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Abstract
Information concerning the identity of subword units such

as phones cannot easily be pinpointed because it is broadly dis-
tributed in time and frequency. Continuing earlier work, we use
Mutual Information as measure of the usefulness of individual
time-frequency cells for various speech classification tasks, us-
ing the hand-annotations of the TIMIT database as our ground
truth. Since different broad phonetic classes such as vowels and
stops have such different temporal characteristics, we examine
mutual information separately for each class, revealing structure
that was not uncovered in earlier work; further structure is re-
vealed by aligning the time-frequency displays of each phone at
the center of their hand-marked segments, rather than averaging
across all possible alignments within each segment. Based on
these results, we evaluate a range of vowel classifiers over the
TIMIT test set and show that selecting input features accord-
ing to the mutual information criteria can provides a significant
increase in classification accuracy.

1. Introduction
The fundamental task of the acoustic model in a speech recog-
nizer is to estimate the correct subword or phonetic class label
for each segment of the acoustic signal. This task is complicated
by the fact that the information relevant to this classification is
spread out in time – due to mechanical limits of vocal articula-
tors, other coarticulation effects, and phonotactic constraints –
and may be unevenly distributed in frequency. One response to
this situation is to collect information from a very large tempo-
ral context window as input to the classifier (perhaps as much
as one second [1]), but this implies a large number of parame-
ters in the classifier, and hence requires very large training sets,
as well as frustrating the classifier training with redundant and
irrelevant information.

In this work we investigate using Mutual Information (MI)
as a basis for selecting particular cells in time-frequency (TF) to
optimize the choice of features used as inputs to a classifier. MI
is defined as the as the measure of the amount of information
one random variable contains about another. Specifically, we
have investigated the MI between TF features and phonetic and
speaker labels within the phonetically-labeled TIMIT continu-
ous speech corpus.

In related work, Morris et al. [2] investigated the distri-
bution of information across the on/off aligned auditory spec-
trogram for a corpus of vowel-plosive-vowel (VPV) utterances.
The MI was estimated between one time frequency feature and
the VPV labels, also the joint mutual information (JMI) be-
tween two time frequency features and the VPV labels. The
goal was to use MI and JMI to determine the distribution of
vowel and plosive information in the time frequency plane. Fea-
tures with high MI and JMI were used to train a classifier to

recognize plosives in the VPV utterances.
Bilmes [3] used the Expectation Maximization (EM) algo-

rithm to compute the MI between pairs of features in the TF
plane. He verified these results in overlay plots and speech
recognition word error rates. Ellis and Bilmes [4] used the same
techniques of MI estimation to predict how and when to com-
bine entire feature streams.

Yang et al. [5] used methods similar to [2] to perform phone
and speaker/channel classification. Simple classifiers with one
or two inputs demonstrated the value of individual TF cells with
high MI and pairs with high JMI.

The idea of using class-specific feature subsets for classifi-
cation was investigated in the BMMs of [6]. There, MI between
pairs of feature elements, conditioned on class label, was used
to build unique distribution models for every state in an HMM.
Here, we propose just one unique TF pattern per broad class
based on MI between features and the class label, then use dis-
criminative classifiers to distinguish within that broad class.

Our work extends [5] in several ways. In addition to cal-
culating MI over all phones, we look at subsets composed of
broad phonetic classes, such as the MI between specific vowel
labels across only the vowel tokens. Because different phonetic
classes can have very different temporal and spectral structure,
calculating the MI across all labels can ‘wash out’ interesting
details that are specific to a particular class.

A second way in which detail can be washed out is by us-
ing every possible temporal alignment within each phone seg-
ment. Instead, we have taken just one time-frequency ‘snap-
shot’ for each labeled phone segment within the training data,
and calculated MI over a registered TF grid, such that the cen-
ter of the phone (or the burst initiation in the case of stops) is
aligned across all the examples. This is in contrast to previous
work which uses N translated versions of the TF features from
a phone segment of durationN frames, thereby blurring out any
discernible temporal structure.

The next section describes how we calculated mutual infor-
mation and presents MI as a function of time and frequency for
a variety of data and label subsets. The hypothesis that high
MI features provide good discrimination is verified in section 3
by performing vowel classification using the high MI points as
input features to a multi-layer perceptron (MLP) classifier, and
comparing these results to several baselines. In section 4, we
discuss how the comparisons show a) the usefulness of only us-
ing the center frame in a vowel segment for training and b) the
usefulness of high MI features for discrimination.

