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ABSTRACT

We took a collection of 100 drum beats from popular
music tracks and estimated the measure length and down-
beat position of each one. Using these values, we normal-
ized each pattern to form an ensemble of aligned drum
patterns. Principal Component Analysis on this data set
results in a set of basis ‘patterns’ that can be combined
to give approximations and interpolations of all the ex-
amples. We use this low-dimension representation of the
drum patterns as a space for classification and visualiza-
tion, and discuss its application to generating continua of
rhythms. Our classification results were very modest –
about 20% correct on a 10-way genre classification task
– but we show that the projection into principal compo-
nent space reveals aspects of the rhythm that are largely
orthogonal to genre but are still perceptually relevant.
Keywords:rhythm, genre, classification, principal compo-
nents

1. INTRODUCTION

Popular music usually includes a drum ‘track’ providing
the rhythmic backbone of the piece, and the percussion in-
struments generally play a short pattern that repeats every
few beats. This core pattern, along with the rate at which
it is played (typically measured in beats per minute, or
BPM) constitute a key element in the character of the mu-
sic.

We are interested in describing and extracting such es-
sential subjective characteristics from music as part of our
wider project into music similarity and recommendation
[1, 2]. Our previous work has focused on average spectral
content, pitches, and chords [12, 14], but has not included
explicit rhythm-related features. This paper describes an
initial study into extracting and describing this kind of in-
formation.

Many previous music information retrieval systems have
tapped the rhythm dimension. Tzanetakis et al. employ a
small set of rhythm descriptors including BPM and “rhythm
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strength” [15], and Gouyon et al. show the value of cosine
transform coefficients of a time-warped log-inter-onset-
interval histogram [6] for classifying dance music genres.
There is, however, a gulf between the very large range of
possible drum patterns – spanning variations in basic note
patterns, accent, and small time shifts (“swing”) – and the
small number of dimensions desirable in classification and
browsing systems.

2. EIGENRHYTHMS

We propose to bridge this gulf using the standard dimen-
sionality reduction tool of Principal Component Analysis
(PCA) [3]. An ensemble of data that can be represented as
points in a high-dimensional space can be approximated
as the weighted sums of a few basis vectors in that space;
the covariance matrix of the ensemble provides informa-
tion about which dimensions are correlated (i.e. exhibit
co-ordinated changes), and by finding the eigenvectors of
the covariance matrix with the largest eigenvalues PCA
finds the basis functions that minimize the distortion of a
lower-dimensional representation. Each point in the orig-
inal high-dimensional space is represented by a smaller
number of coefficients, which are the weights applied to
each of the principal component vectors to approximate
that point. Individual principal components, ordered ac-
cording to their contribution to the overall distortion, can
be interpreted as the main dimensions of variation among
the examples in the set.

In this work, we represent drum patterns as a simple
two-dimensional surface. The horizontal dimension is time,
densely sampled to provide a fine resolution of drum-note
events (for the results below, we used 5 ms sampling).
The vertical dimension corresponds to the different instru-
ments: we caricature popular music drum tracks as con-
sisting of three instruments, bass drum, snare, and hi-hat,
and have one row for each. The values in this surface are
pseudo energy envelopes: each beat event is represented
by a brief, decaying pulse in the surface. We use half-
Gaussians with a standard deviation of 20 ms, which, un-
like single impulses, can gloss over small amounts of jitter
in the timing of individual beats, while retaining a sharp,
well-defined onset. The principal components of these
surfaces, the two-dimensional surfaces that can be com-
bined to approximate the entire set, constitute our “eigen-
rhythms”.



Our goal is to produce systems that can be applied to
actual recordings, but to simplify the investigation of un-
derlying rhythmic information we sidestepped the stage
of extracting drum events from audio by working directly
from MIDI files in which note event times and drum voice
identities are provided explicitly. We do not consider this
a serious limitation given the success reported in auto-
matic drum beat extraction from audio: Real-time extrac-
tion of bass drum and snare events was reported by Goto
ten years ago [5], and more recent work has included adap-
tive learning of the different drum sounds [16] among many
other refinements.

