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ABSTRACT

A sungvocal line is the prominentfeatureof muchpopular
music. It would beusefulto reliably locatetheportionsof a mu-
sical track during which the vocalsarepresent,both asa ‘signa-
ture’ of the pieceandasa precursorto automaticrecognitionof
lyrics. Here,we approachthis problemby usingtheacousticclas-
sifier of a speechrecognizerasa detectorfor speech-like sounds.
Althoughsinging(includinga musicalbackground)is a relatively
poormatchto anacousticmodeltrainedonnormalspeech,wepro-
posevariousstatisticsof theclassifier’soutputin orderto discrim-
inatesingingfrom instrumentalaccompaniment.A simpleHMM
allows us to find a bestlabelingsequencefor this uncertaindata.
Onatestsetof forty 15secondexcerptsof randomly-selectedmu-
sic, our classifierachieved around80% classificationaccuracy at
theframelevel. Theutility of differentfeatures,andour plansfor
eventuallyrics recognition,arediscussed.

1. INTRODUCTION

Popularmusic is fast becomingone of the most importantdata
typescarriedby the Internet,yet our ability to make automatic
analysesof its contentis rudimentary. Of themany kindsof infor-
mationthatcouldbeextractedfrom musicsignals,we arepartic-
ularly interestedin thevocal line i.e. thesinging: this is often the
most important‘instrument’ in the piece,carryingboth melodic
‘hooks’ and of coursethe lyrics (word transcript)of the piece.
It would be very useful to be able to transcribesonglyrics with
an automaticspeechrecognizer, but this is currently impractical:
singingdiffers from speechin many ways,includingthephonetic
and timing modificationsemployed by singers,the interference
causedby the instrumentalbackground,andperhapseven thepe-
culiarwordsequencesusedin lyrics. However, asafirst stepin the
directionof lyrics recognition,we arestudyingtheproblemof lo-
catingthesegmentscontainingvoicefrom within theentirerecord-
ing, i.e. building a ‘singing detector’thatcanlocatethestretches
of voiceagainsttheinstrumentalbackground.

Suchasegmentationhasavarietyof uses.In general,any kind
of higher-level informationcansupportmoreintelligenthandling
of the mediacontent,for instanceby automaticallyselectingor
jumping betweensegmentsin a soundeditor application. Vocals
areoftenvery prominentin a pieceof music,andwe maybeable
to detectthemquiterobustlyby leveragingknowledgefrom speech
recognition.In thiscase,thepatternof singingwithin apiececould
form a useful ‘signature’ of the pieceas a whole, and one that
might robustly survive filtering, equalization,anddigital-analog-
digital transformations.

Transcriptionof lyrics wouldof courseprovideveryusefulin-
formationfor musicretrieval (i.e. query-by-lyric)andfor grouping
differentversionsof thesamesong. Locatingthevocal segments

within musicsupportsthis goalat recognition-time,by indicating
whichpartsof thesignaldeservetohaverecognitionapplied.More
significantly, however, robustsingingdetectionwould supportthe
developmentof a phonetically-labeleddatabaseof singingexam-
ples,by constrainingaforced-alignmentbetweenknown lyrics and
themusicsignalto searchonly within eachphraseor line of thevo-
cals,greatlyimproving thelikely accuracy of suchanalignment.

Note thatwe areassumingthat thesignalis known to consist
only of music,andthat theproblemis locatingthesingingwithin
it. We arenot directly concernedwith theproblemof distinguish-
ing betweenmusicandregularspeech(althoughourwork is based
upontheseideas),nor the interestingproblemsof distinguishing
vocalmusicfrom speech[1] or voice-over-musicfrom singing—
althoughwe notein passingthat the approachto be describedin
section2 couldprobablybeappliedto thosetasksaswell.

