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ABSTRACT

Current speech recognition systems uniformly employ
short-time spectral analysis, usually over windows of 10-
30 ms, as the basis for their acoustic representations. Any
detail below this timescale is lost, and even temporal struc-
ture above this level is usually only weakly represented in
the form of deltas etc. We address this limitation by propos-
ing a novel representation of thetemporal envelope in differ-
ent frequency bands by exploring the dual of conventional
linear prediction (LPC) when applied in the transform do-
main. With this technique of frequency-domain linear pre-
diction (FDLP), the ‘poles’ of the model describe tempo-
ral, rather than spectral, peaks. By using analysis windows
on the order of hundreds of milliseconds, the procedure au-
tomatically decides how to distribute poles to best model
the temporal structure within the window. While this ap-
proach offers many possibilities for novel speech features,
we experiment with one particular form, an index describ-
ing the ‘sharpness’ of individual poles within a window,
and show a large relative word error rate improvement from
4.97% to 3.81% in a recognizer trained on general conver-
sational telephone speech and tested on a small-vocabulary
spontaneous numbers task. We analyze this improvement in
terms of the confusion matrices and suggest how the newly-
modeled fine temporal structure may be helping.

1. INTRODUCTION

Contemporary analysis techniques for acoustic modeling in
automatic speech recognition arespectrum-based. Spectral
structures such as formants convey important linguistic in-
formation. Nevertheless this is only a partial representation
of speech signals.

We believe that temporal structure in sub-10 ms tran-
sient segments contains important cues for both the percep-
tion of natural sounds [1] as well the understanding of stop
bursts in speech. At the other extreme, the gross temporal
distribution of acoustic energy in windows of up to 1 sec
has proven to be asuccessful domain for the recognition of
complete phonemes and the description of their dynamics
[2].

Speech features based on short 10-30 ms time frames
frequently incorporate temporal information in some form
e.g. through delta features. Hermansky and Morgan showed
that relative spectral (RASTA) post-processing of critical-
band energy time trajectories using IIR bandpass filters in-
creased robustness and removed inter-frame spectral analy-
sis artifacts [3].

We consider systems that start by breaking the signal
into timeframes are treating time as a secondary dimension.
We propose to alleviate this shortcoming with a new sig-
nal representation that treats time as the primary processing
dimension, without the distortion of an intermediate frame
rate.

In the next section we present a generic model that ful-
fills our goals by capturing temporal information adaptively.
In section 3 we show how we can extract features from our
model that can be used successfully in ASR. Those features
are evaluated in section 4 by using a standard HTK testbed.
In section 5 we discuss our findings and present our conclu-
sions.

2. TIME-ADAPTIVE MODEL

The goal of our model is a parametric description of the
temporal dynamics of speech. We want adaptively to cap-
ture fine temporal nuances with millisecond accuracy while
at the same time summarize the signal’s gross temporal evo-
lution in timescales of 500 ms or more.

The part of the model responsible for the time-adaptive
behavior is frequency-domain linear prediction (FDLP). The
discrete cosine transform (DCT) provides a frequency-domain
representation that is real-valued on which we apply linear
prediction. By duality with the way we model spectral en-
velopes using linear prediction in time, we can model tem-
poral envelopes using linear prediction in frequency.

This model has several advantages. Fine time-adaptive
accuracy can be used to pin-point important moments in
time such as those associated with transient events like stop
bursts. At the same time, the long-timescale summariza-
tion power of the temporal envelopes gives us the ability to
train recognizers on complete linguistic units lasting longer
than 10 ms and possibly even learning acoustically-feasible
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phoneme sequences – a step that has been traditionally left
for the domain of sequential state models.

Conceptually, ourmethod is comprised of two parts.
The DCT is applied on long-time frames, then linear pre-
diction is carried out on the output of the DCT. A discussion
of some key properties of the DCT will provide insight and
build an intuition for the method.