Our principal motivation is to investigate the viability
of low-dimensional descriptions of rhythm patterns, but
in order to motivate and evaluate our results we apply the
representations to a genre classification task. However,
we do not pay much attention to making a careful and
comprehensive description of the rhythmic pattern in each
individual piece: Since we are interested in the gross be-
havior of a large collection of different drum patterns, the
main thing we want is a large number of diverse patterns
extracted from different peices. If, for a particular piece,
we only extract one of several patterns used, or even if
our extraction algorithm fails and returns a nonsense pat-
tern, it is not of great concern as long as the bulk of the
database – the material that the most significant principal
components describe – is valid. This is another reason for
starting with MIDI: there are tens of thousands of MIDI
files readily available on the internet, and we would like
to be able to model rhythmic information from collections
of this scale without the computational load of processing
an equivalent amount of audio. By limiting ourselves to
pulling the pattern from a single, small excerpt taken from
the middle of each piece, we also avoid the issue of tempo
tracking – we assume the tempo is constant over the 10 s
excerpts we use, and estimate a single value.

The next section describes in more detail our method
for finding the “eigenrhythm” drum pattern principal com-
ponents. Section 4 presents the results of our preliminary
application to 100 pieces, giving both the eigenrhythms
and describing the classification experiments. We discuss
some other possible applications, including resynthesiz-
ing patterns from arbitrary points in rhythm space, and
present our conclusions in section 5

3. METHOD

To apply PCA, we must generate a collection (ensemble)
of drum patterns where corresponding beats are aligned in
each item. To do this, we must estimate the pattern length
in each original drum track (i.e. its BPM), and the position
of one reference time point i.e. one pattern-initial down-
beat within the excerpt. Given these values, we can extract
a fixed number of beats, starting at a downbeat, from each
track, stretch or compress them to a single nominal BPM
of 120, to form a single entry in our data matrix. The first
step, however, is to convert the raw MIDI data into our
basic drum pattern time-channel surfaces.
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Figure 1. Tempo estimation and downbeat detection. The
top pane shows the pattern extracted from an MIDI file
mapped to bass drum, snare, and hi-hat; darker gray in-
dicates a more intense beat; dots above indicate hand-
marked downbeats. The second pane shows the autocor-
relation of this pattern, with the four highest peaks cir-
cled and labeled with their equivalent BPMs. Below that
is the reference pattern (a grand average of aligned pat-
terns), which is cross-correlated against the original pat-
tern rescaled to 120 BPM (in this case, assuming the 98
BPM peak is valid) to give the fifth pane. The largest
peak in this cross-correlation gives the downbeat hypoth-
esis, and leads to the extracted pattern in the bottom panel
which then becomes part of the aligned pattern ensemble.

3.1. Preprocessing of MIDI data

We use publicly-available tools to read General MIDI files
(GM) culled from the internet into Matlab. In the GM
standard, channel 10 is devoted to drum sounds, with each
MIDI note, normally used to specify the different pitches,
corresponding to a different pre-defined drum sound. We
built a map to convert the 85 common voices to our three
classes: bass drum, snare, or hi-hat. The vast majority
of popular music drum patterns consist only of these three
voices. Tom-toms, crash cymbals, and other exotic sounds
were discarded (mapped to null). The MIDI velocity pa-
rameters, which can be used to convey amplitude accents,
were ignored in this work, as were the note offset times.
Instead, each onset time resulted in a short, decaying enve-
lope element being added in to appropriate voice’s overall
time envelope, sampled at 200 Hz. In lieu of a more so-
phisticated approach, we initially extracted 10 s of drum
track starting 30 s into each GM file. An example of such
a pattern (from a MIDI replica of “The Next Episode” by
Dr. Dre) is shown in the first pane of figure 1.

3.2. Pattern period estimation

Scheirer [11] contrasts zero-phase autocorrelation tempo
period estimators with his bank of resonators which indi-
cate both the dominant period and the timing of energy



peaks within each channel. However, because we wish
to use a more complex approach to downbeat detection,
we can use simple autocorrelation to first obtain several
period estimates, leaving the downbeat identification (and
choice among the period estimate) to a subsequent stage.
The second pane of figure 1 shows the positive-lag half
of the autocorrelation of the extracted drum-pattern sur-
face shown in the first pane: each of the three tracks (bass
drum, snare and hi-hat) first has its total energy equalized
(to reduce the influence of the most active voice, usually
the hi-hat), then their individual autocorrelations are sim-
ply summed. In this example, we see the strongest peak at
a lag of around 1.1 s, corresponding to 98 BPM. The next
highest peaks are the higher-order multiples at 2, 3 and 4
times this basic period.

