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ABSTRACT

In the tandem approach to modeling the acoustic signal, a
neural-net preprocessor is first discriminatively trained to estimate
posterior probabilities across a phone set. These are then used as
feature inputs for a conventional hidden Markov model (HMM)
based speech recognizer, which relearns the associations to sub-
word units. In this paper, we apply the tandem approach to the data
provided for the first Speech in Noisy Environments (SPINE1)
evaluation conducted by the Naval Research Laboratory (NRL) in
August 2000. In our previous experience with the ETSI Aurora
noisy digits (a small-vocabulary, high-noise task) the tandem ap-
proach achieved error-rate reductions of over 50% relative to the
HMM baseline. For SPINE1, a larger task involving more sponta-
neous speech, we find that, when context-independent models are
used, the tandem features continue to result in large reductions in
word-error rates relative to those achieved by systems using stan-
dard MFC or PLP features. However, these improvements do not
carry over to context-dependent models. This may be attributable
to several factors which are discussed in the paper.

1. INTRODUCTION

Neural networks (NNs) have several qualities making them at-
tractive as feature classifiers in speech recognition systems [1]:
When used to estimate the posterior probabilities of a closed set
of subword units, they allow discriminative training in a natural
and efficient manner. They also make few assumptions about the
statistics of input features, and have been found well able to cope
with highly correlated and unevenly distributed features - such as
spectral energy features from several adjacent frames [2]. These
qualities distinguish NNs from Gaussian mixture models (GMMs),
which are often used to build independent distribution models for
each subword (i.e. they are not discriminative), and which work
best when supplied with low-dimensional, decorrelated input fea-
tures.

In small tasks, the so-called ‘hybrid’ NN-HMM systems have
performed as well as or better than GMM-HMM systems. How-
ever, in large-vocabulary tasks such as DARPA/NIST Broadcast
News [3], GMM-HMM systems have performed significantly bet-
ter, in part due to extensive speaker and environment adaptation.
Equivalent adaptation is much more difficult for NN-based sys-
tems.

Combining NN and GMM modeling within a single system
holds the potential of combining the advantages of both, and sev-
eral groups have pursued variants of this theme [4, 5]. We recently
developed a particularly simple variant, which we have termed
‘tandem acoustic modeling’ [6], in which an NN classifier is first

trained to estimate context-independent phone posterior probabil-
ities. The probability vectors are then treated as normal feature
vectors and used as the input for a conventional GMM-HMM sys-
tem, which is not given any knowledge of the special information
represented by its input features.

A system based on this tandem approach performed best in
the 1999 ETSI Aurora evaluation [7], which involved recognizing
continuous digit strings in a wide range of noisy backgrounds. We
were interested in whether this result would generalize to larger
tasks, in which GMM systems can outperform NNs by exploiting
a much larger repertoire of subword units than is practical with a
network. Would the use of an NN feature preprocessor continue to
confer an advantage in larger tasks involving more contextual vari-
ability? Also, would model adaptation schemes such as MLLR [8]
be effective in the new feature space defined by the network out-
puts?

To address these questions, we developed a tandem system
for the NRL SPINE1 task [9]. This task involves a medium-sized
vocabulary of about 5000 words, and the utterances are predomi-
nantly noisy, with signal-to-noise ratios ranging from 5 dB to 20
dB. The data consists of human-human dialogs between two indi-
viduals seated in separate sound booths, involved in a battleship
game. The individuals communicate through push-button commu-
nication devices similar to those used by military personnel in the
field. Pre-recorded noises from real military settings are played
out in each booth, thus simulating noisy communication during
military action. The recognition task for this kind of data is very
challenging. Whereas word error rates (WERs) in the noisy digits
task were at 1% or below for the best cases, the very best systems
in the recent SPINE1 evaluation achieved about 25% WER [9].

In the next section we describe the tandem system for SPINE1
and how it was trained. Section 3 presents our experimental re-
sults which compare context-independent and context-dependent
systems, with and without the NN preprocessor and MLLR. In
section 4 we discuss the results, followed by our conclusions.