Therelatedtaskof speech-musicdiscriminationhasbeenpur-
suedusingavarietyof techniquesandfeatures.In [2], Scheirerand
Slaney defineda largeselectionof signal-level featuresthatmight
discriminatebetweenregular speechandmusic (with or without
vocals),andreportedanerrorrateof 1.4%in classifyingshortseg-
mentsfrom a databaseof randomly-recordedradio broadcastsas
speechor music. In [3], Williams andEllis attemptedthe same
task on the samedata,achieving essentiallythe sameaccuracy.
However, ratherthanusingpurpose-definedfeatures,they calcu-
lated somesimple statisticson the output of the acousticmodel
of a speechrecognizer(a neuralnetestimatingtheposteriorprob-
ability of 50 or so linguistic categories)appliedto the segment
to be classified;sincethe model is trainedto make fine distinc-
tionsamongspeechsounds,it respondsverydifferentlyto speech,
which exhibits thosedistinctions,ascomparedto musicandother
nonspeechsignalsthatrarelycontain‘good’ examplesof thepho-
neticclasses.

Note that in [2] and [3], the data was assumedto be pre-
segmentedso that the taskwassimply to classifypredefinedseg-
ments. More commonly, soundis encounteredas a continuous
streamthatmustbesegmentedaswell asclassified.Whendealing
with pre-definedclasses(for instance,music,speechandsilence),
a hiddenMarkov model(HMM) is often employed (as in [4]) to
make simultaneoussegmentationandclassification.

Thenext sectionpresentsour approachto detectingsegments
of singing. Section3 describessomeof the specificstatisticswe
triedasabasisfor thissegmentation,alongwith theresults.These
resultsarediscussedin section4, then section5 mentionssome
ideasfor futurework toward lyric recognition.We stateour con-
clusionsin section6.
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2. APPROACH

In this work, we apply theapproachof [3] of usinga speechrec-
ognizer’s classifierto distinguishingvocalsegmentsfrom accom-
paniment:Although,asdiscussedabove,singingis quitedifferent
from normalspeech,we investigatedtheideathataspeech-trained
acousticmodelwould respondin a detectablydifferentmannerto
singing(which sharessomeattributesof regular speech,suchas
formantstructureandphonetransitions)thanto otherinstruments.

We usea neuralnetwork acousticmodel, trainedto discrim-
inate betweencontext-independentphoneclassesof naturalEn-
glish speech,to generatea vectorof posteriorprobability features
(PPFs)whichweuseasthebasisfor ourfurthercalculations.Some
examplesappearin figure1, which shows thePPFsasa ‘posteri-
ogram’,aspectrogram-likeplot of theposteriorprobabilityof each
possiblephone-classasa functionof time. For well-matchingnat-
ural speech,theposteriogramis characterizedby a strongreaction
to a singlephoneperframe,a brief stayin eachphone,andabrupt
transitionsfrom phoneto phone. Regionsof non-speechusually
show a lessemphaticreactionto severalphonesat once,sincethe
correctclassificationis uncertain.In othercases,regionsof non-
speechmayevoke a strongprobabilityof the ‘background’class,
which hastypically beentrainedto respondto silence,noiseand
even backgroundmusic. Alternatively, musicmay resemblecer-
tain phones,causingeitherweak,relatively staticbandsor rhyth-
mic repetitionof these“f alse”phonesin theposteriogram.

Within music,theresemblancebetweenthesingingvoiceand
naturalspeechwill tendto shift thebehavior of thePPFscloserto-
wardthecharacteristicsof naturalspeechwhencomparedto non-
vocalinstrumentation,asseenin figure1. Thebasisof thesegmen-
tation schemepresentedhereis to detectthis characteristicshift.
We explore threebroadfeaturesetsfor this detection:(1) direct
modelingof the basicPPFfeatures,or selectedclassposteriors;
(2) modelingof derived statistics,suchasclassifierentropy, that
shouldemphasizethedifferencesin behavior of vocalandinstru-
mentalsound;and(3) averagesof thesevalues,exploiting thefact
thatthetimescaleof changein singingactivity is ratherlongerthan
thephoneticchangesthatthePPFswereoriginally intendedto re-
veal, and thus the noiserobustnessaffordedby somesmoothing
alongthetimeaxiscanbeusefullyapplied.