In this case, the 98 BPM peak corresponds to the sub-
jective period for this pattern, but in general, the highest
peak is not always the best period, and there may be strong
peaks at subdivisions as well as integer multiples of the
key period. We choose among these by considering each
of the N highest peaks from the autocorrelation (where
N = 4 in the results presented here), and keeping the pe-
riod that gives the highest normalized cross-correlation in
the downbeat estimation, described next.

3.3. Downbeat Location

To get sensible results from PCA, the different patterns
in our ensemble must not only have the same tempo, but
must be somehow ‘lined up’ to have equivalent beats at the
same time. Although this concept is not well-defined, in
many cases it is possible to identify a particular point in a
looping drum pattern as the ‘beginning’, and our goal is to
locate this point. Regardless of its interpretation, we need
some way to choose a unique anchor point in each pattern:
if our ensemble includes an arbitrary circular time shift to
each pattern, the principal components will be meaning-
less.

Our approach is to define a reference pattern, consist-
ing of some simplified version of what we are hoping to
find, and to cross-correlate this template against the in-
put patterns once their tempo has been normalized. If the
input pattern contains that exact subsequence, the cross-
correlation will peak at the time-skew that aligns them.
Even if the ideal pattern does not occur exactly in the in-
put pattern, the highest peak in the cross-correlation shows
the time offset within the longer segment that begins the
segment with greatest similarity to the reference pattern,
which is an unambiguous anchor point, and gives us an ap-
propriate alignment of ‘maximum similarity’ for extract-
ing a segment to use for the PCA.

For each of theN period hypotheses extracted from
autocorrelation, we first time-scale the original MIDI data
so that, if the hypothesis is correct, the new note sequence
will be at 120 BPM, the tempo of the reference pattern.
After finding the cross-correlation peak for the surface de-
rived from that time-compressed or -stretched version, we
make a note of the peak cross-correlation value as well as
the time offset where it occurs. We normalize the cross-

correlation by the energy of the input pattern within a slid-
ing window of the same length as the reference pattern, so
the cross-correlation values are always correctly normal-
ized and can reach unity only when reference and input
exactly match. We calculate the cross-correlation only for
points where there is full overlap between the short refer-
ence pattern and the longer scaled input pattern.

We then choose among the BPM hypotheses the one
that gave the highest peak cross-correlation value i.e., from
among the period hypotheses suggested by the autocorre-
lation, the temporal scaling of the original input pattern
that results in a pattern most similar to the reference pat-
tern appearing. Over-estimates of the original pattern’s
period (i.e. picking the 49 BPM peak in the example)
will compress more points into the fixed-length segment
in the temporally-scaled pattern; while this may lead to
more overlap with the peaks in the reference pattern, the
extra input notes will lead to a high average energy, so the
normalized cross-correlation value will be hurt. Period
estimates that are too short will have normalized versions
that are too stretched out in time and are unlikely to have
enough points in common with the reference to achieve
a high cross-correlation. Thus, the cross-correlation finds
the downbeats and chooses the best-matching tempo esti-
mate in a single stage.

The reference template we use is actually the average
of all the normalized patterns emerging from our analysis,
but there is a circularity because we need to perform the
downbeat alignment before we can calculate this average.
To bootstrap, we took a very simple prototype pattern, al-
ternating bass drum and snare with an eighth-note hi-hat
pulse, then successively aligned our patterns, formed their
average, and re-calculated the downbeat positions using
this new average as reference. Once the downbeat posi-
tions match in two successive iterations, the system has
converged and there will be no further changes in later it-
erations. We observed convergence within 5 cycles.

