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ABSTRACT
Sound textures—for instance, a crackling fire, running water,

or applause—constitute a large and largely neglected class of audio
signals. Whereas tonal sounds have been effectively and flexibly
modelled with sinusoids, aperiodic energy is usually modelled as
white noise filtered to match the approximate spectrum of the orig-
inal over 10-30 ms windows, which fails toprovide a perceptually
satisfying reproduction of many real-world noisy sound textures.
We attribute this failure to the loss of short-term temporal struc-
ture, and we introduce a second modelling stage in which the time
envelope of the residual from conventional linear predictive mod-
elling is itself modelled with linear prediction in thespectral do-
main. This cascade time- and frequency-domain linear prediction
(CTFLP) leads to noise-excited resyntheses that have high per-
ceptual fidelity. We perform a novel quantitative error analysis
by measuring the proportional error within time-frequency cells
across a range of timescales.

1. INTRODUCTION

Sound modelling is concerned with capturing a signal’s important
information in a simplified parameter space. Models for speech are
frequently motivated by the goal of minimizing data size for ease
of coding and transmission. In computer music, signal models can
provide parameters that permit interesting and coherent modifica-
tions such as pitch and timing variations.

The classic source-filter model for voice takes a periodic or
noisy excitation (for vowels and fricatives respectively) and passes
it through a time-varying filter simulating the vocal tract. Lin-
earpredictive modelling [1], in which the filter is an autoregres-
sive, all-pole model, has been particularly successful because of
its low complexity analysis and synthesis. In musical signals, si-
nusoidal models of individual Fourier components have been very
successful. Realism is improved by adding a random-noise back-
ground, filtered to match the residual left after sinusoid modelling
[2, 3]. Quality can be improved still further by separate detection
and modelling of brief energy bursts known as transients [4, 5].

In this paper, we look at a third class of sounds we callsound
textures that are distinct from speech and music, and which call
for their own specially-designed models. Although a rigorous def-
inition is elusive, examples of textural sounds include applause,
running water, rainfall, fire, babble, and machinery. Like their vi-
sual namesakes, textures should have an indeterminate extent (du-
ration) with consistent properties (at some level), and be readily
identifiable from a small sample. Texture analysis and synthesis
is an interesting challenge, and has potential applications in gen-
eral sound recognition, virtual reality synthesis, and abstract-level
coding. Prior work on sound textures includes [6, 7].

Many of the sounds we have collected as textures arenoisy
(i.e. without strong, stable periodic components) andrough (i.e.
amplitude modulated in the 20-200 Hz range [8]). Under conven-
tional speech or music models, a sound like applause would most
likely be represented as a sequence of spectral estimates for frames
of 10-30ms duration. However, a resynthesis consisting of white
noise excitation filtered to match these estimates loses much of
the timbral texture of the original, indicating that the noise is a
poor substitute for the ideal analysis residual. An obvious differ-
ence lies in the temporal distribution of energy within the frame:
Our textural sounds are often composed of many individual brief
events—rain splashes, hand claps, or fire crackles—which persist
as concentratedmicrotransient noise bursts in the residual.

In the next section, we present an extended model that captures
extra structure from the residual, topermit noise-excited resyn-
theses with excellent perceptual fidelity. The performance of this
model is evaluated in section 3 through a novel error criterion that
measures local signal similarity over a wide range of time scales.
In section 4, we discuss issues raised by this model as well as some
potential applications. Section 5 contains our conclusions.

2. CASCADE TIME-FREQUENCY LINEAR
PREDICTION (CTFLP) MODEL

Our goal is a parametric modelling representation that can preserve
the character of textures, supporting high quality noise-excited resyn-
thesis as well as transformations such as time scale modification
(TSM). We model textures as rapidly-modulated noise by using
two linear predictors in cascade. The first, operating in the time
domain, captures the spectral envelope, whereas the second, op-
erating in the frequency domain, captures the temporal envelope
of the texture. The synthesis step recreates the original texture by
feeding random noise through the estimated filters in series. There
are several advantages of this approach over a more conventional
deterministic plus stochastic model: It is not oriented around sinu-
soids which are usually weak or absent from textures; Transients
or microtransients are not treated any differently from the rest of
the signal, reducing complexity and avoiding artifacts from tran-
sient detection and separation; and the flexible representation of
the temporal envelope is particularly effective in applications such
as time-scale modification.