Thespecificfeaturesinvestigatedareasfollows:

� 12thorderPLPcepstralcoefficientsplusdeltasanddouble-
deltas.As abaseline,wetriedthesamefeaturesusedby the
neuralnetasdirectindicatorsof voicevs. instruments.� Full log-PPFvector i.e. a 54 dimensionalvector for each
time frame containingthe pre-nonlinearityactivations of
the output layer of the neuralnetwork, approximatelythe
logsof theposteriorprobabilitiesof eachphoneclass.� Likelihoodsof the log-PPFsunder ‘singing’ and ’instru-
ment’classes.Forsimplicity of combinationwith otheruni-
dimensionalstatistics,we calculatedthe likelihoodsof the
54-dimensionalvectors under the multidimensionalfull-
covarianceGaussiansderived from the singingandinstru-
mentaltraining examples,andusedthe logs of thesetwo
likelihoods,PPF

�������
and

���
	��
, for subsequentmodeling.� Likelihoods of the cepstral coefficients under the two

classes.As above, the39-dimensionalcepstralcoefficients
are evaluatedunder single Gaussianmodels of the two
classesto produceCep

� ����
and

� �
	��
.

� Backgroundlog-probability ��������������� . Since the back-
groundclasshasbeentrainedto respondto nonspeech,and
sinceits valueis oneminusthesumof theprobabilityof all
theactualspeechclasses,this singleoutputof theclassifier
is ausefulindicatorof voicepresenceor absence.� Classifierentropy. Following [3], we calculatethe per-
frameentropy of theposteriorprobabilities,definedas:

� �����! #"%$'&!(���)�*$ �+�,�����-(���).*$ �/� (1)

where ) *$ is the posteriorprobability of phoneclass 0 at
time � . This value shouldbe low when the classifieris
confidentthatthesoundbelongsto a particularphoneclass
(suggestingthat the signal is very speech-like), or larger
whentheclassificationis ambiguous(e.g.for music).

To separatethe effect of a low entropy due to a confi-
dent classificationas background,we also calculatedthe
entropy-excluding-background

� ��� astheentropy over the
53 truephoneticclasses,renormalizedto sumto 1.� Dynamism. Another featuredefinedin [3] is the average
sum-squareddifferencebetweentemporallyadjacentPPFs
i.e.

1 ���2�! #"%$3�-(���).*$ ��&4(���)�*6527$ �/�/8 (2)

Since well-matching speechcausesrapid transitions in
phoneposteriors,this is larger for speechthan for other
sounds.

Becauseour task was not simply classificationof segments
assingingor instrumental,but also to make the segmentationof
a continuousmusic stream,we usedan HMM framework with
two states,“singing” and “not singing”, to recover a labeling
for the stream. In eachcase,distributionsfor the particularfea-
turesbeingusedwerederived from hand-labeledtraining exam-
plesof singingandinstrumentalmusic,by fitting a singlemulti-
dimensionalGaussianfor eachclassto therelevanttrainingexam-
ples. Transitionprobabilitiesfor theHMM weresetto matchthe
labelbehavior in thetrainingexamples(i.e. theexit probabilityof
eachstateis theinverseof theaveragedurationof segmentslabeled
with thatstate).

3. RESULTS

3.1. Speech model

To generatethe PPFsat the basisof our segmentation,we used
a multi-layer perceptronneuralnetwork with 2000hiddenunits,
trained on the NIST BroadcastNews data set to discriminate
between54 context-independentphoneclasses(a subsetof the
TIMIT phones)[5]. This net is the sameas usedin [3], and is
publicly available.Thenetoperateson 16 msframesi.e. onePPF
frameis generatedfor each16 mssegmentof thedata.

3.2. Audio data

Our resultsarebasedon the samedatabaseusedin [2, 3] of 246
15-secondfragmentsrecordedat randomfrom FM radio in 1996.
Discardingany examplesthatdo not consistentirely of (vocal or
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Figure1: Spectrogramsof aspeechexampleandtwo musicalfragments,with andwithoutsinging,alongwith the‘posteriograms’showing
theoutputof thespeechclassifier. Thesingingin therightmostexample(markedby thegraybar)evokesa distinctive patternof response
in theposteriogram.

instrumental)musicleaves101fragments,66of whichcontainvo-
cals. We hand-labeledthe vocalsexamplesto mark the precise
segmentscontainingsinging;typically onesungphrasewould re-
sult in asinglesegment.Theaveragedurationof singingsegments
was5.5 seconds.40 fragmentswererandomlyselectedasa test
set. The remaining61 fragmentswere usedas labeledtraining
data.

