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ABSTRACT

Hidden Markov Models (HMMs) permit a natural and flexible way
to model time-sequential data. The ease of concatenation and time-
warping algorithms implementation on HMMs suit them very well
for segmentation and content based audio classification applica-
tions, as is clear from their extended and successful use on speech
recognition applications.

Speech has a natural basic unit, the phone, which normally de-
limits the number of models to one per phone. Moreover, knowl-
edge of the speech structure facilitates the choice of the model pa-
rameters. When modeling generic audio, on other hand, the lack of
a natural basic unit, and the absence of a clear structure, make the
selection and the parameter estimation of an optimal set of HMMs
difficult.

In this paper we present different approaches to select and esti-
mate the HMM parameters of a set of representative generic audio
classes. We compare these approaches in the context of a content-
based classification application using the MuscleFish database.

The models are first found through frame clustering or by
traditional EM techniques under some specific selection criteria,
such as the Bayesian Information Criterion. Further discrimina-
tive training of the initial models considerably improve their per-
formance in the content-based classification task, obtaining results
comparable with the ones obtained, for the same task, by inher-
ently discriminative classification methods, such as support vector
machines, while preserving the intrinsic flexibility of HMMs.

1. INTRODUCTION

The time sequential nature of HMMs enable the effective im-
plementation of time warping algorithms. This feature and the
HMM’s ease of concatenation permit the use of these models to
effectively segment and decode streams of audio. This is evidently
shown in their extended and successful use in speech recognition.

Speech has a clear modular structure which is used to limit the
variables involved in the modeling. Typically, a single model is
used to represent each of the phones in the dictionary [8]. More-
over each model is generally represented by a left-to-right HMM
with 3 or 4 states [8].

For the case of general audio, however, there is no basic unit
like a phone, nor an obvious basis for the choice of the number of
states or the topology. At the same time, the choice of these param-
eters has a tremendous impact on the performance of any system
attempting to model generic audio, regardless of the application.

We can view any audio stream as a sequence of representa-
tive “types” of sounds. A particular sequence of these “types”
of sounds could have an associated meaning, e.g., a sequence of
shooting sounds and screaming sounds implies a shooting scene.

The choice of the “types” of sounds, and the detail to be discrim-
inated within each one, is very much application dependent, just
as the choice of the phone set to be used in a speech recognizer is
language and vocabulary dependent.

In this paper we present the implementation of models for the
16 “types” of sounds contained in the MuscleFish database [7]. We
present different approaches to choose and estimate the model’s
parameters. Results in the context of a content-based audio classi-
fication application are also presented. The models are first found
through frame clustering or by traditional EM techniques under
some specific selection criteria, such as the Bayesian Information
Criteria. Further discriminative training of the initial models con-
siderably improves their performance in the content-based classi-
fication task, obtaining results comparable with the ones obtained
by inherently discriminative classification methods, such as sup-
port vector machines.

Hidden Markov Models have been used before to model en-
vironmental audio files in [9] [2], but no generalization was at-
tempted since a single HMM was used to model each file. In [1],
HMM models for audio classes are found through minimum en-
tropy training. Even though this technique can potentially discover
the structure of the model, it requires an initial overparametrized
model, which implies an idea of the ideal number of states.

The MuscleFish database has been used in several previous
studies offer content-based audio classification. It was first in-
troduced in [7], where a normalized Euclidean distance and the
nearest neighbor classifier are used to classify the input sound into
one of the classes in the database. In [3], a multi-class classi-
fier is implemented by combining several two-class support vector
machines. They have reported the best performance in this par-
ticular task, however support vector machines classifiers cannot
easily decode streams of audio, since they normally require some
presegmentation of the data, making its application in other audio
processing applications difficult. Our models, after discriminative
training, achieve similar results to the ones obtained in the latter
work, but are also applicable to non-homogeneous streams.

In section 2, the objective of the work described in this paper
is presented. Section 3 proposes different approaches to select and
estimate the HMM parameters when used to model generic au-
dio. Section 4 introduces the further discriminative training of the
models found in section 2, and section 5 presents results using the
models obtained from sections 3 and 4, in the context of a content-
based audio classifier. Finally, in section 6, the conclusions and
future work are discussed.

2. OBJECTIVE: CLASS MODELS

As mentioned above, the number and kind of representative
“types” of sounds is application dependent. In our case it was con-
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strained by the kind of files in the MuscleFish Database [7], which
consists of approx. 420 audio files divided into 16 audio classes.
We divided the database in a training and a test subsets of roughly
equal size.

Our objective is to find spectral and temporal patterns between
the (training) files in each class and then model them using a (Hid-
den Markov) Class Model. If these patterns are correctly identi-
fied and modeled, a segment in an audio stream containing these
classes of sounds could be successfully identified. For example,
we want to be able (as we did in the application discussed in sec-
tion 3) to identify a segment containing ducks quacking as an “ani-
mal” sound using a model trained with chicken, dog, pig and horse
sounds.