2.1. Frequency Domain Linear Prediction

The part of the model that is responsible for the accurate represen-
tation of the temporal structure of rough textures is the frequency
domain linear prediction (FDLP), a concept first introduced by
Herre and Johnston [9]. Dubbed temporal noise shaping (TNS),
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its principal application was in the elimination of pre-echo arti-
facts associated with transients in perceptual audio coders. Using
D*PCM coding of the frequency domain coefficients, the authors
showed that coding noise could be shaped to lie under the temporal
envelope of the transient.

FDLP is the frequency domain dual of the well-known time
domain linear prediction (TDLP). In the same way that TDLP esti-
mates the power spectrum, FDLP estimates the temporal envelope
of the signal, specifically the square of its Hilbert envelope,

e(t) = F−1
{∫
X̃(ζ) · X̃(ζ − f)dζ

}
(1)

i.e. the inverse Fourier transform of the autocorrelation of the of
the single sided (positive frequency) spectrumX̃(f). We use the
autocorrelation of the spectral coefficients to predict the temporal
envelope of the signal.

2.2. CTFLP Analysis and Synthesis

The sequence of operations in our cascade time-frequency linear
predictive (CTFLP) analysis is shown in figure 1. First, a frame of
the original signal is multiplied by a time window. This is a nec-
essary preprocessing step of the autocorrelation method for TDLP
[10]. After TDLP spectral estimation, the whitened residual is ob-
tained by passing the signal through an inverse filter. Before pro-
ceeding to the FDLP, the original temporal envelope is restored by
undoing the initial window, to avoid wasting the modelling power
of the FDLP on the window envelope. We use the discrete cosine
transform (DCT)to obtain the single sided spectrum, and estimate
the temporal envelope using FDLP. The final residual is flat both
in its spectral and temporal envelopes.

CTFLP synthesis is illustrated in figure 2. The analysis resid-
ual is not particularly close to Gaussian white noise, as measured
by the skewness and kurtosis of itscumulative distribution func-
tion. Perceptually, however, it is practically indistinguishable from
a simplenoise sequence. To permit coherent excitation in our 50%
frame overlaps, we use a time-domain random sequence as the
starting point for our resynthesis. The remainder of the resynthesis
simply reverses the analysis procedure, first by filtering the DCT
spectrum of the noise using the coefficients extracted in the FDLP,
then using the time-domain filter from the analysis TDLP to reim-

pose the broad spectral structure of the original frame. Frames are
overlapped to recreate a continuous signal.

3. EVALUATION

We used the CTFLP procedure described above to produce noise-
excited resyntheses of our small collection of sound textures. In-
formal listening tests show cascade modelling to be extremely suc-
cessful at preserving the character of sounds, capturing both the
spectral and temporal characteristics of rough noisy textures such
as the fizz of pouring soda out of abottle. (Sound examples are
available onour website1.) The technique has greatest success with
sounds that include both broadband noise and densely-packed mi-
crotransients. Such sounds are very difficult to represent by meth-
ods that detect and separate transients from the rest of the residual.

Weperformed a quantitative analysis of the difference between
noise-excited resyntheses using the new CTFLP approach and a
conventional TDLP scheme. To be fair, both algorithms used the
same windows and LP methods, and we equalized the number of
parameters in each system. For our main results, we used 40 time-
domain and 10 frequency-domain poles in the CTFLP case, and
50 time-domain poles in the simple TDLP scenario.

To reveal the variation of modelling error with temporal scale,
we devised an error metric basedon the short time Fourier trans-
form (STFT) magnitude. For a given temporal window length (si-
multaneously defining the spectral resolution), the STFT magni-
tude in every time-frequency cell is calculated for both original
and resynthesized (TDLP or CTFLP) signals with 50% window
overlap. This is repeated over a range of error analysis window
lengths between 1 ms and 1 second.