3.3. Scoring

Table1 shows theperformanceof segmentationbasedon various
statisticsandcombinations.The resultsaregiven asframeerror
rate,i.e. for every 16 msframein thetestdata,the labelassigned
by thebestpaththroughtheHMM (basedon thestatisticsor fea-
turesshown) is comparedto the‘groundtruth’ labelfrom thehand-
marking. This measuredoesnot differentiatebetweenerrorsdue
to boundariesthat are shifted in time and errorsdue to inserted
or deletedsegmentsof singing (both kinds of errorsoccurred).
However, the frameerror rateprovidesa reasonablerelative per-
formancemeasure.

For eachfeaturebasis,the resultsof averagingthe features
overdifferentnumbersof framesareshown (whereaveragingover
one frame is just using the featuresdirectly). The 16 ms frame
resolutionof thespeechclassifierwasmuchfiner thanneededfor
the segmentationtask,andaveragingover a longertime window
helpedsmoothout frame-to-framevariationsto reveal the under-
lying trends.

Theseresultsarealsoplottedin figure2,whichshowsthevari-
ation of frame error rate for several different featurebasesas a
function of averagingwindow length (for a wider rangeof win-
dows thanreportedin table1). We seethat averagingimproves
performancefairly uniformly out to 81 frames(1.3 seconds),but
beyondthat,theaveragingwindow is longerthanmany of theseg-
mentsto bedetected,andperformancebegins to decline. In each
case,theHMM is finding labelsfor each16 msframe,althougha
practicalsystemwould usea coarserresolution.

4. DISCUSSION

It is disappointingthat our carefully-designedcustomstatistics
performedno betterthandirect modelingof the raw high dimen-
sionalfeaturespace,andindeedthattheraw PPFsproducedby the
neuralnetwork classifiergavemoreerrorsthantheraw cepstralco-
efficients.However, thePPF-basedlikelihoods

� ����
and

� �@	��
do

ClassificationFrameErrorRate
Features/stats 1 frame 9 frame 81 frame

39 Cepstra 31.4% 26.3% 29.4%
54 log-PPFs 35.2% 31.0% 31.2%
Cep ������� � �
	�� � & �,�A��� � ����� � 35.2% 31.0% 31.2%
PPF ������� ���
	�� � & �,�A��� ������� � 25.1% 23.5% 20.4%�,�A����������� 41.3% 40.6% 40.3%
Entropy

�
38.6% 36.2% 36.1%� ��� 35.5% 36.4% 35.8%

Dynamism
1

44.8% 44.8% 44.6%
All 6 stats 28.8% 29.0% 21.3%
Best3 26.1% 26.6% 18.8%

Table 1: Frameerror rate for vocals/instrumentalsegmentation
basedon differentfeaturesor statistics,eitherusingthe valuesat
eachframe(“1 frame”), or averagingthe featureswithin overlap-
ping windows of 9 or 81 frames.“All 6 stats”refersto thecombi-
nationof thefour individualstatisticsshown in thethird panelplus
the PPF-based�,�A��� ���
	�� � and ������� ������ � . “Best 3” refersto the
best-performingcombinationof PPF �,����� � �
	�� � and �,����� � ���� �
combinedwith

�
.

outperformthe cepstralbaseline,especiallyin combinationwith
oneof thehand-designedfeaturessuchasentropy

�
.

Wenotethesignificantimprovementachievedby addingafur-
ther stageof simpleGaussianmodelingon the 2-D featurespace
formedby thelog-likelihoodsPPF�,�A��� � �@	�� � and �,�A��� � ����� � (ob-
tainedfrom the54 dimensionalbaselineGaussianmodels).Since
thereis basicallynoadditionalinformationavailableat thissecond
stageof calculation,this indicatesamodelingweakness:wecould
presumablymatchor betterthis resulte.g.by usingGaussianmix-
turemodels(GMMs) in theoriginalhigh-dimensionalspace.

The cepstral-basedfeatures did not improve with time-
averagingover a window longer than9 frames. Presumably, the
rapidrateof changeof thecepstrumleadsto within-classvariation
thatis toogreatto beamenableto alongersmoothingwindow. The
factthatthePPF-basedfeaturesdo improve with longertimeaver-
agingconfirmsthatthey don’t usefinetemporalstructureof phone
transitionssuchas our hand-designedfeatureswere designedto
detect,but rathercharacterizetheoverall distributionof phones.

