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Abstract
The temporal trajectories of the spectral energy in au-
ditory critical bands over 250 ms segments are approx-
imated by an all-pole model, the time-domain dual of
conventional linear prediction. This quarter-second au-
ditory spectro-temporal pattern is further smoothed by it-
erative alternation of spectral and temporal all-pole mod-
eling. Just as Perceptual Linear Prediction (PLP) uses
an autoregressive model in the frequency domain to esti-
mate peaks in an auditory-like short-term spectral slice,
PLP2 uses all-pole modeling in both time and frequency
domains to estimate peaks of a two-dimensional spectro-
temporal pattern, motivated by considerations of the au-
ditory system.

1. Introduction

Recent advances in understanding the physiology of the
mammalian auditory cortex have revealed evidence for
the existence of two-dimensional (time-frequency) corti-
cal receptive fields – roughly equivalent, in engineering
terms, to two-dimensional matched filters – that are sen-
sitive to time- and frequency-localized stimuli. A typi-
cal receptive field can extend up to several hundred ms.
[1, 2]. From this new perspective, a single slice of the
short-term spectrum, as is commonly used as the basis
for sound recognition systems, can hardly capture the in-
formation used by listeners; longer temporal spans of the
signal seem necessary to facilitate cortical-like informa-
tion extraction from acoustic signals. This strongly sug-
gests the need for alternatives to the current short-time
approach to speech and audio processing.

Speech recognition feature extraction techniques
such as dynamic (delta) features, RASTA processing, or
short-term cepstral mean removal, have been adopted as
post-processing techniques that operate on sequences of
the short-term feature vectors. Such techniques provide
a “locally-global” view in which features to be used in
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Figure 1: Auditory STFT vs PLP vs Subband FDLP vs
PLP2.

classification are based upon a speech segment of about
one syllable’s length (see [3, 4] for more discussion and
references).

The TRAP approach [5] is notable as an attempt to
extract information from even longer segments of the
acoustic signal. TRAPs are a rather extreme technique
in which the trajectory of spectral energy in individual
frequency bands are used for the initial classification
(although arguable no more extreme than the attempts
to classify sounds based on individual short-time spec-
tra). But since the observed mammalian cortical recep-



tive fields are two-dimensional, we infer that hearing is
quite capable of integrating evidence both from larger
time spans than the 10-30 ms short-term analysis window
typically used, as well as from larger frequency range
than a single critical band. Supporting this notion, re-
cent work shows benefits from considering more than one
temporal trajectory to obtain evidence for speech sound
classification [6].

We believe that to be consistent with cortical phys-
iology, a technique for efficient modeling of a two-
dimensional auditory-like representations of acoustic sig-
nals is of interest and may prove useful in sound recog-
nition applications. Such a technique, based on iterative
sequential all-pole modeling in time and in frequency do-
mains, is proposed and discussed in this paper.

2. Auditory-like spectro-temporal patterns

Replacing spectral slices of the short-term spectrum
by a spectro-temporal pattern has previously been ac-
complished by stacking short-time feature vectors from
neighboring frames to form a longer vector. This multi-
frame input can be used directly for classification by
multi-layer perceptrons (MLP) [7], or combined with lin-
ear discriminant analysis [8] or with MLP classifiers [9]
to yield features for subsequent HMM recognition.

For the frequency axis, the underlying nonuniform
critical-band representation is well justified, based on ex-
tensive physiological and perceptual results. In the time
dimension, we will initially retain a linear scale (even
though this may not be the only choice). In consider-
ing the appropriate temporal length of our new pattern,
we note that although many earlier approaches went up
to about 100 ms, the pioneering work of Fanty and Cole
use the data from as much as 300 ms time spans in recog-
nition of spoken alphabet[10], and the original TRAPs
were up to 1 s long. In attempts to minimize the result-
ing processing delay, Sharma et al. report that reducing
TRAP lengths to 400 ms results in only a minimal loss
of performance [11], and on a phoneme recognition task
300 ms TRAPs were reported optimal [12].