2.1. Discrete Cosine Transform (DCT)

The DCT enjoys wide use in the speech community in ap-
plications such as transform coding and, most prominently,
as an approximation to Karhunen-Loeve Transform (KLT)
decorrelation. As part of the cepstral transformation, the
DCT appears as apost-processing step in virtually all fea-
ture extractors for ASR. Formally, the forward DCT of an
N point real sequencex[n] can be defined as

XDCT [k] = a[k]

N−1∑
n=0

x[n] cos

(
(2n+ 1)πk

2N

)

k = 0, 1, . . . , N − 1

(1)

where:

a[k] =

{
1 k = 0√
2 k = 1, 2, . . . , N − 1

(2)

A less well-known property of the DCT is its ability to ap-
proximate the envelope of the discrete Fourier transform
(DFT). Denoting asXDFT [k] the DFT ofa length2N zero-
padded version ofx[n], it has been shown [4] that the enve-
lope of the DCT is bounded by the envelope of the zero-
padded DFT and in fact they are exactly related by

XDCT [k] = a[k] |XDFT [k]| cos

(
θ[k]−

πk

2N

)

k = 0, 1, . . . , N − 1

(3)

where|XDFT [k]| andθ[k] are the magnitude and phase of
the zero-padded DFT respectively.

The above mentioned property helps us understand fig-
ure 1. On the left we see the spectrogram of a 2 sec speech
sample and on the right we see the spectrogram of a DCT
transform of the whole sample (treating the DCT output
sequence as a sequence in time). One can notice that the
DCT spectrogram looks like a mirror image of the regular
spectrogram over the axistime = frequency. It is im-
portant to realize that the two figures are not exact mirrors,
due to the cosine modulating term in equation 3. (To listen
to these DCT waveforms, please visithttp://www.ee.

columbia.edu/˜marios/projects/dct_listening/.)
Having introduced DCT and its relevant properties we are
now ready to proceed with the discussion of FDLP.
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Fig. 1. Time-frequency analysis of a 2 sec speech sample.
On the left the regular spectrogram and on the right the spec-
trogram of the 2 sec DCT.

2.2. Frequency-domain linear prediction (FDLP)

As mentioned above, FDLP is the part of the model that pro-
vides the time adaptive behavior we want to achieve. FDLP
is the frequency-domaindual of the well-known time-domain
linear prediction (TDLP). Inthe same way that TDLP es-
timates the power spectrum,FDLP estimates the temporal
envelope of the signal, specifically the square of its Hilbert
envelope,

e(t) = F−1
{∫
X̃(ζ) · X̃(ζ − f)dζ

}
(4)

i.e. the inverse Fourier transform of the autocorrelation of
the single sided (positive frequency) spectrum̃X(f). We
use the autocorrelation of the spectral coefficients to predict
the temporal envelope of the signal.

Although FDLP is applied in the spectral domain it still
has the same peak-hugging properties as TDLP, only the
peaks are in the temporal, not spectral, envelope. FDLP
model order selection is guided by the temporal structure of
speech the same way TDLP model order is dictated by for-
mant structure. The difference here is that we can choose an
arbitrarily long temporal window on which to apply FDLP
so we need to define a ‘pole rate’, i.e. the number of model
poles used per time unit.

To illustrate, figure 2 shows a 256 ms long speech seg-
ment at 8 kHz sampling rate. After taking the 2048 point
DCT of the whole sample we fit a single FDLP polynomial
and extract the temporal envelope of the segment. Notice
the tradeoffs involved in model order selection: In the case
of 10 poles the envelope is too smooth and gives only a loose
approximation. In the case of 40 poles, the envelope is start-
ing to fit the pitch pulses—something we wish to avoid (for
English-language ASR applications anyway). The case of
20 poles strikes a good balance, capturing both the gross
variation as well as the stop burst transients in the begin-
ning of the sample. This combination defines a pole rate of
20/256 ms≈ 0.1 pole/ms. Note, however, that the poles are
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distributedadaptively within the 256 ms window. This flex-
ibility in deploying its modeling power is a key strength of
the model.

A second example is displayed on figure 3. In this case
we use the same 256 ms long sample but this time we apply
FDLP on 4 logarithmically-split octave bands, namely 0-
0.5, 0.5-1, 1-2 and 2-4 kHz. We use the same pole rate of 20
poles per 256 ms for each band as in our previous example.
Notice that the high frequency band is resolving the tran-
sient while the low frequency band is capturing the gross
spectral variation. We call this method “subband FDLP”.

