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ABSTRACT

This paper describes a method of mapping music into a
semantic space that can be used for similarity measurement,
classification, and music information retrieval. The value
along each dimension of this anchor space is computed as
the output from a pattern classifier which is trained to mea-
sure a particular semantic feature. In anchor space, distri-
butions that represent objects such as artists or songs are
modeled with Gaussian Mixture Models, and several sim-
ilarity measures are defined by computing approximations
to the Kullback-Leibler divergence between distributions.
Similarity measures are evaluated against human similarity
judgements. The models are also used for artist classifica-
tion to achieve 62% accuracy on a 25-artist set, and 38%
on a 404-artist set (random guessing achieves 0.25%). Fi-
nally, we describe a music similarity browsing application
that makes use of the fact that anchor space dimensions are
meaningful to users.

1. INTRODUCTION

A natural way of describing unfamiliar music is to relate it
to musical categories that are well-known, such as genres
or a single artist’s work. For example, the All Music Guide
describes Jeff Buckley as “Van Morrison meets Led Zep-
pellin” but more “folkie” and influenced by “lounge jazz”1.
While we find it difficult to describe music in words, it is
often easier to draw parallels to familiar anchors. Anal-
ogously, researchers working on content-based music re-
trieval have not yet reached consensus on how to automat-
ically extract high-level, musically-relevant descriptive fea-
tures from low-level audio features. This paper explores a
way to automate the folk wisdom approach of describing
things as combinations of well-known categories.

A high-level representation of music is desirable to com-
bat the “curse of dimensionality” that plagues machine learn-
ing techniques. Presumably, information that humans use to
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1All Music Guide, http://www.allmusic.com

describe music has already been filtered by some interme-
diate perceptual processes, and is quite succinct.

In the work described here, we train pattern classifiers to
recognize musically-relevant classes such as genre or artist
label, or more general categories such as male vs. female
vocalists. Training data is labeled by hand or by using in-
formation gathered from the Internet. We then collect the
output (posterior probabilities) from several such classifiers
into a feature vector, the dimensions of which represent soft
membership in one of the musically-meaningful anchor classes.
The feature space, which we call anchor space, can be used
for similarity measurement, classification, and clustering of
music.

From a machine learning perspective, the anchor classi-
fiers can be seen as nonlinear feature extractors, where the
nonlinear function is obtained by machine learning tech-
niques. Seen this way, this work is related to the work of
Bollacker and Ghosh [1] on “supra-classifiers” and knowl-
edge reuse. Slaney [2] uses a similar technique for content-
based audio retrieval.

In the remainder of the paper, we describe anchor space
and how it is constructed, use it to compute a music sim-
ilarity measure, and use it for an artist classification task.
Finally, in section 5 we show how it can be used in a music
similarity browsing application.

2. ANCHOR SPACE

Anchor space is an
�

-dimensional Euclidean space in which
each dimension represents soft membership in one of the

�
anchor classes. Points in anchor space are mapped from

vectors of low-level audio features (here, we use mel-frequency
cepstral coefficients) taken over a short time window. The
nonlinear mapping is learned by a pattern classifier; in this
work, we use neural networks.

The
�

neural networks are trained to recognize mem-
bership in the

�
anchor classes, which could represent gen-

res, tempos, timbres, or any other musically meaningful cat-
egory.

Points in anchor space are vectors of posterior probabil-



ities of membership in the anchor classes, given the input:
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where
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represents the � th anchor class, and
�

is a vector
of spectral coefficients, described below. In some of the ex-
periments we use the neural net outputs before application
of the typical softmax non-linearity, so that anchor space is
not restricted to a [0,1] hypercube.

Because feature vectors are computed from short time
segments of audio, an entire song induces a cloud of points
in feature space. The cloud can be thought of as samples
from a distribution that characterizes the song, and we can
attempt to model that distribution using standard statistical
techniques. Extending this idea, we can conceive of a distri-
bution in feature space that characterizes an entire album, an
artist’s repertoire, a genre, or any other set of music. Model-
ing and comparing these distributions is the subject of sec-
tion 3.

2.1. Training and using anchor models

We experimented with two different configurations of neu-
ral networks. In one configuration, each anchor class is rec-
ognized by a separate “one-vs-many” network. In the other
configuration, we train a single

�
-way network. The differ-

ence is that the
�

-way network is trained discriminatively
(strong activation of one anchor will suppress activation in
all others), while with

�
separate classifiers, each dimen-

sion acts independently.
Note that these are merely two ways of handling what is

essentially a multi-class machine learning problem. Rifkin
and Whitman [3] explore a related problem.

For each anchor, a two-class neural network was trained
to discriminate the anchor from all others. The first 20 mel-
frequency cepstral coefficients (MFCCs) were computed on
32ms frames, overlapped by 16ms. The input vector to the
neural net is a 200-dimensional vector formed by the 20
MFCCs plus 20 first-order deltas (the difference between
the coefficients at time � and time ����� ), for 5 consecu-
tive frames of context. The hidden layer size was set to
20 units for one-vs-many networks, and 100 units for

�
-

way networks, based on initial experiments. The relatively
small hidden unit size is meant to ensure that the networks
are slightly undertrained, to encourage output activity even
when the input only loosely matches the training data.