Time spans of around 200-300 ms are well justi-
fied by many psychoacoustic phenomena that operate on
such timescales (see [4] for the review), with the forward
masking “critical interval” (the time-domain counterpart
of the critical band in the simultaneous frequency mask-
ing) being especially relevant. Further, very recent ob-
servations from mammalian auditory cortex physiology
indicate dominant temporal components around this time
scale [13]. We have therefore settled on 250 ms for the
current presentation.

3. Subband frequency-domain linear
prediction (FDLP)

Just as a squared Hilbert envelope (the squared-
magnitude of the analytic signal) represents the total in-
stantaneous energy in a signal, the squared Hilbert en-
velopes of sub-band signals are a measure of the instan-
taneous energy in the corresponding sub-bands. Deriv-
ing these Hilbert envelopes would normally involve ei-
ther using a Hilbert operator in the time domain (made
difficult in practice because of its doubly-infinite impulse
response), or the use of two Fourier transforms with mod-
ifications to the intermediate spectrum.

An interesting and practical alternative is to find an
all-pole approximation of the Hilbert envelope by com-
puting a linear predictor for the positive half of the
Fourier transform of an even-symmetrized input signal
– equivalent to computing the predictor from the cosine
transform of the signal. Such Frequency Domain Lin-
ear Prediction (FDLP) is the frequency-domain dual of
the well-known time-domain linear prediction (TDLP)
[14, 15]. In the same way that TDLP fits the power spec-
trum of an all-pole model to the power spectrum of a sig-
nal, FDLP fits a “power spectrum” of an all-pole model
(in this case in the time domain) to the squared Hilbert
envelope of the input signal. To obtain such a model for
a specific sub-band, one simply basis the prediction only
on the corresponding range of coefficients from the orig-
inal Fourier transform.

When we wish to summarize temporal dynamics,
rather than capturing every nuance of the temporal en-
velope, the all-pole approximation to the temporal trajec-
tory offers parametric control over the degree to which
the Hilbert envelope is smoothed (e.g. the number of
peaks in the smoothed envelope cannot exceed half the
order of the model). Moreover, the fit can be adjusted by
applying the transform techniques introduced in [16].

4. Auditory-like spectro-temporal patterns
from subband FDLP

Having a technique for estimating temporal envelopes in
individual frequency bands of the original signal permits
the construction of an spectrogram-like signal represen-
tation. Just as a typical spectrogram is constructed by ap-
pending individual short-term spectral vectors alongside
each other, a similar representation can be constructed by
vertical stacking of the temporal vectors approximating
the individual sub-band Hilbert envelopes, recalling the
outputs of the separate band-pass filters used to construct
the original, analog Spectrograph [17].

This is demonstrated in figure 1. The top panel
shows the time-frequency pattern obtained by short-term
Fourier transform analysis and Bark scale energy bin-
ning to 15 critical bands, which is the way the short-term



critical-band spectrum is derived in PLP feature extrac-
tion. The second panel shows the result of PLP smooth-
ing, with each 15-point vertical spectral slice now smooth
and continuous as a result of being fit with an LP model.
The third panel is based on a series 24-pole FDLP mod-
els, one for each Bark band, to give estimates of the
15 subband squared Hilbert envelopes. As with PLP,
cube-root compression is applied here to the sub-band
Hilbert envelope prior to computing the all-pole model
of the temporal trajectory. The similarity of all these pat-
terns is evident, but there are also some important dif-
ferences: Whereas the binned, short-time spectrogram is
‘blocky’ in both time and frequency, the PLP model gives
a smooth, continuous spectral profile at each time step.
Conversely, the temporal evolution of the spectral energy
in each sub-band is much smoother in the all-pole FDLP
representation, constrained by the implicit properties of
the temporal all-pole model.

5. PLP2

In PLP, an auditory-like critical-band spectrum, obtained
as the weighted summation of the short-term Fourier
spectrum followed by cube-root amplitude compression,
is approximated by an all-pole model in a manner simi-
lar to the way that conventional LP techniques approxi-
mate the linear-frequency short-term power spectrum of
a signal [18]. Subband FDLP offers an alternative way
to estimate the energy in each critical band as a function
of time, raising the possibility of replacing the short-term
critical band spectrum in PLP with this new estimate.

