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ABSTRACT

Combining anumber of diverse featurestreamshasproven to bea
very flexibleand beneficial techniquein speech recognition. In the
context of hybridconnectionist-HMM recognition, featurestreams
can be combined at several points. In this work, we compare two
forms of combination: at the input to the acoustic model, by con-
catenating the feature streams into a single vector (feature com-
bination or FC), and at the output of the acoustic model, by av-
eraging the logs of the estimated posterior probabilities of each
subword unit (posterior combination or PC). Based on four fea-
ture streams with varying degrees of mutual dependence, we find
that the best combination strategy is a combination of feature and
posterior combination, with streams that aremore independent, as
measured by an approximation to conditional mutual information,
showing morebenefit from posterior combination.

1. INT RODUCTION

As the first stage in any speech recognition system, the features
are critical to the overall system performance. The ideal features
reflect the ‘important’ information in the speech signal (e.g. the
phonetic variation) in a consistent and well-distinguished fashion,
while minimizing or eliminating ‘irrelevant’ information (such as
speaker identity or background conditions). These goals are very
difficult to achieve, and consequently a wide variety features has
been proposed and employed, each with different strengths and
weaknesses.

Stream combination is a technique which seeks to capitalize
upon the practical differences between feature streams by using
several at once. Thebasic argument is that if therecognition errors
of systems using the individual streams occur at different points,
there is at least a chance that a combined system wil l be able to
correct some of these errors by reference to the other streams. An
extremeexampleof thisapproach is theRover system which com-
bines final hypotheses of complete speech recognition systems,
and which wasableto show 30% relativeerror ratereductionsover
thebest system in a recent NIST Broadcast News evaluation [1].

A range of other approaches was described in [2]. In this pa-
per, wecompare the two simplest of these. Concatenating the fea-
turevectors from different extraction algorithmsto createasingle,
higher-dimensional space for modeling is the default approach,
heretermed FeatureCombination (FC), following theterminology
of [3]. Thisiscontrasted with combining thestreamsat theoutputs
of theacoustic models: In thehybridconnectionist-hiddenMarkov
model speech recognition approach [4], the acoustic model is a
neural network estimating posterior probabilities across a com-
plete set of context-independent phones. These posteriors can be
combined in several ways, but simple averaging of the log prob-
abilities from the different estimators for each phone has consis-
tently performed as well as or better than more complex schemes

[5, 6, 7, 8]; we wil l call this Posterior Combination (PC). Poste-
rior combination is close to the formally correct approach if the
featurestreamsareconditionally independent given thephone, but
itsmain support comes from empirical, not theoretical, considera-
tions.

An interpretationof thesuccessof PC isprovided in [5]. When
confronted with data outside its domain of expertise, each model
may tend to emit relatively ‘flat’ (high entropy) posteriors, which
wil l have aneutral impact on therelativeprobabilitiesof other dis-
tributions with which they are averaged. Thus, if one posterior
estimator is relatively confident of the correct classification (low
entropy), and the remainder are equivocal, the confident estimate
wil l dominate. This, however, would betrueof most if not all sim-
ple combination rules; the pre-eminence of log-domain averaging
remainssomething of amystery to us.

1.1. Feature combination versus probability combination

In previous experiments, PC has been shown to outperform FC
for combining distinct feature streams. This can be explained by
the following argument: Consider two feature streams with dif-
ferent properties and ‘domains of expertise’. The training set will
presumably contain a number of conditions in which each of the
streamsisproviding useful information when theothersarenot. A
classifier trained on the combined feature space of FC wil l learn
about those specific cases represented in the training set, but will
havedifficulty generalizing to other situationswhereonestream is
giving ‘good’ information but the other streams are in pathologi-
cal conditions different from those represented in the training set.
In PC, by contrast, the separate models learn the specific regions
of ‘good’ information for each stream individually; at thepoint of
combination, thefact that thedifferent statesof thefeaturestreams
may not havebeen observed in training is no longer relevant – the
log probabilitiescan beaveraged together regardless.

Thus themultiple, smaller featurespaces of PC achieve a fac-
toring of the possible signal conditions by the specialties of each
classifier (and can generalizeto previously-unseen conjunctionsof
thosefactors), whereasthecombined spaceof FC requirestraining
on an enumeration of all possible factor combinations.