The grand average reference pattern template is shown
in the third pane of figure 1, along with one of the time-
scaled drum patterns, in this case for the correct 98 BPM
hypothesis; the fifth pane shows the results of cross cor-
relation, with the top 10 peak values circled; for now, we
consider only the top value in the cross-correlation and
use that as our downbeat, assuming that it gives the largest
peak value across all the BPMs being considered.

Finally, we extract a short segment from the 120 BPM-
scaled input patterns, corresponding to the 4-beat segment
of the reference template, and pass this forward to the
principal component analysis. We take four beats because
2 beats (e.g. a single bass drum/snare alternation) seemed
too short to capture much interesting structure in the pat-
tern; after reviewing the training examples, many of which
contain 8- or 16-beat basic patterns, there could be good
reason to use a longer excerpt, although this might neces-
sitate a lower temporal resolution to our surfaces in order
to keep our PCA computationally tractable.



3.4. Principal Component Analysis

The processing so far gives, for each input drum track,
one 2 s excerpt of the rhythm pattern after normalization
to 120 BPM (i.e. four beats in total), starting at a down-
beat defined by the best alignment to a reference rhythm.
Three voices at a sampling rate of 200 samples per sec-
ond for 2 seeconds gives a 1200 point feature for each
piece. We stack the vectors for each of our examples, cal-
culate and subtract the mean pattern (which is just the ref-
erence pattern used in extraction, once the analysis has
converged) and apply singular value decomposition to the
covariance matrix of this data to find the eigenvectors, as
descibed in section 2. In our experiments, we used just
100 MIDI tracks, giving a maximum of 99 nonzero eigen
dimensions, although our goal is in using many fewer di-
mensions than this to get at the ‘essence’ of the rhythms.
The projection of each rhythm pattern into a subset of the
most significant principal components provides for clas-
sification (e.g. by nearest neighbor), and the space pro-
vides interesting interpolations; by compressing the di-
mensionality to maximally preserve the structure in the
real rhythms, we have a space where unnatural rhythms
most likely cannot be represented, and all points corre-
spond to reasonable-sounding rhythms.

4. RESULTS

For our tests, we collected a set of 100 MIDI tracks, ar-
ranged as 10 examples for each of 10 genres – blues, coun-
try, disco, hiphop, house, new wave, rock, pop, punk, and
rhythm & blues – roughly based on contemporary popu-
lar music radio, and, according to our intuitions, defining
classes that might possibly distinguished by their rhythm
patterns. We verified that each of the files we selected was
a well-produced replica and a satisfactory representative
of its class, but did not use any more specific criteria in
selecting them.

To evaluate the raw tempo and downbeat extraction,
we auditioned each tracking result by resynthesizing the
original drum pattern along with added tone pips indicat-
ing the system’s chosen downbeats and cycle length. In
two of the cases the arbitrary initial note extraction re-
turned irregular drum patterns for which no period could
be decided. In nine of the remaining 98 cases (9.2%),
the period chosen by the system was wrong, almost al-
ways half the length (i.e. tempo twice as fast) as the per-
ceived period. Where the tempo was correct, about half
the tracks had patterns of 4 or 8 beats (rather than the ba-
sic 2-beat bass/snare pattern), and of those, approximately
half (25 out of 53) had the downbeat in the right point
within that sequence. In the others, the downbeat was
shifted by an even number of beats. This is a secondary
error, since the extracted pattern was basically appropri-
ate, but it would make for a better interpolation space if
the automatic downbeat placement could come closer to
subjective impression. We return to this in the discussion.

4.1. Classification task

The 100 extracted patterns, each represented by a 1200-
point envelope, were then fed to PCA to extract the eigen-
rhythms; the mean pattern and top five eigenrhythm bases
are illustrated in figure 2; 25 dimensions are required to
explain 90% of the variance. Restricting ourselves to the
top N eigenrhythms gives anN -dimensional projection
of the set of rhythms that minimizes squared-error distor-
tion, and which can also be seen as a kind of generaliza-
tion, smoothing away ‘insignificant’ differences between
patterns. This reduced space can be used for classifica-
tion, for instance by treating each of the patterns in turn
as unknown and classifying it on the basis of itsk near-
est neighbors (k-NN classification). Although this is not
as good a predictor of classifier success as using test data
separate from the data used in deriving the eigenrhythm
space, we note that the genre labels were not involved
in that stage i.e. the PCA ‘model’ does not encode prior
knowledge of the true class of the test examples.