2.2. Choosing anchors

We would like anchor classes that provide full coverage of
“music space” but are relatively uncorrelated. For these ex-
periments, we simply hand-picked “canonical” artists and
genres with this criterion in mind. From a database of pop-
ular music, which consists of over 1000 albums from about

400 artists, we chose one set of 24 artist anchors, and several
sets of genre anchors (10 and 12 genres), plus two supple-
mental anchors (male/female vocalist and high/low fidelity)
which were added to the 12 genres to make an augmented
14-anchor set.

The training set for the artist classes consists of one full
album by that artist, usually two or more albums. To train
genre anchors, we first selected several artists that, in our
opinion, represent the genre particularly well.

This training process depends on our subjective choice
of training examples. A more principled way to choose an-
chors, for example by using an information-theoretic crite-
ria to minimize the correlation between anchor dimensions,
is under investigation. One step we took in that direction
was to prune out highly correlated dimensions: for exam-
ple, in an early anchor set, Hard Rock and Punk were highly
correlated, and so were merged into a single model.

3. SIMILARITY MEASURES: COMPARING
CLOUDS

We can measure similarity between objects in anchor space
(e.g., songs, artists, or albums) in order to classify them into
categories, or for music information retrieval. Recall that
an entire song induces a cloud of points in anchor space,
which we think of as samples from a distribution. There-
fore, it is natural to use models of probability distributions
to model objects in anchor space. We choose Gaussian Mix-
ture Models (GMMs) because of their ability to model com-
plex multi-modal distributions and the ease with which they
are trained using the Expectation-Maximization (EM) algo-
rithm.

To measure similarity, we need a way of comparing clouds
of points in anchor space. We would like to use the Kullback-
Leibler divergence, which is the natural way to define dis-
tance between probability distributions. However, we run
into difficulty because no closed form for the KL-divergence
between GMMs is known [4].

We tried approximating the KL-divergence by sampling
points from distribution  and then computing the likeli-
hood of model ! given the samples. However, in high di-
mensions, the number of samples required to adequately
characterize the distribution is large, and it becomes com-
putationally prohibitive to use enough points to make this
work in practice.

Instead, we reduce clouds to a single point (the centroid)
and then take the Euclidean distance. This approach, though
overly simple, is tractable and gives decent results. Further
work using the earth-mover’s distance [5] is in progress.



3.1. Evaluating Similarity Measures

Evaluation is difficult in this domain because there is no
clear ground truth for music similarity [6]. We are forced to
rely on subjective judgment and user tests.

We evaluate the measures by comparing them with data
gathered from human subjects in a survey about artist sim-
ilarity. We presented subjects a list of 10 artists
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,

and a single target artist
���

, and asked “Which of these
artists is most similar to the target artist?” We interpret each
response to mean that the chosen artist

� 	 is more similar
to the target artist

�
�
than any of the other artists in the list��� � � � � � ��� �

, if the artists are known to the subject. More de-
tails are available in [6].

To evaluate an experimental similarity metric, we check
how often the metric agrees with the human subjects. For
each list

����� � � � ����� �
that was presented to a subject, we or-

der it by similarity to the target
�
�

under the experimental
metric. We then find the rank of the artist

� 	 chosen by the
subject. For example, if the experimental metric agrees per-
fectly with the human subject, then the ranking of

� 	 will be
1 in every case, and a random ordering of the artists would
produce an average ranking of 5.5. In practice, the ideal
score of 1.0 is not possible because different users do not
always agree about artist similarity; therefore, the ceiling is
the single, consistent metric that best matched the survey
data. For our data, this was computed to be 1.98.

First we compare several sets of anchor models: a set
of 24 artist anchors, a set of 12 genre anchors, and a set
of 14 anchors (consisting of the 12 genres plus two supple-
mental anchors: male/female voice and high/lo-fidelity). To
determine the effect of dimensionality reduction alone, we
also include a set of 12 “meaningless” anchors trained on
randomly chosen songs.

The results are summarized in Table 1. As expected, the
“meaningless” anchors perform almost as poorly as random
guessing, showing that that similarity measures are better
defined in terms of semantically meaningful features.

ank12-rand ank12-g ank14-g+ ank24-a
5.2 4.02 3.97 4.13

Table 1. Survey-based evaluation of anchor sets using�
centroid. The random baseline is 5.42, and the optimal ceil-

ing is 1.98.

In [6], we describe several similarity measures based
on other sources of human opinion such as preference data,
community metadata (text from websites describing the artists,
such as fan sites and music reviews), and expert opinion.
Table 2 partly lists the results, with the addition of

�
centroid

computed on the 14-anchor set. The audio-based anchor
measure outperforms randomness, WebText, and Pref, how-
ever it does not perform as well as the measure based on

expert opinion.