Thisadvantageof PC must havelimits, however, for if taken to
extremeswemight betempted to subdividethefeaturevector from
a single stream between multiple classifiers. In fact, this is simi-
lar to the approach adopted in multi-band recognition [9], which,
while advantageous in certain situations, is often inferior to full-
band recognition on well-matched tests. In particular, as the infor-
mation contained in each subband isreduced, leading to classifiers
which are rarely able to make unequivocal decisions, the subse-
quent PC stage has more and more difficulty recovering the latent
information distributed among the classifier outputs – even when
they are combined by a second, trained classifier rather than by
simpleaveraging [7]. We can imagine that if particular feature di-
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mensions are significantly co-dependent given the particular phone
class, it will be desirable to build a classifier that can model their
joint distributions via FC. It is only when the feature streams are
relatively independent that PC is the more appropriate choice.

This paper describes a set of experiments designed to investi-
gate and verify these intuitions. In particular, we wanted to see if
we could come up with a practical way to predict the relative mer-
its of FC and PC for a pair of feature streams by looking at some
measure of the statistical dependence between the streams. The
next section describes the experimental setup we used, in terms
of the different feature streams and the speech recognition task.
Section 3 presents the results of these experiments, which we then
discuss in the conclusion.

2. EXPERIMENTAL SETUP

2.1. Feature streams

To explore the differences between FC and PC, we experimented
with four feature streams, organized as two relatively independent
pairs of more closely related streams. The first pair was stan-
dard 12th-order PLP cepstral coefficients (first stream, “plp12”,
13 elements per feature vector) and their deltas (second stream,
“dplp12”, 13 elements). The second pair consisted of the novel
modulation-filtered spectrogram features (MSG) recently devel-
oped in our group [10], which also split into two banks, covering
roughly the 0-8 Hz modulation frequencies (stream 3, “msg3a”)
and 8-16 Hz (stream 4, “msg3b”). plp12 and dplp12 are most of-
ten modeled by a single classifier i.e. combined with FC, as are
msg3a and msg3b. The two feature stream pairs have previously
been combined with PC [5, 10].

A single classifier may be trained on any number of concate-
nated streams, corresponding to what we are terming FC. Any
number of such classifiers can then have their outputs combined
via PC to form a complete system. Four streams gives us 15 pos-
sible FC classifiers (4 with one input stream, 6 with two, 4 with
three and one with all four), which then offer us215-1 or 32767
possible PC configurations. However, most of these use the same
feature stream multiple times, grossly violating our independence
assumptions. If we limit ourselves to systems in which each stream
is used exactly once, and impose the further condition that all clas-
sifiers in a given system should have the same number of input
streams, there are just five configurations to consider: pure FC,
where all streams go into a single classifier; pure PC, combining
four separate per-stream classifiers; and the three possible arrange-
ments of streams to build a pair of two-stream FC classifiers which
are then combined by PC. These five alternatives for combining the
four streams are the main focus of the results section.

2.2. Task and recognizer

The experiments were conducted on the Aurora noisy digits task
[11]. This consists of continuous digit strings mixed with four
kinds of background noise at several different signal-to-noise ra-
tios (SNRs). Both the training and test data consist of a mix of
noise conditions, making this a ‘matched multicondition’ task.

In every case, the classifiers were multilayer perceptron neural
networks, trained with 480 hidden units and 24 output units for the
24 phones used in the vocabulary. Each network took a context
window of nine consecutive feature vectors to give input layers
varying between 117 and 486 units. The networks were trained

by backpropagation, using a minimum-cross-entropy criterion, to
hard targets derived from a previous forced-alignment of the train-
ing material. A pilot experiment showed that doubling the hidden
layer size for a two-stream net improved performance by only 3%
relative, indicating that this is not a serious limit to system per-
formance. The final posterior estimates were converted into word
hypotheses by the standard hidden Markov model decoder we use
[12].

2.3. Stream dependence

To measure the statistical dependence between feature streams,
we draw upon [13], which investigated the selection of individ-
ual feature elements based on mutual information criteria. The
argument in the introduction implied that FC should be prefer-
able to PC when elements in the different streams have structure
in their joint distributions relevant to the classification problem.
This corresponds to a relatively large conditional mutual informa-
tion (CMI) between the streams – that is, given the correct class,
knowledge of one stream reduces our ignorance of another stream
by a certain number of bits; equivalently, it imposes constraints on
the distribution of the second stream. By contrast, the conditional
statistical independence between streams suggested by the averag-
ing of log posteriors in PC would correspond to an inter-stream
conditional mutual information of zero.