2. THE SPINE1 TANDEM SYSTEM

The SPINE1 tandem recognizer is illustrated in figure 1. Input
speech is fed to two feature extraction blocks, one generating the
widely-used Perceptual Linear Prediction (PLP) features, the other
calculating Modulation-filtered Spectrogram (MSG) features [2].
In our previous experiments with multiple feature streams, we
have consistently found that combining these two representations
can lead to significant error reduction [10]. The base PLP fea-
ture vector is a 13-element cepstrum, usually augmented by deltas
and double-deltas. The MSG features consist of two banks of 14
spectral energy features each; the first bank is filtered to contain
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Fig. 1. Block diagram of the tandem recognizer used for the SPINE1 task.

modulation frequencies between 0 and 8 Hz, while second covers
8 to 16 Hz.

Each feature stream feeds its own neural network classifier, a
multi-layer perceptron with a single hidden layer. The input to the
network is a window of successive feature vectors (in this case,
9 frames), that provides the classifier with temporal context. The
MSG network has 252 input units (9�28) and the PLP network
has 351 (9�39) input units. The output layer consists of 56 nodes,
each associated with a particular context-independent phone class.
Input and output are connected by a fully-connected hidden layer
of 1000 units.

Because each network is trained to estimate the same phone
targets, the activation of corresponding output units can be com-
bined to ‘pool the expertise’ of the two nets. In multistream
hybrid-NN-HMM systems, we find that the geometric mean of the
posteriors (i.e. averaging in the log domain) consistently performs
best (or close to best) among simple combination schemes [10].
In the tandem context, however, we use the neural network acti-
vations without their final ‘softmax’ linearity to improve the sym-
metry and Gaussianness of their distributions. This is equivalent,
modulo a scale factor, to the log of the posterior outputs, and thus
we find that a simple sum of the corresponding activations in the
two nets is an effective way to combine the feature streams.

This summed phone-activation vector is then passed through
a static decorrelation matrix obtained from PCA analysis over the
training data. This gave a modest performance gain in our small
vocabulary work, presumably by improving the match between the
feature distributions and the assumptions of the GM models. There
is no data reduction associated with this step. The output of this
stage is a 56 element feature vector at each time frame; these are
then used in place of the usual feature vectors in an otherwise un-
modified GMM-HMM system, in our case the CMU SPHINX-III
recognizer.

2.1. System training

The training of each of the several classifiers in a tandem system
is of course the main factor determining overall performance. In
essence the scheme is very simple: the neural network stage is
trained according to the normal procedure used for a hybrid NN-
HMM system, then the features extracted from the network are
fed to the GMM-HMM system which is trained according to a
standard EM procedure.

Training the network for a hybrid system, however, requires
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Fig. 2. Training path for the neural networks.

aligned target labels for all the training data, which are used in
back-propagation training with a minimum-cross-entropy crite-
rion. The procedure for generating these labels for the SPINE1
training data is illustrated in figure 2. To bootstrap, we used a net
developed for the DARPA Broadcast News task [3] (denoted “Net
BN” in the figure), a versatile starting point for a variety of tasks.

We calculated features for the SPINE1 data suitable for this
network (which expects 12th order PLP cepstra without deltas,
computed over a 32ms window every 16ms), and performed a
forward-pass of the network to calculate the phone posterior esti-
mates for every frame of the data. These were then Viterbi-aligned
to the word transcripts of the training data, also based on pronun-
ciations from our Broadcast News system. This generated a first
set of aligned phone labels (“Labels Boot0” in the figure) suitable
for training a new network based on the SPINE1 data.

This process of forced alignment was repeated twice, to let the
labels converge for the new SPINE1 data. The output of this sec-
ond realignment, “Labels Boot2”, was used to train two new net-
works, based on PLP features including deltas and double-deltas,
and MSG features (as described above). These two parallel net-
works were then applied to the data, and their posterior probability
estimates combined by log-domain averaging as the basis for a fi-
nal stage of realignment. Labels from this final alignment were use
to train the final pair of networks, denoted “Net PLP2” and “Net
MSG2” in the figure.

In the next section, we report results for two tandem systems.