FDLP is in fact a repurposing of a system first intro-
duced by Herre and Johnston [5]. Dubbed temporal noise
shaping (TNS), its principal application was in the elimina-
tion of pre-echo artifacts associated with transients in per-
ceptual audio coders. Using D*PCM coding of the frequency-
domain coefficients, the authors showed that coding noise
could be shaped to lie under the temporal envelope of the
transient.

In their original paper, Herre and Johnston presented
a case where FDLP was applied on four separate spectral
bands modeling four independent temporal envelopes, es-
sentially what we call subband FDLP. But because the time
windows they considered were very short (as used in MPEG2-
AAC) and because they were mainly concerned with time-
localized transients which have a nearly flat spectrum, they
concluded that the temporal envelopes in different bands
were highly correlated and virtually identical. The power of
our method comes from extending subband FDLP to con-
sider long time windows. By transforming longer, 256 ms
blocks of signal (extensible to seconds or more), we capture
enough variation to manifest itself as significantly different
temporal envelopes between bands.

To tie this back to the property of the DCT that we pre-
sented inequation 3 and in figure 1, consider being handed
the signal that led to the right-hand spectrogram of figure 1,
without knowing that it was the result of a DCT. If we were
to model this one-dimensional sequence using our standard
frame-based LPC techniques, we would be finding approx-
imations to the vertical (spectral) structure in vertical slices
(short-time windows) of the spectrogram. But because of
the spectrogram-domain reflection effected by the DCT, the
envelopes we recover in fact describe thetemporal structure
of “short-frequency” regions of the spectrum of the original
(pre-DCT) signal, i.e. subbands.

This method gives us a new parameter space from which
we can extract novel features for use in ASR. We will now
present our initial feature extraction approach.

3. FEATURE EXTRACTION

There are many ways in which the temporal envelope in-
formation modeled in FDLP could be converted into fea-
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Fig. 2. Bracketing the pole rate. Original 256 ms speech
segment and temporal envelopes fit using 10, 20 and 40
poles respectively. Notice that the first envelope captures
the gross variation but doesn’t give us any information about
the transient burst. The thethird envelopeuses so many
poles that it resolves individual pitch pulses. The middle
panel using 20 poles for 256 ms captures the transient and
the gross envelope while avoiding the pitch pulses.

tures for use in current speech recognizers; the approach de-
scribed belowcan only be regarded as a first foray. One can
identify two families of parameters that can be extracted.
Firstly, we can use the temporal envelopes directly: The en-
velopes in figure 2 are sampled DFTs of the impulse re-
sponses (IR) of the all-pole filters that have been fit to the
frequency domain. The basic LP representation may be suit-
able for direct transformation into temporal-based features
such as modulation spectra, and relationships such as the
direct transformation from prediction coefficients to cepstra
[6] can give us decorrelated features describing the temporal
behavior in different subbands.

The second approach seeks to derive features from each
individual pole in the model i.e. the roots of the predictor
polynomial. The angle of the pole on thez-plane corre-
sponds to very accurate timing information, and the magni-
tude can provide knowledge about the energy of the signal,
keeping in mind that this is a smoothed approximation to
the ‘true’ Hilbert envelope. The sharpness of the pole (i.e.
how closely it approaches the unit circle) relates to the dy-
namics of the envelope: a sharper pole indicates more rapid
variation of the envelope at that time.

In our initial experiments, our goal was to extract fea-
tures at a 10 ms frame-rate so that we could concatenate
them with standard PLP features as enhancements to a base-
line recognition system. In that sense we have not fully ex-
ploited the richness of the FDLP representation, but merely
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Fig. 3. Subband FDLP. The same speech segment as in fig-
ure 2 using 20 poles but this time with FDLP performed sep-
arately on 4 logarithmic bands. The split is 0-0.5, 0.5-1, 1-2
and 2-4 kHz. Notice that the highest frequency band (band
4) clearly captures the transient while band 1, reflecting the
lowest frequencies, captures asmoother energy variation.

tested its usefulness in a conventional recognition system.
Adopting the second, pole-based approach, we examine

an index of sharpness of the FDLP poles{pi} defined by

ρi =
1

1− |pi|
(5)

Thus, as pole magnitudes grow from zero to approach the
unit circle,ρi grows from 1 to an unbounded large positive
value.

