield, Q. (1989). “Modeling
the perception of concurrent vowels: Vowels with
different fundamental frequencies,” JASA 88(2),
680-697.

Brown, G. J. (1992). “Computational auditory scene
analysis: A representational approach,” Ph.D. thesis
CS-92-22, CS dept., Univ. of Sheffield.

Carlyon, R. P.  (1991). “Discriminating between coherent
and incoherent frequency modulation of complex
tones,” JASA 89(1), 329-340.

de Cheveigné, A.  (1993). “Separation of concurrent
harmonic sounds: Fundamental frequency estima-
tion and a time-domain cancellation model of
auditory processing,” JASA 93(6), 3271-3290.

Colburn, H. S. (1977). “Theory of binaural interaction
based on auditory-nerve data.  II. Detection of tones
in noise,” JASA 61(2), 525-533.

Cook, P. R.  (1991). “Identification of control parameters
in an articulatory vocal tract model with applica-
tions to the synthesis of singing,” Ph.D. thesis,
CCRMA, Stanford Univ.

Duda, R. O., Lyon, R. F., Slaney, M. (1990).
“Correlograms and the separation of sounds,” Proc.
IEEE Asilomar conf. on sigs., sys. & computers.

McAdams, S. (1984). “Spectral fusion, spectral parsing
and the formation of auditory images,” Ph.D. thesis,
CCRMA, Stanford Univ.

McAdams, S. (1989). “Segregation of concurrent sounds.
I: Effects of frequency modulation coherence,” JASA
86(6), 2148-2159.

Meddis, R. and Hewitt, M. J. (1991). “Virtual pitch and
phase sensitivity of a computer model of the
auditory periphery.  I: Pitch identification,” JASA
89(6), 2866-2882.

Meddis, R. and Hewitt, M. J. (1992). “Modeling the
identification of concurrent vowels with different
fundamental frequencies,” JASA 91(1), 233-245.

Minsky, M. (1986). The Society of Mind, (Simon and
Schuster, New York).



Dan Ellis  –  Vowel segregation based on synchrony DRAFT   1994jan03 - 17

Moore, B. C. J. and Glasberg, B. R. (1983). “Suggested
formulae for calculating auditory-filter bandwidths
and excitation patterns,” JASA 74(3), 750-753.

Parsons, T. W. (1976). “Separation of speech from
interfering speech by means of harmonic selection,”
JASA 60(4), 911-918.

Patterson, R. D. and Moore, B. C. J. (1986). “Auditory
filters and excitation patterns as representations of
frequency resolution,” in Frequency Selectivity in
Hearing, edited by B. C. J. Moore (Academic,
London).

Ross, S. (1982). “A model of the hair cell-primary fiber
complex,” JASA 71(4), 926-941.

Suga, N. (1990). “Cortical computational maps for
auditory imaging,” Neural Networks 3, 3-21.

Summerfield, Q., and Assmann, P. F. (1991). “Perception
of concurrent vowels:  Effects of harmonic misalign-
ment and pitch-period asynchrony,” JASA 89(3),
1364-1377.

Summerfield, Q. and Culling, J. F. (1992). “Auditory
segregation of competing voices: absence of effects of
FM or AM coherence,” Phil. Trans. R. Soc. Lond. B
336, 357-366.