To represent each class file, we used the first 18 cepstral coef-
ficients computed every 10ms with a window size of 25ms. Each
feature is then normalized to zero mean and unit variance.

3. CLASS HMM PARAMETERS SELECTION AND
ESTIMATION

Hidden Markov Models have three principal parameters.

1. Number of states.

2. State Likelihood representation.

3. Transition Matrix (topology).

The choice of the number of states is particularly important, since
we want to have enough states to differentiate the different repre-
sentative acoustical patterns present in a class file. But at the same
time, we wish to avoid overfitting the data through a very detailed
model, which could be the case when too many states are used.

We used two different approaches with several variants to es-
timate these parameters.

1. Clustering

2. GMM-EM, with several model selection criteria.

3.1. Clustering

A clustering algorithm is used to find the different frame clus-
ters with similar acoustic properties between the files on the same
class. Each cluster corresponds to a state; the likelihood represen-
tation and the transition matrix are then defined using the frames
within each cluster. The main problem is that we do not have
any prior knowledge of how many different clusters will be in any
given class file. We used a K-variable version of the K-means al-
gorithm (a modified version of the algorithm used in [9]).

K-Variable, K-means algorithm: This is a greedy algorithm where
clusters are successively added to account for points that lie be-
yond some threshold distance from any existing cluster.

Initialize the algorithm with one cluster
Make the frame with the highest norm the center of cluster 1.
For each remaining frame xi in the file

find d = min (dij (xi,cj ));
if d < T1, make xi member of cluster j.
if d > T2, make xi the center of a new cluster.

Repeat until V =
∑
j

∑
k(xjk−ck)

2 (the within cluster variance)
reaches a minimum.
After convergence, make all the remaining unclassified frames
members of their closest cluster.

Here, dij is the Euclidean distance, cj is the center of cluster
j. T1 = m − C · s and T2 = m + C · s; m and s are the mean
and standard deviation of the distances between any pair of frames
within the class file. C is a parameter in the range [0.5 1.5]. The
number of clusters obtained is closely correlated with the value of
C, the lower the value of C, the more clusters are present in the
final partition.

Clusters with fewer than 10 frames are eliminated since they
are considered not representative of the class; they are considered
to be produced by singularities in a particular file. Table 2 shows
the actual number of clusters obtained for each class in the Mus-
cleFish database under various methods. The states likelihoods are
estimated using a Gaussian Mixtures with diagonal covariance ma-
trices. The number of Gaussian mixture components m depends
on the number of frames in each cluster according to the rule in
table 1. The parameters of the Gaussian mixtures are calculated
via the Expectation Maximization algorithm.

Frames per cluster # Gaussians Frames per cluster # Gaussians

0-49 1 100-149 3
50-99 2 150-Up 4

Table 1. Number of mixtures used in a cluster frame distribution
per number of frames

The clustering algorithm generates in each training class from
a given class frame membership sequences like 1144422223333,
where the numbers represent the cluster membership of the frame.
The transition probabilities are estimated by counting the transi-
tion between adjacent frames, by the following formula:

P (i, j) =
ni,j

ni
(1)

where ni,j is the number of transitions from state i to state j and
ni is the total number of transitions out of state i.

3.2. GMM-EM algorithm

Conventional HMM parameter estimation through the EM algo-
rithm requires a previous knowledge of the number of states and
a good initialization of the transition matrix. Results for different
initializations of the transition matrix are discussed in section 4.
We use three different criteria to select the number of states or to
choose a model out of a pool of models:

1. Low Entropy Criterion.

2. Low State Occupancy Criterion.

3. Bayesian Information Criterion.

Low Entropy Criterion: We use mixtures of Gaussians to estimate
the number of states and the initial transition matrix for each class
model.
We start a single Gaussian (m = 1). Make Stop = 0
While Stop = 0

Increment the number of Gaussiansm = m+ 1;
Find GMM parameters for all the feature vectors from files

within the same class via the EM algorithm.
Assign each frame to the Gaussian with the highest likelihood.
Find transition probabilities counting transitions between

Gaussians in successive frames.
If any self-loop probability is smaller than α, set Stop = 1
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a) Density

b) Approximation with four mixtures.

c) Approximation with a higher resolution.

Fig. 1. Density approximation by mixture of Gaussians. If too
many Gaussians are used, the correspondence between Gaussians
and modes in the data is lost.