For each analysis frame in time we take the full DCT
and perform FDLP on 4 log bands using 20 poles per band.
The choice of a 256 ms analysis window (2048 samples at
8 kHz) is, without loss of generality, dictated by compu-
tational considerations. Subbands are formed by breaking
up the DCT into subranges that are exact powers of two,
e.g. 256, 256, 512 and 1024 points for a 4-way split. After
modeling with 20 poles per band per frame we calculate our
sharpness index of equation 5. We then scale theρis using
a Gaussian window toachieve a finer time resolution than
the 256 ms window, as illustrated in figure 4, and keep the
maximum value in each band in each frame. The purpose of
the window is to localize the sharpness values in the vicinity
of the center of the frame. Figure 5 visually compares these
pole sharpness features with direct measures of the subband
energy. After examining the distributions of the sharpness
parameters, we added a logarithmic transform to make the
distributions closer to Gaussian, and thus a better match to
our statistical models.
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Fig. 4. Feature extraction process. The top pane shows the
original 256 ms segment of speech. The middle pane shows
the envelope modeled by FDLP, and the sharpness indices
for the 10 positive-time poles. The bottom pane shows the
effect of the time-localizing Gaussian window; features are
calculated as the maximum of these values per band per
frame.

4. EVALUATION

We used a conventional HTK recognizer related to the sys-
tems described in [7] and [8]. We trained GMM-HMM
models on a mixture of conversational and read speech, us-
ing a combination of Switchboard, Callhome, and Macro-
phone databases. To explore generalizability and to sim-
plify the testing procedure, we tested on OGI-Numbers95,
a35-word task consisting of spontaneous numbers extracted
from prompted telephone interactions.

Table 1shows our recognition Word Error Rate (WER)
results. The first line, “PLP12”, is our baseline system em-
ploying 12th order PLP features (plus deltas and double
deltas). Subsequent systems augment these features with
FDLP sharpness features invarious guises. “FDLP-4log”
adds four elements to each feature vector, derived from 4,
logarithmically-spaced octave subbands (0-500 Hz, 500 Hz-
1 kHz, 1-2 kHz, and 2-4 kHz). We found that perform-
ing a final DCT decorrelation on each frame of FDLP fea-
tures improved recognition, shown in the “FDLP-Xlog+dct”
lines. We tried using between 2 and 5 octave bands (where
2 ‘octaves’is simply 0-2 kHz and 2-4 kHz, and 5 bands
goes down to 0-250 Hz) to find the best compromise be-
tween signal detail and model accuracy (since narrow fre-
quency bands contain fewer frequency samples with which
to estimate the LP parameters). We also tried dividing the
frequency axis on a Bark scale; this allowed us to use more
bands (since Bark bands do not get narrow so quickly in the
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Fig. 5. Feature examples. The top pane shows a con-
ventional spectrogram of the speech sample. The middle
pane shows the per-frame maximum of the temporal en-
velopes extracted in each band by FDLP, using 256 ms
frames stepped by 10 ms. Note the similarity to the energy
in the spectrogram. The bottom pane plots the sharpness in-
dex features, calculated as described in the text. Notice that
they pick the the important moments in time, like transient
stop bursts, while almost completely ignoring high-energy
but stable parts of the signal such as vowels.

low frequencies) but it was not beneficial.
We report results for two systems. Our initial experi-

ments were done with a system, “raw 20k”, trained on ap-
proximately 16 hours of speech (20,000 utterances), and
were tested using theraw Numbers95 utterances. Training
features were mean- and variance-normalized within all the
utterances identified as belonging to a single speaker, but the
test set normalization was performed only within utterance.

For our later experiments we sought to improve the base-
line, so the training set was increased to 64 hours (85,000 ut-
terances, “pad 85k”). We found that padding each end of our
test utterances with 100 ms of artificial ‘background noise’
silence wasbeneficial (common practice for the Numbers95
corpus). We also normalized across all test set utterances
marked as coming from the same speaker. These changes
together effected a relative WER improvementof almost
45% in our PLP baseline, from 4.97% to 2.75%.