We performed this classification and searched over the
number of PCA dimensions (from 2 to 40) and the number
of neighbors to use in thek-NN classification. Our results
were generally weak; one of the best performing combina-
tions was the simple case of using 4 dimensions and clas-
sifying according to the single nearest neighbor. The over-
all classification accuracy of 21% is significantly better
than random guessing (which would give 10%), and a con-
fusion analysis reveals some cliques of greater discrimina-
tion, including{country, blues} and{rock, hiphop, punk}.
Rhythm & blues is recognized correctly 4 out of 10 times,
which is also how often disco is recognized as house. All
of these details seem to make sense in view of the musical
character of the different classes.

4.2. Eigenrhythms

For a greater insight into the classification performance,
and to see what the “eigenrhythm” concept has actually
captured, it is interesting to look at the top eigenrhythms
individually, as in figure 2. The top-left panel shows the
overall mean pattern, which is subtracted from every pat-
tern prior to the eigen analysis; this pane is nonnegative,
with white showing regions of no energy and darker shades
of gray indicating progressively more intense beats. The
remaining patterns have, in general, both positive and neg-
ative portions, and can be associated with positive or neg-
ative weights to add to or subtract from different beats in
the mean pattern – i.e. increasing or reducing the con-
trast between their positive and negative extrema. For
grayscale presentation, positive values tend to black, neg-
ative to white, with zero a mid-gray; a colored version is
included in [4]. Eigenrhythm 1 is mainly positive, follow-
ing the mean pattern, but includes emphasis of the 16th
notes (at samples 25, 75, 125 etc.) in the snare and hi-hat,
the snare beats on the eighth notes at samples 50, 150 and
350, and the bass drum simultaneous with the main snare
beats at samples 100 and 300 (quarter note beats 2 and 4).

Eigenrhythm 2 provides contrast between the eighth-
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Figure 2. Mean drum pattern and top 5 eigenrhythms.

note hi-hats, and the snare and bass hits on beats 2 and 4
along with a snare eighth-note ‘echo’ at samples 150 and
350. The third basis contrasts hi-hat beats on the 16th note
‘off’ beats with a simple quater-note rhythm, so a negative
coefficient here will introduce a double-speed hi-hat, and
a positive weight gives half-speed. Basis 4 contrasts off-
beat bass drums at samples 50, 150, 250 and 350 with
hi-hat beats alongside the main snares at beats 2 and 4, as
well as including some fast snare beats between samples
200 and 300 and some evidence of 6/8 patterns with hi-
hat features around sample 67, 167, 267 etc. (i.e. two-
thirds of the way through each quarter-note beat). The
final eigenrhythm in the figure contrasts snare and bass on
beats 2 and 4, and also can be seen to provide for more
complex structures in hi-hat and bass drum.

Overall, we begin to see that the individual eigenrhythms
are encoding particular features of the different rhythmic
patterns, more about the character of the piece than its
genre, but at the level of groups of notes rather than indi-
vidual events. Although genre is only weakly predicted by
nearest neighbors in the eigenspace, we can ask if there are
other perceived properties being preserved. For instance,
plotting all our tracks on a 2D surface defined by the first
two eigenvectors reveals two significant clusters (this fig-
ure can be seen in [4]). Listening to tracks from each, we
find that the first cluster consists of straight-ahead 4/4 pat-
terns with eighth note hi-hat patterns, snare on beats 2 and
4, and some variations in the bass drum within the basic
eighth-note grid. Patterns in the second cluster, by con-
trast, have the same basic bass drum on beats 1 and 3 with
snare on beats 2 and 4, but have a 6/8 ‘syncopated’ rhythm
in the hi-hat, or a simple quarter-note hi-hat beat. Thus,
we find that the eigenrhythm space does indeed cluster
drum patterns with clearly discernible perceptual similar-
ities.