We define the per-cell mean proportional magnitude (MPM)
error as:

EMPM =
1

NM

N−1∑
n=0

M−1∑
k=0

∣∣∣∣ |X(n, k)| − |XLP (n, k)||X(n, k)|+ ε

∣∣∣∣ (2)

whereX(n, k) is the STFT cell at time stepn and frequency bink.
Since the noise based resynthesis is a random process, we calcu-
late the error by averaging over around 50 resynthesis realizations.
Theε in the denominator reduces the dominance of cells in which
original signal is almost zero; it is set to 10% of the average cell
magnitude.

In figure 3 we compare the absolute error for CTFLP and
TDLP of fast applause (appl) and people yelling (yell), with the
default arrangement of 50 poles per frame in the TDLP, and 40+10
poles in CTFLP. Firstly, we notice that for the applause signal
(round symbols), the new CTFLP (hollow symbols) achieves much
lower error than conventional TDLP (filled symbols) for error anal-
ysis windows smaller than the window of 22ms used in the LP
modelling (the “modelling window”). This is as expected, since
the mainpoint of CTFLP is to preserve the temporal energy dis-
tribution below the level of the frame, lost in TDLP. Note also
that for error analysis windowslonger than the modelling window,
CTFLP exhibits slightly worse error than TDLP; at this scale, the
error analysis is looking only at the spectral match within each
frame, and the temporal modulation imposed by the FDLP stage
will slightly distort the minimum mean-squared error fit achieved
by pure TDLP.

Looking at the hollow and filled squares, we see that for a
sound such as yelling (multiple pitched voices) that contains few

1http://www.ee.columbia.edu/∼marios/ctflp/
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Fig. 3. Mean Proportional Magnitude Error as a function of the
error analysis window length. Two sound textures are shown: ap-
plause (“appl”, circles), which is noisy and rich in microtransients,
and yelling (“yell”, squares), which is largely tonal and has few
transients. Error curves are plotted for both conventional TDLP
(filled symbols) and the proposed CTFLP (hollow symbols).

transients and mostly harmonic energy, the time-domain modelling
of CTFLP confers no advantage and is consistently worse than the
TDLP, which can use its entire pole budget for a slightly better
spectral model. However, once the error analysis window is large
enough to distinguish the separate harmonics in the original (i.e
above about 10ms), neither noise-excited resynthesis can perform
particularly well.

Figure 4 presents the same results, this time combining the er-
rorsunder each model into a single curve per sound example show-
ing the ratio of the MPM error of CTFLP to TDLP, and including
results for several other sounds. Points above the dotted horizon-
tal line where the error ratio is 1 achieve a smaller error under
conventional TDLP. For rough textures like the typewriter (type),
applause (appl) and the bottle (bott) we see that CTFLP clearly
outperforms TDLP in the low error analysis window region, pay-
ing asmall penalty at the larger time scales. For non-rough, tonal
textures like yelling (yell) or laughter (laug) we see that the error
ratio is consistently greater than 1 (CTFLP performing worse).

In figure 5, we examine the behavior of MPM error for a fixed
error analysis window of 5ms, showing the results as a function of
the modelling window length. Two parameter strategies are used:
fixed poles per frame (fppf), in which thenumber of poles is kept
constant for every modelling frame at 50 for TDLP and 40+10
CTFLP, and hence the total number of parameters increases as
the frames become shorter. In fixed poles per time (fppt), we de-
crease the number of poles available for shorter frames, to keep
constant the total number of poles used for the whole sound. (In
all cases, CTFLP uses 80% of its poles for time-domain modelling
and the remainder for FDLP). We see that the variation of error
with modelling window length is much smaller for CTFLP (hol-
low symbols), particularly under the fppt strategy. This indicates
that CTFLP is relatively immune to window choice, and has no
need for complex strategies such as window switching. At very
short modelling windows (below the 5ms error analysis window),
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Fig. 4. MPM Error ratio of CTFLP to TDLP, asa function of the
error analysis window, for a range of sounds: yelling (“yell”) and
laughter (“laug”) are more tonal and smooth, whereas soda be-
ing poured from a bottle (“bott”), fast applause (“appl”) and rapid
typewriter noise (“type”) are more noisy and rough, and thus show
the advantageof CTFLP at short timescales.

the TDLP and CTFLP approaches converge since any improved
temporal resolution is hidden from this analysis. fppf achieves a
lower error in this range because it has more poles available.