4.1. FDLP results

For the “raw 20k” system, we see that any kind of FDLP-
derived information improved word error rate, with the great-
est improvement coming from augmenting the PLP features
with decorrelated 4 octave-subband FDLP sharpness fea-
tures (“FDLP-4log+dct”). The WER change from 4.97%
to 3.81% represents a 23.3% relative improvement. The ad-
vantage of using DCT decorrelation was quite clear, and the

Features raw 20k pad 85k
PLP12 4.97% 2.75%
FDLP-4log 4.08% 2.90%
FDLP-2log+dct 2.82%
FDLP-3log+dct 2.61%
FDLP-4log+dct 3.81% 2.63%
FDLP-5log+dct 2.69%
FDLP-8bark+dct 4.38%

Table 1. Recognition WER results. “PLP12” is the 12th or-
der PLP cepstrum baseline, whose features are augmented
with FDLP features from between 2 and 8 subbands in the
other lines. “log” indicateslog-spaced (octave) subbands,
which “bark” is for Bark-spaced subbands. “+dct” indicates
DCT decorrelation applied to the small FDLP vector. The
“raw 20k” column gives results from the smaller, initial sys-
tem, and “pad 85k” results come from the improved training
and testing sets.

lack of any advantage from using more, Bark-spaced bands
(“FDLP-8bark+dct”) was also clearly shown.

With the larger, better-performing “pad 85k” system, the
improvements due to FDLP are smaller, with the best im-
provement of 2.75% baseline WER to 2.61% for 3 subband
decorrelated features (“FDLP-3log+dct”) constituting a 5%
relative improvement. We are, however, getting to the lim-
its of this test set at this level of performance: With only
4757 words in the test set, a simple binomial significance
test requires an absolute word error rate difference of about
0.8% for significance at the 5% level. Thus, although the
improvement from FDLP in the “raw 20k” system is statis-
tically significant, none of the “pad 85k” results are signif-
icantly different from each other by this measure. In future
experiments we will be using alarger test set, as well as
a more difficult task, to provide greater insight into perfor-
mance differences.

Some error analysis of these results is revealing, how-
ever. Figure 6 compares the word-level confusion matrices
for the baseline “raw 20k” PLP system, and for the best-
performing “FDLP-4log+dct” system. Looking at the ab-
solute differences in error counts (middle pane), we see the
greatest differences in for the words “four” (fewer confu-
sions with “forty”), “eight” and “six” (fewer deletions), and
“five” (fewer confusions with “nine”). We note that most
of these main differences involve stops (/t/ in “eight” and
“forty”, and /k/ is “six”); this is consistent with our initial
motivation for the FDLP sharpness features, of capturing in-
formation about short-duration transients in the speech sig-
nal.
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Fig. 6. Word-level confusion matrices for the “raw 20k” system. Left: for the baseline system (each row is normalized by
the prior of that word ). Right: for the best FDLP-augmented system. Middle: difference between the raw confusion counts
in the two matrices. Improvements appear as lighter cells inthe leading diagonal (more correct recognitions) and darker
off-diagonal cells (reduced confusions).

5. DISCUSSION AND CONCLUSIONS

The benefits of FDLP lie in its ability to describe temporal
structure without frame-rate quantization, and its rich and
flexible representation of temporal structure in the form of
poles; we have but scratched the surface of the transforma-
tions possible in this domain.

One possibility is to use FDLP as a direct temporal en-
velope estimate. By converting LPC coefficients directly to
cepstral-like temporal envelope coefficients, FDLP could be
married to novel modeling schemes such as TRAPS [2], a
direction we are investigating.

There is a vast background on linear prediction meth-
ods; investigating how these work when applied to FDLP
should lead to many further novel representations. For ex-
ample the peak-hugging property of LPC can be adjusted,
or even inverted to become a valley-hugging property, using
the spectral transformations introduced in [9].

In conclusion, we have presented a new way to estimate
temporal envelopes that exploits the dual of linear predic-
tive coding applied in the frequency domain. This flexi-
ble, adaptive representation of the temporal structure can
be analyzed across the full-band or for arbitrarily-spaced
subbands, and presents many possibilities for novel speech
recognition features. Our first experiments with extracting
‘sharpness’ parameters for individual poles gave promising
and significant improvements on a relatively large speech
task, and we are continuing to experiment with different fea-
ture derivations and more demanding recognition tasks.
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