In doing so, a new representation of the critical-band
time-frequency plane is obtained. However, comparing
this new representation to the subband FDLP spectro-
temporal pattern (constrained by the all-pole model along
the temporal axis), the all-pole constraint is now along the
spectral dimension of the pattern.

Nothing prevents us repeating the processing along
the temporal dimension of the new representation to
again enforce the all-pole constraints along the time axis.
And the outcome of this step can be subject to another
stage of all-pole modeling on the spectral axis; this alter-
nation can be iterated until the difference between suc-
cessive representations is negligible. Convergence of
this process to a solution that approximates the peaks in
the underlying spectro-temporal pattern has not been yet
proven analytically, but our experiments so far support it.

At the end of the process, we have a two-dimensional
spectro-temporal auditory-motivated pattern that is con-
strained by all-pole models along both the time and fre-
quency axes. We therefore call this modelPerceptual
Linear Prediction Squared (PLP2). The “P” part (per-
ceptual constraints) comes from the use of a critical-band
frequency axis and from the use of a 250 ms critical-time-
span interval; the “LP” part indicates the use of all-pole
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Figure 2: PLP2 pole locations. The red points (which
form vertical lines) are the poles for each of the FDLP
temporal envelope estimates, and blue points (creating
horizontal lines) show the poles for each of the spectral
estimates from the conventional PLP stage.

modeling, and the “squared”” part comes from the use of
all-pole models along both the time and frequency axes.

6. Implementation Details

Taking the DCT of a 250 ms speech segment (equiva-
lent to the Fourier transform of the related 500 ms even-
symmetric signal) at a sampling rate of 8 kHz generates
2000 unique values in the frequency domain. We di-
vide these into 15 bands with overlapping Gaussian win-
dows whose widths and spacing select frequency regions
of approximately one Bark, and apply 24th order FDLP
separately on each of the 15 bands such that each pre-
dictor approximates the squared Hilbert envelope of the
corresponding sub-band. We compute the critical-band
time-frequency pattern within the 250 ms time span by
sampling each all-pole envelope at 240 points (i.e. ev-
ery 1.04 ms) and stack the temporal trajectories verti-
cally. This gives a 2-dimensional array amounting to
a spectrogram, but constructed row-by-row, rather than
column-by-column as in conventional short-term analy-
sis. This time-frequency pattern is the starting point for
further processing.

Next, 240 12th-order time-domain LP (TDLP) mod-
els are computed to model the spectra constituted by the
15 amplitude values in a vertical slice from the pattern at
at each of the 240 temporal sample points. The spectral
envelopes of these models are each sampled at 120 points
(i.e. every 0.125 Bark) and stacked next to each other to
form a new240 × 120 = 28,800 point spectro-temporal
pattern. Now each horizontal slice of 240 points is mod-
eled by the same process of mapping a compressed mag-
nitude ‘spectrum’ to an autocorrelation and thence to an
all-pole model, to yield 120 24th-order FDLP approxi-
mations to the temporal trajectories in the new fractional-
Bark subbands. Sampling these models on the same 240
point grid gives the next iteration of the 28,800 point
spectro-temporal pattern. The process then repeats and
has been observed to converge after a certain number of
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Figure 3:Mean-squared differences between the 28,800-
point log-magnitude surfaces obtained in successive iter-
ations of the PLP2 approximation.

iterations, where the number of iterations required for
convergence appears to depend on the models orders as
well as the compression factor in the all-pole modeling
process. The mean-squared difference between the log-
arithmic surfaces of the successive spectro-temporal pat-
terns as a function of the iteration number is shown in
figure 3, which shows stabilization after 10 iterations in
this example. (Although this plot shows that the differ-
ences between successive iterations do not decline all
the way to zero, we believe that the residual changes
in later iterations are immaterial; inspection of the time-
frequency distribution of these differences reveals no sig-
nificant structure.)

The final panel of figure 1 shows the results of the new
PLP2 compared with conventional PLP. The increased
temporal resolution in comparison with the 10 ms sam-
pled PLP (second panel) is very clear; the second impor-
tant property of the PLP2 surface, which is a little harder
to see in the picture, is the increased spectral resolution
in comparison with the 15 frequency values at each time
for the basic FDLP model (third panel).