End
Set the number of states equal to m − 1, initialize the HMM

transition matrix to the matrix associated with them−1Gaussians.
Once we obtain the number of states and the transition matrix,

the actual Gaussians are discarded and the values of the mean and
diagonal variance for each state are initialized to the global values
for the feature vectors of all files within the given class. Then the
EM algorithm is applied to find the model parameters through a
maximum-likelihood criteria, using the HTK framework [8]. Dur-
ing training, the number of Gaussians per state is determined by
the number of frames associated with a given state under a forced
alignment, according to table 1. The number of states found us-
ing this approach with α = 0.5 can be observed in table 2, which
also gives the number of states found using only one Gaussians per
state.

Variable BIC Low Low
Class K-Means Entropy State Occu.

Altotrombone 6 15 / 33 4 / 4 7 / 12
Animals 7 35 / 38 8 / 8 10 / 10

Bells 3 27 / 27 3 / 3 7 / 9
Crowds 6 22 / 32 3 / 3 10 / 19

Cellobowed 3 15 / 39 9 / 9 13 / 19
Female 3 9 / 17 7 / 7 11 / 11

Laughter 5 19 / 29 8 / 8 21 / 25
Machines 8 32 / 34 4 / 4 16 / 23

Male 3 11 / 19 3 / 3 4 / 10
Oboe 21 37 / 37 4 / 4 17 / 21

Percussion 24 36 / 37 10 / 10 23 / 40
Telephone 3 24 / 31 3 / 3 11 / 14

Tubularbells 6 30 / 37 3 / 3 10 / 17
Violinbowed 27 30 / 38 8 / 8 12 / 27
Violinpizz 4 20 / 16 8 / 8 11 / 19

Water 8 34 / 38 8 / 8 10 / 42

Performance 84.6 / 88.9 74.0 / 77.8 89.9 / 82.2 83.6 / 84.1

Table 2. Number of states per class under each approach. The first
number represents the number of states obtained when mixtures of
Gaussian are used to estimate the emission probability. The second
number (after the slash) is the number of states obtained when sin-
gle Gaussians are used. The last row represents the performance
of the models for multiple Gaussian and single Gaussians, except
for the Variable K-means where the second number is performance
when 4 models are used for each class.

The idea behind the restriction in the self-loop probabilities is
that frames are spatially correlated, meaning that adjacent frames
have similar feature values and by association have a higher prob-
ability of transitioning to the same state, so we can use this to con-
trol the resolution (number of Gaussians) of the GMM and avoid

overfitting. For the one-dimensional case portrayed in figure 1,
part b), uses four mixtures to approximate the desired distribution.
There, similar values of x have a high probability to belong to the
same Gaussian. In part c), where the GMM has a higher resolution
this no longer holds.

Low State Occupancy Criterion: The same basic algorithm is used
to initialize the HMM, but with a different stopping criterion,
based on a minimum number of frames being assigned to each
state:

For each class model, we start with a single Gaussian (m = 1).
Set Stop = 0.
While Stop = 0

Find model transition matrix using the previous algorithm.
Estimate parameters through EM algorithm.
During training, if the number of frames associated with any

state is below a certain threshold τ , set Stop = 1.
End

The final completely-trained model (i.e at m − 1) is taken as
the class model. The number of states found using this approach,
for τ = 10, can be observed in table 2.

Bayesian Information Criterion, BIC: A pool of 50 models for
each class model is found, by setting m = 1 · · · 50 in the pre-
vious algorithms without any restriction. Each class is represented
by the model with the largest BIC criterion [6], defined as:

θ∗ = argmax
θi

(
N∑

n=1

(logP (Xn | θi))−
di

2
logN); (2)

where θi is a model parameter set with di degrees of freedom, and
Xn is a data set with N elements.

4. DISCRIMINATIVE TRAINING

Previous work in speech recognition [5] has shown that the com-
bined use of generative and discriminative training can substan-
tially enhance the performance of acoustic models. Thus, we fur-
ther apply discriminative training to the models previously ob-
tained. We define an objective function F (Xi, θ) and a misclassi-
fication function dC(Xi, θ) as:

F (Xi, θ) =
1

1 + e−dC(Xi,θ)
(3)

dC(Xi, θ) =
−log(P (Xi | θCi)) + log(P (Xi | θIi))

κ
(4)

where θCi are the parameters of the correct class Ci, and θIi
are the parameters of the incorrect class Ii with the highest log-
likelihood for observationXi. A similar approach was used in [4]
for phonetic classification.

Discriminative training is done by taking the derivatives of
dC(Xi, θ) with respect to θCi and θIi and applying a gradient de-
scent algorithm for all the filesXi in the training set. Starting with
a single mixture state model, we limit the further discriminative
training to the means only. The algorithm works as follows:

For number of iterations.
For all filesXi in the training set.