Estimating the conditional mutual information is typically
both complex and data-intensive. Here we make a series of ap-
proximations: Firstly, we discard conditioning and assume that
CMI will vary as the unconditioned mutual information (MI) be-
tween the streams. Secondly, we approximate the MI between two
streams (vectors) by taking the average, for each element within
a stream, of the maximum MI across all elements in the second
stream. (This makes certain assumptions about the MI within
stream elements, so we decorrelate the msg features with a dis-
crete cosine transform in an effort to balance the two stream-pairs
in this regard. Also, because this measure is asymmetric, we take
the average of the measure in both directions.) Having reduced
the problem to the calculation of MI between pairs of feature el-
ements, we again follow [13] in building 5-component Gaussian
mixture models of the joint distribution between the elements, then
estimating the MI of this distribution numerically.

3. RESULTS

The Aurora task defines 28 different test conditions, varying noise
type and SNR. To provide a single figure-of-merit for each system,
we calculate the ratio of the word error rate (WER) of the test
system to the standard HTK baseline provided with Aurora, and
average this across all conditions to get a mean improvement on
the baseline. These are the figures presented in table 1.

The first two blocks in table 1 correspond to the pairs of re-
lated basic feature streams. Individual feature streams all perform
a little worse than the baseline, varying from 5.9% more errors for
the direct plp12 features to a 41.6% error increase for the msg3b
bank. (The baseline employs deltas and double deltas, so it is for-
givable for these individual streams to do worse). When we com-
bine within these basic pairs by FC (denoted� in the table) – i.e.
the way they are most commonly used – we see dramatic improve-
ments; there is a 15% improvement over the better of the two plp
streams, and a 25% improvement for the msg streams. Combin-
ing the pairs by PC instead (denoted by�) is far worse in both
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Feature combination Parameters Baseline %

plp12 68k 105.9
dplp12 (deltas) 68k 125.6
plp12� dplp12 136k 97.6
plp12� dplp12 124k 89.6
msg3a (0-8 Hz) 73k 112.7
msg3b (8-16 Hz) 73k 141.6
msg3a� msg3b 145k 101.1
msg3a� msg3b 133k 85.8
plp12� msg3a 141k 88.3
plp12� msg3b 141k 86.3
dplp12� msg3a 141k 89.7
dplp12� msg3b 141k 89.9
plp12� msg3a 129k 86.4
plp12� msg3b 129k 78.1
dplp12� msg3a 129k 87.5
dplp12� msg3b 129k 82.6
plp12� dplp12� msg3a� msg3b 281k 76.5
plp12� dplp12� msg3a� msg3b 245k 74.1
plp12� msg3b� dplp12� msg3a 257k 70.1
plp12� msg3a� dplp12� msg3b 257k 68.1
plp12� dplp12� msg3a� msg3b 257k 63.0

Table 1: Parameter counts and average per-condition ratios of
word error rates (WERs) to the baseline system for different com-
binations of the four feature streams plp12, dplp12, msg3a and
msg3b. All features were normalized within each utterance. In the
feature descriptions,� indicates streams combined by FC, and�
indicates systems combined by PC.� binds more tightly than�.

cases, yielding system performances approximately midway be-
tween the better of the two individual streams and FC. (Since these
PC systems consist of the two individual nets, they have precisely
double the parameter count of the individual stream systems. FC
uses slightly fewer parameters because the two streams share their
hidden-to-output layer.)

The next two blocks show the four remaining 2-stream sys-
tems possible with these streams, first combined by PC then by
FC. We note that these PC systems, which all perform very simi-
larly, are much better than either the within-plp or within-msg PC
systems. This is in line with our experience that, in choosing a
second stream for PC, it is better to choose the ‘most different’
one.

However, our interpretation of the difference between FC and
PC is confounded by the results for the crossed FC systems, which
outperform PC in every case; the two systems involving msg3a
are marginally better, with the two msg3b systems showing 10%
relative improvements. At 78.1% of the baseline WER, the FC
combination of plp12 and msg3b is particularly good, even though
msg3b was by far the worst performing individual stream.

The final block presents the five alternative structures for com-
bining all four streams, as described in the previous section. These
are ordered by overall performance, with pure PC bringing up the
rear, barely better than the best 2-stream system. Pure FC, in which
all four streams are fed to a single network, is a slight improve-
ment. The best schemes, however, combine pairs of streams with
FC and the resulting posterior estimates with PC, with the very
best configuration being to use FC on the two plp-based streams

plp12 dplp12 msg3a msg3b
plp12 - 0.04 0.21 0.10
dplp12 - 0.08 0.06
msg3a - 0.22
msg3b -

Table 2: Average maximum element-to-element mutual informa-
tion (MI) between feature streams (in bits), as an indication of the
statistical dependence of the streams. Independent streams would
have an MI of zero.

and on the two msg-based streams. At 63% of baseline errors, this
is a large improvement on any of the individual streams or common
FC pairs. It is also a 15% relative improvement over the pure-FC
four-stream system, which forms a kind of baseline for using all
four streams. This result at least is inline with our expectations
that FC is most useful for related streams, and PC better for more
independent streams.