5. DISCUSSION AND CONCLUSIONS

Our approach can be contrasted with other work that looks
at the detail of rhythm patterns. Laroche has presented a
system able to extract ‘swing’ represented by slight sys-
tematic timing shifts of beats 2 and 4; his approach en-
codes more musical knowledge (with a correspondingly
narrower applicability) than we wished to use [8]. Paulus

and Klapuri present a system for comparing the rhythm
patterns between two different pieces, overcoming varia-
tions in drum sounds with cepstral normalization and mi-
nor timing differences through dynamic time warping, but
they do not attempt to build a parametric space of rhyth-
mic variants [10].

One natural application for the eigenrhythm represen-
tation is for the generation of rhythm patterns that inter-
polate between the different points in eigenrhythm space.
We have built a crude Matlab interface to synthesize the
rhythm patterns corresponding to any value of the first
eight eigenrhythms allowing us to investigate the space,
but we hope to produce something a bit more interactive.

In evaluating our current system, it became clear that
the 2 s excerpts used in modeling were too short. Many
tracks had drum patterns that repeated at a larger scale that
this, and the system had little chance of finding the appro-
priate downbeat within such patterns when only part of
the cycle is modeled. Even so, the downbeat detection ap-
pears to require a more sophisticated approach. Lacking
some absolute principle to decide where the cycle starts,
we believe that our technique of matching a model de-
rived from actual data is the right basic approach, but it
may need to be seeded with ground-truth on actual down-
beats for at least some of the training examples, and could
require a family of prototype patterns (e.g. finding the
temporal alignment that supports the best fit from a set
of eigenrhythms) rather than relying on a single, average
template.

As noted above, our initial interest was simply to col-
lect a large body of drum patterns to see what the princi-
pal components would be like. However, a more careful
musical information extraction technique would consider
the entire drum track of a piece, looking for the regularly-
repeating patterns and perhaps also modeling the less repet-
itive breaks and ornamentations. We think the eigen anal-
ysis should also be applicable to drum breaks, if they can
be effectively extracted, although because their duration
is less constrained some kind of sequential structure (such
as a hidden Markov model) might be appropriate. One
could imagine a Markov model where each state is rep-
resented by values or a distribution in eigenrhythm space,
and transition probabilities encode the likely evolution of
the entire piece.



There are many details even in the work we have de-
scribed that deserve closer examination. Where we have
investigated alternatives at all our main metric has been
the genre classification accuracy, which is so low as to
be suspect and doesn’t directly address our main interest
of defining a space of ‘good’ drum patterns. One idea
is to replace the asymmetric envelopes used to represent
each drum event with a smoother shape like a full Gaus-
sian. This might allow small time shifts (like Laroche’s
‘swing’) to be effectively encoded by eigenvectors that
can perform a linear cross-fade between two nearby peaks.

If, on the other hand, we wished to pursue the genre
classification application, we could look at more discrim-
inative ways to define our basis functions, such as us-
ing Linear Discriminant Analysis (LDA) in place of PCA.
LDA is another procedure for finding a low-dimensional
projection of a dataset, but it uses class labels associated
with each training pattern to find projections that maxi-
mally separate classes, to be the most useful in classifica-
tion [3].

There are several other interesting projection algorithms
to consider. Independent Component Analysis (ICA) finds
basis projections that are not orthogonal but which max-
imize the statistical independence of the projected coeffi-
cients, which can be a more semantically relevant decom-
position [7]. Non-negative Matrix Factorization (NMF)
finds linear basis sets where all the coefficients are pos-
itive or zero, so each pattern is approximated by a pro-
cess of ‘adding in’ parts, rather than the balancing con-
trasts seen in our eigenrhythms [9]. When the underlying
dataset is intrinsically nonnegative, as in our case, this can
be an interesting alternative transformation; some previ-
ous applications to musical audio are reported in [13].

In conclusion, we have introduced a new representa-
tion for the complex but constrained class of popular mu-
sic drum patterns, and derived our basic eigenrhythm pat-
terns by scaling and aligning a corpus of drum tracks from
real pieces, encoded as MIDI files. We hope to use larger
datasets and a deeper analysis to come up with a more gen-
eral model of the stylistic variations in rhythm patterns,
and we hope to be able to train from, and apply to, actual
recorded waveforms.
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