In browsing the labeling errors, we saw many instancesof
shortexcursionsinto theincorrectclass,particularlywhentheav-
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Figure 2: Variationof vocals/accompanimentlabeling frame er-
ror rateasa functionof averagingwindow lengthin frames(each
frameis 16 ms,soa243framewindow spans3.9sec).

eragingwindow wasshort.Imposinga minimumlabeldurationof
severalhundredmillisecondswouldnotexcludeany of theground-
truth segments,so theseerrorscould be eliminatedwith slightly
morecomplicatedHMM structurethatenforcessucha minimum
durationthroughrepeatedstates.

What began as a searchfor a few key featureshas led to
a high-order, but more task-independent,modelingsolution: In
[2], a number of unidimensionalfunctions of an audio signal
were defined that should help to distinguish speechfrom mu-
sic, and good discriminationwas achieved by using just a few
of them. In [3], considerationof the behavior of a speechrecog-
nizer’s acousticmodelsimilarly led to a smallnumberof statistics
which werealsosufficient for gooddiscrimination.In thecurrent
work, we attempteda relatedtask—distinguishingsinging from
accompaniment—usingsimilar techniques.However, we discov-
eredthat training a simple high-dimensionalGaussianclassifier
directly on speechmodeloutputs—oreven on the raw cepstra—
performedaswell or better.

At thispoint, thesystemresemblesthe‘tandemacousticmod-
els’ (PPFsusedas inputs to a Gaussian-mixture-modelrecog-
nizer) that we have recently beenusing for speechrecognition
[6]. Our bestperformingsingingsegmenteris a tandemconnec-
tion of a neural-netdiscriminatoryspeechmodel, followed by a
high-dimensionalGaussiandistribution modelfor eachof thetwo
classes,followedby anotherpairof Gaussianmodelsin theresult-
ing low-dimensionallog-likelihood space. One interpretationof
this work is that it is moresuccessful,whendealingwith a rea-
sonablequantityof training data,to train large modelswith lots
of parametersandfew preconceptions,thanto try to ‘shortcut’ the
processby defining low-dimensionalstatistics. This lessonhas
beenrepeatedmany timesin patternrecognition,but westill try to
betterit by clever featuredefinitions.

5. FUTURE WORK

As discussedin the introduction,this work is orientedtoward the
transcriptionof lyrics asabasisfor musicindexing andretrieval. It
is clear(e.g.from figure1) thatusingaclassifiertrainedonnormal
speechis too poorly matchedto theacousticsof singingin popu-
lar musicto beableto supportaccurateword transcription.More

promisingwould be a classifiertrainedon examplesof singing.
To obtainthis, we needa trainingsetof singingexamplesaligned
to their lexical (andultimately phonetic)transcriptions.The ba-
sic word transcriptsof many songs—i.e. the lyrics—arealready
available,andthegoodsegmentationresultsreportedhereprovide
the basisfor a high-quality forcedalignmentbetweenthe music
andthe lyrics, at leastfor someexamples,even with the poorly-
matchedclassifier.

Ultimately, however, we expectthat in orderto avoid theneg-
ative effect of the accompanying instrumentson recognition,we
needto usefeaturesthat cango someway toward separatingthe
singing signal from other sounds. We seeComputationalAudi-
tory SceneAnalysis,coupledwith Missing-Dataspeechrecogni-
tion andMulti-Sourcedecoding,asa very promisingapproachto
this problem[7].

6. CONCLUSIONS

Wehavefocusedontheproblemof identifyingsegmentsof singing
within popularmusicasausefulandtractableform of contentanal-
ysis for music,particularlyasa precursorto automatictranscrip-
tion of lyrics. UsingPosteriorProbabilityFeaturesobtainedfrom
theacousticclassifierof a general-purposespeechrecognizer, we
were able to derive a variety of statisticsand modelswhich al-
lowed us to train a successfulvocalsdetectionsystemthat was
around80%accurateat theframelevel. This segmentationis use-
ful in its own right, but alsoprovidesus with a goodfoundation
uponwhich to build a trainingsetof transcribedsungmaterial,to
beusedin moredetailedanalysisandtransriptionof singing.
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