Figure 6 shows the effect of varying the number of frequency
domain poles used in CTFLP between 1 and 20. The MPM error is
expressed as a ratio to the error obtained with plain TDLP using the
same number of poles. Even using just one pole in the frequency
domain achieves a noticeable improvement under short error anal-
ysis windows, and as the number of FDLP poles is increased to 20
the error ratio drops consistently. At 10 poles and above, we see a
spectral distortion penalty withthe error ratio exceeding 1 for error
analysis windows larger than the modelling window. The figure of
10 poles, used in the other results presented here, is confirmed as
a good compromise between error improvement at the short time
scale and minimal distortion at longer time scales.

4. DISCUSSION

The two LP models in CTFLP are essentially marginalized time
and frequency envelopes used to model the full t-f distribution
within each modelling frame. However, our sequential analysis is
suboptimal, as shown by the worsening of error at long timescales
as the number of temporal poles increases. Instead, we aim to in-
vestigate a simultaneous solution that optimizes the error for the
whole analysis, which might also involve formulating FDLP in the
timedomain, analogously to the use of the FFT to calculate the au-
tocorrelation at the heart of TDLP. Another aspect to the optimiza-
tion is the allocation of model parameters (poles) between the time
and frequency estimates; the 40/10 split used here worked well for
our examples, but in general this could be varied according to the
structure of the detail in individual frames. A difficulty in devis-
ing an optimal solution, however, is the poorly defined criterion
of perceptual quality: No single error analysis window adequately
captures the perceptually salient properties of the resynthesis, al-
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Fig. 5. MPM error for a 5ms error analysis window as a function
of modelling window length, for CTFLP and TDLP, using a fixed
number of poles per frame (fppf), or a fixed number of poles per
unit time (fppt, where shorter frames receive fewer poles). TDLP
becomes steadily worse at reproducing temporal detail as the mod-
elling window gets longer, whereas CTFLP is better able to pre-
serve detail at long modelling windows.

though a multiresolution analysis based on the properties of hear-
ing might be better. A full-blown perceptual error metric would
need to include masking effects etc. Other potential extensions of
the system include a multiband variant in which the spectrum is
divided prior to FDLP to estimate different temporal envelopes for
different frequency bands, as mentioned in [9].

Applications of this representation include efficient encoding
and synthesis of textural sounds e.g.for virtual reality systems. In
such a scenario, it is desirable to employ the extensible nature of
textures to generate unlimited, nonrepeating stretches of a partic-
ular texture. This requires a statistical model of synthesis parame-
ters; we are hopeful that the CTFLP model will provide a suitable
parameter space for this kind of generative sound texture model.

The currentsystem has proved remarkably effective at time-
stretching transients even up to 8 times the original length while
preserving the character of the original sound and virtually elim-
inating time-smearing. Comparisons between the CTFLP, TDLP
and phase vococder methods (available on our website) show the
clear superiority of CTFLP.

5. CONCLUSIONS

Although the category of sound textures is difficult to define with
precision, there are a great many everyday sounds that present dif-
ficulties to conventional modelling schemes optimized for voice
and music. A relatively simple extension to model the temporal
envelope of the spectral-modelling residual by using linear predic-
tion in the spectral domain has been observed to greatly improve
the perceptual fidelity of noise-excited reconstructions. An analy-
sis constructed to measure the energy distribution error at different
time scales confirms that short-term structure is preserved far bet-
ter than under conventional spectral modelling, at least for sounds
with dense transients and little harmonic content. This new para-
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Fig. 6. Ratio of CTFLP to TDLP error as a function of the error
analysis window length for a variety of FDLP pole counts. Increas-
ing the count of FDLP poles reduces errors at time scales shorter
than the modelling window, but causes significant additional error
at larger time scales as it is increased to 20. Ten FDLP poles per
frame emerges as a good compromise.

metric model holds great promise as a basis for all kinds of sound
texture analysis and generation schemes.
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