Update mean µk for k = Ii or Ci by:

µsk = µ
s
k ±
η

κ
F (Xi, θ)(F (Xi, θ)− 1)Σk

∑

j∈Tk

(xji − µ
s
k) (5)
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Fig. 2. Left: Classification accuracy of single mixture models dur-
ing discriminative training iterations. Right: Classification perfor-
mance for sets of models with the same number of states.

where the update is in the positive sense for the correct class, and
negative for the incorrect class. Tk are the time indexes for the
frames emitted by state s on model k.

5. CONTENT-BASED APPLICATION RESULTS

The class models found on the previous sections were used in a
content-based classification application. The database is divided
into two sets. The training set was used to estimate the class mod-
els, which were then used to classify each test example according
to the model with the Viterbi alignment with the greatest likeli-
hood. The classification accuracy for the different sets of models
are summarized in the last row of table 2.

Different values for the C parameter in the variable K-means
approach result in different partitions of the class files. The perfor-
mance of the models obtained via this approach for C values in the
range [0.5,1.5] have very similar performance (around 84%), how-
ever when several models obtained using different values of C are
used together, performance can be further increased (the “4 mod-
els” result in table 2). This suggests that the partitions obtained
through different values of C capture different patterns in the class
files, and that these patterns complement each other when used to
classify unseen data.

Models obtained using the Bayesian Information Criterion
have the lowest performance. We believe that the reason for this
is the relatively larger number of states obtained per model using
this approach, since a larger number of clusters represent a more
detailed model which could overfit the training data. The models
obtained by the GMM-EM approach with the low entropy criterion
have the best performance.

Figure 2 shows the variation with discriminative training it-
eration of the classification performance. As in any gradient de-
scent algorithm the initial search point has a crucial impact in the
results obtained. The models found by the GMM-EM approach
with the low occupancy criterion turned to be the best initial point
for discriminative training. At their performance peak, the models
reached a classification accuracy of over 90%, which is similar to
the one obtained through SVMs in [3]. Analyzing the sources of
improvement, we found that discriminative training effectively re-
solves the frequent confusion of oboe files with altotrombone files
and the confusion between cellobowed files and violinbowed files.
The acoustic differences between these two pairs are so small that
they can even confuse a human classifier. Classification accuracy
start to decrease after a certain number of iterations due to over-
fitting. A cross-validation set is needed to prevent the overfitting

of the data during discriminative training, unavailable in this case
due to the limited size of the database.

The right side of figure 2 shows classification performance in
the case where every model is constrained to have the same number
of states, as a function of the model size. A maximum performance
of 81.8% is obtained for models with 5 states, but this is inferior
to every other method of state number selection except BIC.

6. CONCLUSIONS AND FUTURE WORK

Hidden Markov Models are powerful tools for modeling general
audio, finding spectral and temporal patterns in audio files with
similar features, and generalizing their characteristics to form “ba-
sic” units of sound that can be used to decode streams of audio
on the fly. However, performance depends critically on the initial
HMM parameters, particularly the number of states and the tran-
sition matrix (topology constraints). We have presented a set of
techniques that assign resources (states) to “class” models depend-
ing of the complexity and diversity of the sounds within the given
class. Discriminative training permits us to resolve the uncer-
tainty occasioned by similar competing classes, although a cross-
validation dataset is required to control possible overfitting of the
data.

This is our first work on generic audio processing, and we have
used a paradigm in which a given segment of audio as a member of
only one audio class. In future work, we will center our attention
in modeling audio segments as mixtures of different class models.

7. REFERENCES

[1] M, Casey, “Reduced-Rank Spectra and Minimum-Entropy
Priors as Consistent and Reliable Cues for Generalized
Sound Recognition ,” Proc Eurospeech, Aalborg, September
2001.

[2] P. Gaunard, C.G.Mubikangiey, C. Couvreur and V. Fontaine,
“Automatic Classification of Environmental Noise Events by
Hidden Markov Models,” Proc. ICASSP, Seattle, 1998.

[3] G. Guo and S. Z. Li, “Content-based audio classification and
retrieval using SVM learning” IEEE Pacific-Rim Conference
on Multimedia, Invited Talk Australia, 2000.

[4] C. Rathinavelu, and L. Deng, “The Trended HMM with
Discriminative Training for Phonetic Classification,” ICSLP,
1996.

[5] M.J. Reyes-Gomez and D.P.W. Ellis. “Error visualization for
tandem acoustic modeling on the Aurora task.” ICASSP, Or-
lando, May 2002

[6] G. Schwarz “Estimating the dimension of a model,” Ann.
Statistic Vol. 6, no. 2 1978

[7] E. Wold, T. Blum, D. Keislar and J. Wheaton, “Content-
Based Classification, Search, and Retrieval of Audio,” IEEE
Multimedia, 1996.

[8] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev and
P. Woodland, “The HTKBook” 2000.

[9] T. Zhang and J. Kuo, “Content-Based Classification and Re-
trieval of Audio,” Proc. ICASSP, 1999.

4