2. Mutual Information
Entropy of a discrete random variable X is defined as

H(X) = −
∑

∀x

p(x) log(p(x)) (1)

Presented at: Eurospeech’03, Geneva, Sep 1–4, 2003. 1



where 0 ≤ p(x) ≤ 1 implies log(p(x)) ≤ 0 and therefore
H(X) ≥ 0

Mutual Information is defined as a measure of the amount
of information one random variable contains about another [7].
After observing the random variable Y , the uncertainty of X is
reduced to H(X|Y ), which is the conditional entropy. There-
fore the amount of information gained is the Mutual Informa-
tion (MI):

I(X;Y ) = H(X)−H(X|Y ) (2)

In order to estimate The MI the probability density func-
tions p(x) and p(x|y) need to be approximated. For each time-
frequency feature the distribution of values was approximated
with a diagonal-covariance Gaussian mixture model (GMM).
Two Gaussian components were found to be adequate to capture
the distributions we encountered. Once the GMMs has been de-
termined, it is sampled on a dense grid over a fixed range. This
range has its lower bound equal to the minimum of the mean
minus three standard deviations across all the Gaussians; the
maximum is similarly determined. This sampled data is used to
compute the entropies H(X(f, t)) and H(X(f, t)|Y ), where
X(t, f) is the set of instances of the TF point x(f, t) across the
entire data set and Y is the set of vowel, phone or speaker class
labels.

2.1. Mutual Information in Speech and Speaker Data

The MI was computed between labels and individual cells
across the time-frequency plane. The base features were stan-
dard Bark-scaled log-spectral-energy coefficients calculated
over a 25ms window with 10ms advance between adjacent
frames. The TIMIT data, which is sampled at 16 kHz, gave
19 one-Bark frequency bands. A temporal window of ± 25
frames around the labeled target frame was used as the domain
over which MI was computed. Within each utterance, the mean
of each frequency band was set to zero, providing a kind of
normalization against variations in channel characteristic (mi-
crophone positioning etc.).

Because our approach sought to calculate MI at a fixed tem-
poral alignment of each phone segment, we initially had only
one value for each TF cell from each segment in the training
data. In order to increase the data available for training, and
thus to improve the stability of our MI estimates, each TF value
was augmented by its two immediate temporal neighbors, mak-
ing the assumption that adjacent features in time are very simi-
lar and almost redundant. However, no further temporal shifting
was performed in order to preserve fine time structure in the MI
displays.

Each calculation thus returned an MI plot consisting of
19×49 cells. We performed these calculations against a variety
of labels and over different subsets of the data. These results
are shown in figure 1. The number of speakers from the TIMIT
database used to calculate each pane was varied to ensure a suf-
ficient number of examples were available.

The MI between TF features and all phone class labels is
shown in the top pane. It can be seen that information useful
for discriminating between phones exists in all frequency bands
and that the information spreads out for about +/- 50ms. The
highest MI can be seen at around 4-7 bark. Small differences
between this plot and the corresponding figure in [5] are due to
the fact that each window in our experiments is aligned on the
center frame in a labeled segment, rather than using every frame
carrying that label as a center-point.

The next four panes show the same calculation conducted
over subsets of the data contributing to the top pane. Taking the
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Figure 1: Mutual Information across time-frequency for various
classes and data subsets. The number of classes and the total
number of instances are given for each case.

four broad phonetic classes of stops, fricatives, nasals and vow-
els, MI is calculated between the specific phones within each
class, calculated only over the segments that are marked as be-
longing to that broad class. Although the top pane is, loosely
speaking, a weighted average of these panes, we can see very
different and specific patterns arising from the individual char-
acteristics of each broad class. For stops (which were aligned
at the starting edge, rather than the center, of the marked seg-
ment), we see a dip in MI just before the central frame, indicat-
ing the absence of information about the particular stop class
in the silence immediately preceding the stop burst. However,
for around 50ms before and after this dip, there is significant
information in the frequency bands at Bark 14 and above, pre-
sumably indicating cues from incoming formant transitions and
from the spectral characteristics of the burst. We also see a peak
in MI in the low frequency (around 3 Bark) at about 40ms after
the burst - presumably indicating the most useful place to look
to distinguish voiced (b,d,g) and unvoiced (p,t,k) stops.

The third pane showing fricatives shows a fairly smooth dis-
tribution with most information again above Bark 14 – where
most fricative energy exists – although again with some infor-
mation below Bark 6 to distinguish voiced and unvoiced frica-
tives. Temporal information shows the same smooth central
peak as seen in the first pane. Nasals, on the other hand, again
show a minimum of MI at the very center of the window (at least
above Bark 6), with most information coming from the middle
frequency bands (Bark 5-15) between 20 and 60ms before the
segment center, and somewhat less available in the symmetric
region after the center. These off-center foci presumably cover
the formant transitions in and out of the nasals, which are known
to be the strongest cues to nasal identity.
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The MI between TF features and the vowel classes is shown
in fifth pane. It can be seen that the information is spread over
a wider span than for all phones (first pane), specifically about
±80ms, or roughly the duration of a short vowel. Also, the most
relevant information for vowel discrimination exists between 6
and 11 bark which is somewhat higher than for all phones. An
interesting aspect visible here is that while the lowest and high-
est frequency bands are not informative during the main vowel
duration, outside the central region we see faint ‘arms’ above
and below the central blob. These could again be capturing for-
mant transitions in and out of the vowel; in the lower frequen-
cies, they indicate the best place to look to distinguish between
long- and short-duration vowels. Like the other fine temporal
structures mentioned above, this is the kind of detail that only
becomes visible when spectral frames are aligned on each label
segment, rather than being averaged across all possible offsets
within a segment.

