

Tandem acoustic modeling in large-vocabulary recognition

Dan Ellis • Columbia University & ICSI • dpwe@ee.columbia.edu Rita Singh • Carnegie Mellon University • rsingh@cs.cmu.edu Sunil Sivadas • Oregon Graduate Institute • sunil@ece.ogi.edu

CI: Context

Summary: In tandem acoustic modeling, classification is performed by a neural net followed by a Gaussian mixture model, achieving dramatic improvements on small-vocabulary tasks. For the larger SPINE1 task, much of the benefit disappears when used with context-dependent modeling and MLLR adaptation.

pip tandem

CD+MLLR adaptation

Introduction

· Tandem acoustic modeling refers to using the outputs of a discriminantly-trained neural network as the inputs to a conventional GMM-HMM speech recognizer. Two acoustic models, neural net and Gaussian mixture, are thus used in tandem:

 When working with the ETSI Aurora noisy digits task, the tandem architecture, in conjunction with posterior-level feature stream combination facilitated WER reductions of over 50%

Aurora results	WER% / SNR			WER
Feature	Clean	15 dB	5 dB	ratio%
GMM MFC baseline	1.4	3.7	15.9	100.0
NN MFC baseline	1.6	2.6	8.7	84.6
Tandem MFC	0.9	2.1	8.0	64.5
Tandem PLP+MSG	0.7	1.5	7.2	47.2

· We wanted to see if these kinds of improvements could be extended to tasks involving larger vocabularies and more speech variation. We therefore applied the same techniques to the SPINE1 task.

The SPINE1 task

- The first Speech In Noisy Environments task (SPINE1) was defined by the Naval Research Laboratory (NRL). An evaluation was conducted in August 2000.
- · The SPINE1 task consists of dialogs between speakers in separate booths engaged in a game of 'Battleships'. Various pre-recorded noises are played in the booths to simulate real-world conditions.
- The task has a vocabulary of about 5,000 words, with natural and informal grammar and pronunciation.
- About 8 hours of transcribed training material, in a range of background noise conditions, was made available.
- This task is very challenging: In the evaluation, the best performance (from a combination of systems) was around 26% WER.

- The tandem system consists of a neural . net discriminant classifier for contextindependent phones followed by a GMM-HMM recognizer
- The neural net system uses two parallel streams based on different feature representations.
- Combining conventional PLP features with the more 'sluggish' MSG features gives consistent performance improvements.

Feature calc: PLP/16/32ms

Feature cal PLP+dd/10/2

Feature calc MSG/10/25m

- by the neural-net classifiers are efficiently combined by omitting the net's final nonlinearity and summing the output laver
- Decorrelation by full-rank Principal Component Analysis improves performance by about 15% relative, presumably because it is a better fit to the GM model.

Alian

- The output of the neural networks and post-processing is fed as input into a GMM-HMM recognizer - the CMU SPHINX-III system.
- The recognizer has no prior knowledge of the specific form of the input features i.e. it is an unmodified recognizer, with the net outputs used as features
- · The GM model can employ context-dependent modeling and MLLR-style adaptation. enhancements not normally possible in a neural net system.
- · We used CMU's SPINE1 setup, optimized for MFC features, with 2600 context-dependent senones and a single iteration of one-class MLLR adaptation

Training

- Tandem modeling first trains a discriminant network. then separately trains a GMM system on network outputs.
- · Network trainings are based on earlier forced alignments to context-independent phone labels (Viterbi training).
- * Starting from a Broadcast News net, we trained networks based on two feature streams for the new SPINE task
- The SPHINX GMM-HMM system was then trained via conventional EM on the outputs of the networks as if they were normal features.

Results

We compared 4 feature sets:

mfc - standard MFC features plp - comparable PLP features tandem1 - Tandem based on PLP tandem2 - Tandem with PLP+MSG in 3 HMM model conditions

CI - 39 context-indep, phone states CD - 2600 context-dep, senone states CD+MLLR - added MLLR adaptation

- · For the Context Independent models, the tandem2 features reduced the baseline WER by 31%.
- · Moving to Context Dependent models effects much larger improvements on the regular features (mfc, plp) than on the tandem features, bringing all results close together
- Adding MLLR adaptation benefits the tandem systems slightly more. making the tandem2 system the best by a small margin.

Discussion

- · Neural nets (discriminant) followed by GMMs (distribution models) work well for modeling context-independent phones even for natural. unconstrained speech.
- Tandem features interact poorly with context-dependent state models. Perhaps the context-independent network outputs are confounding the contextual cues within each class.
- MLLR benefits tandem CD systems more than conventional features: contextual information may be more variable (but still present) in tandem features.

Future work

- · Would a larger set of context-dependent discriminant classes (perhaps a factored network) work better?
- How does performance depend on training set size? Should the nets and GMMs be trained on separate data?
- · What is the effect of additional processing (normalization, deltas) in the posterior-features domain?
- · Would it help to train the net to a more directly relevant criterion?

Posterior probabilities estimated

activations.

Net BN | Forward pass | Align

Net Boot1 | Forward pass

Net Boot2 Forward pass

Net PLP1 | Forward pass

Train Net MSG1 Forward pase

Net PI P2

Net MSG2

Training the classifier networks