To check that our assumptions about the relative independence
of the streams are correct, table 2 gives the mutual information val-
ues calculated as described above pairwise for each stream. These
results are not quite as expected: the plp deltas (dplp12) share
rather little mutual information with any of the other streams, and
in fact the smallest MI is between the plp deltas and their direct
features, even though a context window of 5 successive direct fea-
tures would completely determine the deltas – the mutual infor-
mation, however, compares only simultaneous frames, probably a
key weakness in this measure. The 0-8Hz MSG bank (msg3a) is
comparatively highly informative with both the direct plp12 fea-
tures and the second msg3b bank. MI between plp12 and msg3b
is intermediate.

Comparing these MI values with the performance of the 2-
stream systems in table 1, we fail to see the predicted correlation
between large MIs and the advantage of FC. While the largest sin-
gle MI between msg3a and msg3b corresponds to the pair show-
ing the biggest gain of FC over PC, the next most informative pair,
plp12 and msg3a, showed thesmallestgain in switching to FC.
Other results are similarly scattered.

The four-stream combination systems in table 1 are more
closely in line with our original hypothesis: The best-performing
system is the one that uses FC for the most highly-informative
stream pair, msg3a�msg3b, followed by the system including FC
for the next highest MI pair, plp12� msg3a. However, the second
pairings in each of these systems corresponds to very low MI val-
ues; it’s not clear how we would expect this to affect the overall
system.

4. DISCUSSION

Our basic thesis, that FC should be preferable to PC for streams
that have higher mutual dependence, is only weakly supported by
our results. In part this may reflect shortcomings of our method for
evaluating stream dependence via the average maximum elemen-
twise estimated mutual information. But even if we had access
to the ‘true’ conditional mutual information values between each
stream, that still wouldn’t be all the relevant information for pre-
dicting the best combination strategies: there is also the influence
of the underlying utility of the stream to the basic speech recog-
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nition task. For instance, if a new feature stream has a relatively
high CMI with some baseline stream, but is also a rather weak
basis for phone classification (perhaps because it is a useful pre-
dictor of the phonetically irrelevant information remaining in the
baseline stream), we may well end uphurting the performance of
our system by introducing the new stream in combination.

This paper has focussed on the question of how to combine
feature streams. The wider question ofwhetherit will be advanta-
geous to make a combination, orwhichof several streams should
be added, has not been addressed, although our results do pro-
vide some relevant information. As shown by the well-performing
plp12� msg3b system, it is not necessarily the best-performing or
most (or least) mutually-informative streams that make the best
combinations. What matters, rather, is the complementarity of
the conditions under which each stream performs better or worse,
something that is hard to measure with such global statistics.

It seems important to make some discussion of the statistical
significance of the results presented; for instance, is the baseline
WER ratio of the four-stream, pure-FC system at 76.5% signif-
icantly worse than the 74.1% achieved by the pure-PC variant?
For individual test conditions, statistical significance can be eval-
uated (for instance, in comparison to a simple binomial model of
word errors). However, because the baseline error rate varies enor-
mously over the 28 test conditions, this test cannot be applied to
the aggregate baseline ratio. As a substitute, we report our infor-
mal observation that repeated versions of supposedly equivalent
tests (for instance, with slightly different network configurations
or starting conditions) yielded results that agreed within 3-5% ab-
solute in the baseline ratio figure; differences within this range are
probably not significant.

5. CONCLUSIONS

We have compared two techniques for frame-level combination of
feature streams, either by feeding the streams into a single neural-
network classifier (FC, feature combination), or by using separate
classifiers for each stream then averaging the per-class log poste-
rior probability estimates they emit (posterior combination or PC).
By investigating a number of alternative combinations of four fea-
ture streams, we demonstrated that different combination strate-
gies can have quite varied success, with the optimal combination
dependent on the particular properties of the streams concerned.
We argued that PC was most appropriate for streams that are sta-
tistically independent (given the class), whereas highly correlated
stream should be more advantageously combined with FC. We at-
tempted to measure this dependence with an approximation to the
conditional mutual information between streams, but the observed
pattern of results was only partially explained by these figures.

Combining multiple feature streams is clearly highly benefi-
cial, giving relative WER reductions of 25-40% in our task. Al-
though we have presented some explanation and interpretation of
this benefit, the practical questions of when and how to combine
feature streams remain predominantly empirical and in need of
considerable further investigation.
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