The bottom pane is also evaluated over all segments falling
into the broad class of vowels, but now the MI is to the speaker
label rather than the specific vowel label. This plot was moti-
vated by the idea that vowels are the most useful segments in
identifying speakers. Interestingly, we see an image that is al-
most exactly the complement of the lexical (vowel-class) infor-
mation from the pane above: relevant information for speaker
exists above 12 bark and below 5 bark. Information is spread
over a smaller time span of about ±60ms. The high MI in the
lowest frequency bands may include factors arising from the
speaker channel, although our normalization should have re-
moved the strongest effects.

3. Classification
To verify the hypothesis that high MI points correspond to rel-
evant features for discrimination, several vowel classification
experiments were performed. A multi-layer perceptron (MLP)
classifier was using for vowel classification. The neural net-
work (NN) was trained using the QuickNet software from ICSI
Berkeley The network had a single hidden layer of 100 units,
and an output layer of 12 units, one for each of the 12 vowel
classes. Only the input layer geometry was varied in the exper-
iments, to accommodate different numbers of input features.

The network was trained to estimate the posterior probabil-
ity for each of the 12 vowel classes for each each frame of input
by backpropagation of a minimum-cross-entropy error criterion
against ‘one-hot’ targets. The NN was trained using all 468
speakers from the 8 dialects of the TIMIT database, a total of
4680 utterances of which 160 utterances were used for cross-
validation. The 168 test speakers were used for testing.

Once the 19 spectral coefficients are extracted for every
frame in the training set, the mean and standard deviation are
computed of all the features for normalization. Each feature di-
mension in the training set is separately scaled and shifted to
have zero mean and unit variance. The same normalization is
applied to the test set.

The MI indicates which TF features contain the most in-
formation for discriminating the vowel classes. Therefore, in
order to show that these high MI features provide good discrim-
ination, three vowel classification experiments were carried out,
using three different methods to choose which TF cells are used
as input to the classifier. First, a baseline system used a rect-
angular block (RECT) of all 19 frequency bands across a tem-
poral window of n successive 10ms frames, where n is 7,5,3,1
.i.e. ±3,2,1,0 frames. One training pattern block was extracted
from each vowel segment in the training data, aligned with the
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Figure 2: Mutual Information thresholded masks (IRREG)
for features lengths 133,95,57,19 without checkerboarding
(left) and features lengths 85,47,28,9 with checkerboarding
(CHKBD, right).

center frame of the segment. (In the case of an odd number of
frames in a vowel sequence, two windows are used for training,
each centered on one of the center frames.) The features in the
temporal window are concatenated together after normalization
to create one feature vector that is presented to the input layer
of the NN.

To take advantage of the MI results, the second system took
as input the TF cells with the largest MI values to the vowel
label. This results in an irregularly-shaped pattern in the TF
plane (IRREG) consisting of all the cells from the 5th pane of
figure 1 with values above some threshold. The threshold was
varied to match the total number of inputs in the baseline sys-
tems with different temporal context widths i.e. 19, 57, 95 and
133 features. The mask was used to select TF values from each
training segment, and all selected values were concatenated and
presented as input to the MLP classifier. The mask always lay
within a block of 19x17 cells i.e. 19 frequency channels by ±8
frames around the center. The thresholded masks used in the
experiments to extract the various number of features for this
method, are shown in the left-hand column of figure 2.

Note that in the MI investigation above, MI was computed
for each TF cell in isolation. While the relative MI can be seen
in the MI plots, the JMI between each MI point and all its neigh-
bors is not so easily obtained. We can however assume that ev-
ery spectral dimension is highly correlated with its immediate
neighbors, and correlation is high along the time axis too: This
suggests that the immediate neighbors of a cell used in classifi-
cation could be omitted from the classifier without a significant
loss of information. This can be implemented by multiplying
the selection masks of both the RECT and IRREG systems by
a checkerboard pattern (CHKBD), so no cells in the resulting
mask can be immediate neighbors. The right column of figure
2 illustrates the checkerboard MI masks used for the IRREG
case. Note that applying the checkerboard changes the number
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Figure 3: Variation of classification accuracy with the number
of TF cells used in the classifier input across all three systems
and with and without the checkerboard feature masking.

of input units available.
Finally, the effectiveness of using only one temporal align-

ment per labeled segment was tested with a contrast system that
used the same input feature geometries as the RECT system,
but was trained on TF windows centered on every frame labeled
with a particular class (“all frames”) rather than only the sin-
gle alignment at the center of the segment. This classifier thus
saw a much larger number of training patterns, but the patterns
were less consistently structured since they were composed of
all possible temporal offsets for each class. This is also the clos-
est equivalent to the classifier used in conventional connection-
ist speech recognition, although it is discriminating only among
vowels, not among all phone classes.