Type of feature CI models CD models MLLR with
(dimensionality) 2600 senones CD models
MFC with delta and 69.5% 35.1% 33.5%
double-delta (39)
PLP with delta and 71.3% 38.0% 35.2%
double-delta (39)
Tandem 1 (54) 59.1% 39.4% 34.5%
Tandem 2 (56) 47.6% 35.7% 32.8%

Table 1. Word error rates (%) obtained with the SPHINX-III
recognition system for various feature sets. The dimensionality
of each feature set is indicated in parentheses. “CI” stands for
context-independent, and “CD” stands for context-dependent.

The first (which was submitted the official NRL SPINE1 evalu-
ation) is based on “Net Boot2”, the second-generation network
based on the Broadcast News-style features and frame rates. This
single network was used in a tandem configuration without feature
combination to process the entire SPINE1 training set, and these
results were used to train a GMM-HMM system.

The second tandem system used two feature streams as illus-
trated in figure 1 and was based on the nets “Net PLP2” and “Net
MSG2”. The additional training required for these nets was not
completed in time for the SPINE1 evaluation.

In both cases, the SPHINX-III GMM-HMM system was
trained via a conventional EM procedure. The full system used 3
state per HMM context-dependent triphone models with 2600 tied
states, each modeled by a mixture of 8 Gaussians. The means and
variances of the tandem features were not normalized as this was
observed to deteriorate the recognition performance. Difference
and double difference features were not used by the SPHINX-III
system for the tandem features. The models were adapted in an un-
supervised manner to the evaluation data after an initial decoding
pass, using a single iteration of single-class MLLR. More details of
the CMU SPHINX-III system used for the SPINE1 task are given
in [9].

3. EXPERIMENTAL RESULTS

The CMU SPHINX-III system was trained with the SPINE1 data,
which consisted of about 8 hours of recordings. Models were
trained for the two different tandem features as well as for standard
MFC and PLP features. For the MFC and PLP features cepstral
mean normalization was performed and difference and double-
difference cepstra were used for recognition. Recognition was per-
formed on the SPINE1 evaluation data, which consisted of about
9 hours of recordings. The word error rates obtained for all the
systems are shown in table 1.

We note from table 1 that the word error rates obtained with
both tandem systems are much lower than those obtained by the
MFC and PLP systems when context-independent models are used
for recognition. Specifically, the WER for the Tandem 1 system is
15% lower relative to that of the MFC system, while the WER
for the Tandem 2 system is 31% lower. Moreover, for context-
independent (CI) models, we observe that the WER of the Tandem
2 system is 19% lower than Tandem 1. This improvement clearly
results from the post-classifier combination with the second fea-
ture stream, made possible by the tandem structure.

When recognition is performed with context-dependent mod-

els the tandem systems are not seen to be better than the MFC-
based system. However, the WERs obtained with the Tandem 2
features are lower than those obtained with the PLP features that
are used to derive the tandem features. This leads us to conjecture
that had the tandem preprocessors used the MFC features, the final
tandem systems may have performed better than the MFC-based
system. This hypothesis remains to be investigated. The Tandem
2 system is observed to be better than the Tandem 1 system at
the context-dependent (CD) stage as well, though the relative im-
provement observed is lower than that observed with CI models.

The final column in the table shows the word error rates after
a single pass of single-class MLLR performed on the CD models
using the SPINE1 evaluation data. The relative improvement in
the performance of the CD models after MLLR is 4.6% for MFC,
7.4% for PLP, 12.4% for Tandem 1 and 8.1% for Tandem 2.

Unlike the MFC and PLP based systems, the SPHINX-III rec-
ognizer was not explicitly optimized for the tandem systems. With
such optimization, we hope to improve the word error rates for the
tandem systems by an additional 1-2% absolute.

4. DISCUSSION

The principal question motivating this work was whether the
50% reduction in WER obtained by tandem modeling in a small-
vocabulary task [7] would extend to a larger system.

In the current work, we find that using multistream tandem
features on a larger-vocabulary task with a state-of-the-art GMM-
HMM recognizer, gives approximately a 31% improvement over
baseline MFC and PLP features with the context-independent
models. However, this large improvement is mainly eliminated
for the context-dependent models. On the other hand, model adap-
tation using MLLR results in a greater improvement for the tan-
dem features than for the standard MFC and PLP features, making
all features roughly comparable for a context-dependent, MLLR-
adapted system.