�
centroid Expert Pref WebText Random Ceiling

3.97 3.83 4.05 4.53 5.42 1.98

Table 2. Survey-based evaluation of
�

centroid on ank14-g+
vs. measures derived from human opinion: expert opin-
ion, user collections (Pref), and descriptive text found on
the web. Details of the survey and measures are in [6].

4. CLASSIFICATION

Having defined anchor space and a similarity measure on it,
we use it for an artist classification task. For each artist, we
fit a Gaussian Mixture Model to the anchor space points in-
duced by the music. The number of Gaussians was chosen
as 5 (sensitivity to this parameter was not extensively ex-
amined). For each of 10 test query songs witheld from the
training set, the total likelihood of the points in anchor space
induced by the query song is computed for each candidate
model, and the model with highest likelihood is declared the
winner. The (log) likelihood of a GMM with parameters  ,
given the observed set of samples ��� ��� � ����� � �����

is
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where $� � � � � � ��� � � �%" � � � ���%" � �!# � �������&# � � are respec-
tively the priors, means, and covariance matrices of the '
mixture components, and  ����	 " �&# �

is the Normal distri-
bution.

There were several experimental conditions to examine
the effect of preprocessing: the softmax non-linearity ap-
plied to the output of the anchor nets, and an online nor-
malization step. In [7], we noted that classifiers trained on
only a single album tend to learn overall spectral character-
istics of the album (perhaps an artifact of the equalization
applied during mastering). Online normalization attempts
to remove constant channel effects by normalizing with a
running mean and variance before presentation to the neu-
ral net.

Several tasks were used: a medium-size task of 404
artist classes; the set of 21 artists used in [7] and [8], for
comparison of results (they achieved 65% and 50%, respec-
tively); and a set of 25 artists for which we had at least
three albums available, to explore the effect of online nor-
malization to reduce the “album effect”. Table 3 presents
the results in terms of classification accuracy (percent of
correctly classified songs). Set25 has two conditions: in
set25-matched, the training set contains songs from all of



the albums in the test set; in set25-mismatched, one entire
album is left out of the training set for testing. Online nor-
malization boosts the accuracy on the mismatched set from
19.6% to 46.6% (130% relative improvement).

The best preprocessing settings (online normalization
with linear network outputs) were used for the 404-artist
task, resulting in 38% accuracy (random guessing would
only achieve 0.25% accuracy). Note that the entire query
song is used for classification. An experiment using only
30% of each song resulted in 32.9% accuracy.

Anchor set
test set linear norm norm+lin
set21 23.9 47.1 48.5
set25-matched 53.8 (1.41) 53.0 (3.11) 62.6 (0.28)
set25-mismatched 19.6 (3.04) 40.4 (1.84) 46.0 (2.47)
set404 38.0
set404, 30% 32.9

Table 3. Classification accuracy by % songs correct. Num-
bers in parentheses are the standard deviations for cases
where multiple validations sets were used.

5. MUSIC SIMILARITY BROWSING

One important property of anchor space is that the feature
extractors produce meaningful dimensions that can be un-
derstood and manipulated by human users. This enables
applications such as a music-space browsing tool. A web
site has been constructed to demonstrate this application2.

Users browse through anchor space by moving sliders
that represent each of the dimensions, and the system then
displays a list of artists or songs in the anchor space neigh-
borhood.

The system currently contains music from the 400 artists
in the evaluation set, as well as about 17,000 songs from
new bands who have made their music available for free
on the Internet. This demonstrates an important advantage
of audio-based similarity methods, namely the ability to in-
clude new music for which no metadata yet exists.

In addition to demonstrating the usefulness of anchor
models, the website is a way to gather more evaluation data
from human subjects. Users are asked to give feedback
about whether or not they agree with the system’s similarity
results. This data will be used to evaluate different similar-
ity measures and choices of anchors.

6. CONCLUSION

We have presented a method for mapping perceptual space
into a semantic attribute space, similarity measures in that

2http://www.playola.org

space, and results from a classification task using the space.
The similarity metric was evaluated against human similar-
ity judgments, and shown to be comparable with a metric
based on the opinion of human experts. For artist classifi-
cation on a set of 404 artists (which is a significantly larger
set than that of any published results we are aware of), ac-
curacy is 38%. Online normalization improved results by
130% (relative) in cases where the test set is taken from dif-
ferent albums than the training set.

There is plenty of room for further development. The
centroid-based similarity measure is overly simplistic, and
better results may be obtained by using something more so-
phisticated like the earth-mover’s distance. We also wish
to personalize the similarity measure by finding transforma-
tions of attribute space that best account for a user’s collec-
tion.

We have also used anchor models to construct a music
similarity browsing system, in which the user can explore
anchor space by moving sliders that represent the dimen-
sions, that will be the subject of future research.
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