Every system was tested in the same way: For every vowel
in the test data (a total of 14641 cases), a single test pattern
aligned to the center of the vowel segment is collected, and sub-
jected to the appropriate mask. These patterns are passed to the
MLP classifier, and the output unit with the greatest activation
is taken as the class. The ’frame accuracy’ value in figure 3 is
the proportion of such patterns correctly classified. (A differ-
ence of around 1% between any of these results is significant at
the 5% level.)

4. Discussion and Conclusions
Figure 3 shows that for a given number of input features,
the MI-based IRREG classifier (circles) outperforms the more
conventional RECT classifier (crosses) for all except the very
smallest input sizes (at which point IRREG is looking at just
3 of the 19 frequency channels). We also see that checker-
boarding the input mask to reduce input dimensionality (dot-
ted lines) significantly improves accuracy in all cases except
the very narrowest, even though the number of inputs is ap-
proximately halved. Our best performance of 66.7% correct is
achieved by checkerboarding the large IRREG MI region to in-
clude 85 features.

We can also see that, for this task, training only on the
center alignment of each segment affords very considerable im-
provement over the conventional approach of training on every
frame labeled with a given class (asterisks). Of course, this is
an unfair comparison, because the “all frames” classifier will
presumably do a much better job of classifying frames closer to
the edge of segments, i.e. patterns on which the other classifiers

are not trained.
This points out the main weakness with these classifiers,

that they rely on the hand-marked phone boundaries to locate
the segment centers at which the classification is performed. In
a real speech recognition task, no such boundaries would be
available, and some additional scheme would be needed to de-
cide which frames should be passed to the classifier. However,
the bewilderment at misaligned frames might be helpful here:
we plan to investigate using the entropy of the classifier output
as a way of detecting the phone centers in continuous speech.

It is worth noting that TIMIT is a small corpus by today’s
standards. This is useful to the point we are trying to make,
since the task is strongly data-limited. It is imperative to mini-
mize the number of input features being employed, since there
is not enough data to learn large numbers of parameters. This
is apparent in the local maxima in figure 3, indicating the point
at which adding further features (and hence model parameters)
actually hurts performance.

We have shown that MI is a practical and interesting tool
for locating the information in the speech signal. MI con-
firms and quantifies the way in which different phone classes
rely on different timescales and frequency regions for discrim-
ination, suggesting a scheme of phone-class-specific classifiers
each looking at different regions in time-frequency. An investi-
gation into a vowel classifier confirmed the value of MI-based
feature selection, as well showing that training only on one,
center-aligned pattern per training segment gave much greater
accuracy for an equivalent test than the conventional approach
of training on every frame offset with the segment.

5. Acknowledgments
This was performed while the first author was visiting
LabROSA with support from Enterprise Ireland under their
ATRP program in Informatics. Additional support was provided
by the DARPA EARS Novel Approaches program.

6. References
[1] H. Hermansky and S. Sharma, “Temporal patterns

(TRAPS) in ASR of noisy speech,” in ICASSP’99, March
1999.

[2] A. Morris, J.L. Schwartz, and P. Escudier, “An informa-
tion theoretical investigation into the distribution of pho-
netic information across the auditory spectrogram,” Com-
puter Speech and Language, vol. 7, no. 2, pp. 121–136,
1993.

[3] J. Bilmes, “Maximum mutual information based reduc-
tion strategies for cross-correlation based joint distribution
modelling,” in ICASSP’98, April 1998, pp. 469–472.

[4] D. Ellis and J. Bilmes, “Using mutual information to design
feature combinations,” in Int. Conf. on Spoken Language
Processing, 2000, pp. 79–82.

[5] H. H. Yang, S. Sharma, S. van Vuuren, and H. Herman-
sky, “Relevance of time-frequency features for phonetic
and speaker-channel classification,” Speech Communica-
tion, Aug. 2000.

[6] J. Bilmes, “Buried markov models for speech recognition,”
in ICASSP’99, March 1999.

[7] T.M. Cover and J.A. Thomas, Elements of Information The-
ory, Wiley, 1991.

4