Further insight can be obtained by plotting the pole
locations on the time frequency plane. In figure 2 the pole
locations are superimposed on a grayscale version of the
PLP2 pattern presented on the 4th pane of figure 1. Red
dots show the 12 FDLP poles for each of the 120 subband
envelope estimates; due to the dense frequency sampling,
the poles of adjacent bands are close in value, and the dots
merge into near-vertical curves in the figure. Blue dots
are the 6 TDLP poles at each of the 240 temporal sample
points, and merge into near-horizontal lines. (Pure-real
poles are not shown, so some frames show fewer than the
maximum number of possible poles.)

The blue TDLP poles successfully track the smoothed
formants in thet = 0.14 to 0.24 s region but they fail
to capture the transient at around 0.08 s. The red FDLP
poles, on the other hand, with their emphasis on temporal
modeling, make an accurate description of this transient.
As expected, neither TDLP or FDLP models track any
energy peaks in the quiet region between 0 and 0.08 s.

But, while the TDLP models for these temporal slices are
obliged to place their poles somewhere in this region, the
FDLP models are free to shift the majority of their poles
into the later portion of the time window, between 0.08
and 0.25 s, where the bulk of the energy lies.

7. Preliminary findings

We are currently investigating the use of these features
in automatic speech recognition (ASR). In order to find a
reasonable point of departure, we have attempted to cre-
ate features that are very similar to the conventional PLP
features used in many ASR systems, yet which still incor-
porate the unique features of PLP2. We are also obliged
to moderate the complexity of the calculations to make
the feature calculation feasible for the training set sizes
used in current ASR problems.

Our reduced implementation starts with a 250 ms seg-
ment of speech, then divides its DCT into 15 Bark bands.
Each band is fit with a 12th order FDLP polynomial, then
the resulting smoothed temporal envelope is sampled on
a 10 ms grid. The central-most spectral slices are then
smoothed across frequency using the conventional PLP
technique, but we do not perform any further iterations;
instead, the cepstra resulting from this stage are taken as
replacements for the conventional PLP features as input
to the recognizer.

Thus far, these features have indeed shown perfor-
mance very close to standard PLP features, achieving
word error that differ by less than 2% relative. (We have
tested two large-vocabulary tasks; in one case PLP2 was
better, and in one case worse.) Although small, these dif-
ferences are statistically very significant, and when we
combine the results from a PLP2 system with conven-
tional system outputs using simple word-level voting, we
achieve a significant improvement in overall accuracy.
Full details of these experiments are currently being pre-
pared for publication.

Calculation of these features was about 20× slower
than the conventional features. This comparison, how-
ever, is somewhat unfair since we are comparing an ex-
perimental, research implementation in Matlab to long-
standing, highly-optimized C-code.

8. Discussion and conclusions

We have introduced a new modeling scheme to describe
the time and frequency structure in short segments of
sound of about a quarter of a second. Based on recent
physiological results and psychoacoustic evidence, we
believe that a representation of about this scale is likely
involved in human auditory processing. The technique
of all-pole (linear predictive) modeling, applied in both
the time and frequency domains, allows us to smooth this
representation to adaptively preserve the most significant



peaks within this window in both dimensions. The con-
vergence of this representation after a few iterations con-
stitutes a novel and promising canonical description of
the information in each window.

In this preliminary paper we have presented the ba-
sic idea and given a simple illustration. Our current work
is to exploit this new description for practical tasks such
as speech recognition or other information extraction ap-
plications. Techniques for reducing the smoothed en-
ergy surface to a lower-dimensional description appro-
priate for statistical classifiers include conventional ba-
sis decompositions such as Principal Component Analy-
sis or two-dimensional DCTs. A second possibility, par-
alleling the representations proposed in [15], is to ex-
ploit the pole locations illustrated in figure 2 as a re-
duced, parametric description of the energy concentra-
tions. For instance, recording the ‘crossing points’ of
the nearly-continuous time and frequency pole trajecto-
ries could provide a highly compact description of the
principal energy peaks in each 250 ms spectro-temporal
window.
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