We interpret the discriminatively-trained neural net in the tan-
dem systems as performing a remapping of the feature space that
magnifies regions around key phonetic boundaries and compress-
ing regions that correspond to a single phone, minimizing the ef-
fects of non-phonetic variations such as speaker characteristics and
noise. This soft remapping retains some information from the
original signal that the subsequent Gaussian mixture model in the
GMM-HMM recognizer can usefully exploit. We believe the gains
of the tandem approach arise from the combination ofdiscrimina-
tivemodeling (in this case via the NN) which marshalls parameters
to focus on ‘critical’ regions, and, within the more uniform feature
space created by the discriminative models,distributionmodeling
by the GMMs, which are better suited to modeling a large number
of classes.

However, in the modeling of context-dependent classes, the
advantages gained by the net’s feature space remapping appear
to be largely nullified. This may be because the NN optimizes
the separability between a different (and smaller) set of classes
(context-independent phones) than those modeled by the GMM-
HMM (context-dependent phones). Thus, while the context-
independent phones themselves become more separable, this may
be achieved at the cost of increased overlap and confusion of the
various context-dependent versions of the same phone. This prob-
lem could be reduced if the NN were trained to discriminate be-
tween context-dependent units, but constructing a net with such a
large number of often-similar outputs is a major challenge. The



resulting probability vectors would also have a very high dimen-
sionality. These problems can, however, be tackled by grouping of
context-dependent units, and the usage of dimensionality reduc-
tion techniques such as LDA.

MLLR adaptation improves the fit between GMM models and
test data. We see that the systems performing less well with un-
adapted CD models show a greater benefit from MLLR: It is pos-
sible that MLLR is able to mitigate the within-class confusion sug-
gested above.

A simpler explanation for the lower performance of CD tan-
dem systems could be that the 8 hours of SPINE1 training data
were insufficient to train the large number of parameters needed
by CD models for the high-dimensional tandem features.

The adaptation related results are instructive from another per-
spective: the assumption underlying schemes such as MLLR is
that acoustic and speaker variations can be modeled by a low-order
transformation of feature space. This works for conventional fea-
tures, for which noise and pronunciation variations may conceiv-
ably be modeled as simple shifts. However, the feature space at
the output of the neural network in a tandem system bears a highly
complex nonlinear relationship to the original feature space, and
we have little understanding of how these features behave when
faced with variable input data quality. The current results seem to
indicate that the linear-shift assumption is equally applicable to the
tandem features.

An important advantage associated with the dual models in the
tandem system is that system enhancements specific to each model
can be included at the appropriate stage. This has been demon-
strated in the current system, which uses posterior combination in
the NN stage (something made particularly easy by the compact,
context-independent representation), in conjunction with MLLR
adaptation and tied mixture weights, schemes developed specifi-
cally for GMM-HMM systems. (Mixture weights have been used
with success directly on the outputs of a posterior-estimation neu-
ral network in [11]. However, by omitting the Gaussian models
altogether, that approach would not be able to take advantage of
MLLR-style adaptation.)

5. CONCLUSIONS

We have shown that the tandem approach of using a combina-
tion of neural networks, trained to estimate posterior probabili-
ties of context-independent phone classes, as feature preprocessors
for an otherwise unmodified state-of-the-art Gaussian-mixture hid-
den Markov model speech recognizer can achieve significant and
worthwhile reductions in word-error rate when CI models are used.
Further work needs to be done to extend the benefits to CD mod-
els. Also, the training of the NN components is fundamental to
the success of the overall system; the somewhat-involved process
for the current task could probably be improved. The gains shown
by MLLR adaptation of the network output features suggest a sig-
nificant systematic variation of features with acoustic or speaker
changes; we are interested in better characterizing this variation,
perhaps to compensate for it more directly and effectively.

We conclude that for systems based on a relatively small num-
ber of subword classes, a category including many commercial ap-
plications, tandem-style neural network feature preprocessors are
likely to offer considerable advantages. In particular, when the
background noise level is high, as with the SPINE1 data, the nets
have shown themselves able to effect very significant error reduc-
tions in context-independent systems.
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