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ABSTRACT

Speaker separation has conventionally been treated as a problem
of Blind Source Separation (BSS). This approach does not utilize
any knowledge of the statistical characteristics of the signals to be
separated, relying mainly on the independence between the var-
ious signals to separate them. Maximum-likelihood techniques,
on the other hand, utilize knowledge of the a priori probability
distributions of the signals from the speakers, in order to effect
separation. In [5] we presented a Maximum-likelihood speaker
separation technique that utilizes detailed statistical information
about the signals to be separated, represented in the form of hidden
Markov models (HMMs), to estimate the parameters of a filter-
and-sum processor for signal separation. In this paper we show
that the filters that are estimated for any utterance by a speaker
generalize well to other utterances by the same speaker, provided
the locations of the various speakers remains constant. Thus, fil-
ters that have been estimated using a “training” utterance of known
transcript can be used to separate all future signals by the speaker
from mixtures of speech signals in an unsupervised manner. On
the other hand, the filters are ineffective for other speakers, indi-
cating that they capture the spatio-frequency characteristics of the
speaker.

1. INTRODUCTION

There are several situations where two or more speakers speak si-
multaneously, and it is necessary to be able to separate the speech
from the individual speakers from recordings of the simultane-
ous speech. Conventionally, this is referred to as the speaker-
separation or source-separation problem. One approach to this
problem is through the use of a time-varying filter on single-
channel recordings of speech spoken simultaneously by two or
more speakers [1, 2]. This approach uses extensive and speaker
specific prior information about the statistical nature of speech
from the different speakers, usually represented by dynamic mod-
els like the hidden Markov model (HMM), to compute the time-
varying filters. The utility of time-varying filter approach is lim-
ited by the fact that the amount of information present in a single
recording is usually insufficient to do effective speaker separation.

A second, more popular approach to speaker separation is
through the use of signals recorded using multiple microphones.
The algorithms involved typically require at least as many micro-
phones as the number of signal sources. The problem of speaker
separation is then treated as one of Blind Source Separation (BSS),
which is performed using standard techniques like Independent
Component Analysis (ICA). In this approach, no a priori knowl-
edge of the signals is assumed. Instead, the component signals are

estimated as a weighted combination of current and past samples
from the multiple recordings of the mixed signals. The weights
are estimated to optimize an objective function that measures the
independence of the estimated component signals [3]. The blind
multiple-microphone based approach ignores the known a priori
probability distribution of the speakers, a potentially important
source of information.

Maximum-likelihood source separation techniques (e.g. [4]),
on the other hand, utilize the a priori probability distribu-
tions of individual signals to separate the signals from multiple-
microphone recordings. Typically, the a priori distribution of the
time-domain signals are considered. For the purpose of modelling
these distributions, the samples of the time-domain signal are usu-
ally considered to be independent and identically distributed.

In [5] we report a Maximum-likelihood speaker separation
technique where we model the a priori distribution of frequency-
domain representations, i.e. log-spectra of the signals from the
various speakers using HMMs, which capture the temporal char-
acteristics of the signal. The actual signal separation is performed
in the time domain, using the filter-and-sum method [6] described
in Section 2. The algorithm can hence be viewed as beamforming
that is performed using statistical information about the expected
signals. The parameters of the filters estimated using an EM algo-
rithm that maximizes the likelihood of log-spectral features com-
puted from the separated signals. The iterations of the EM algo-
rithm require the distribution of mixed signal, which is composed
from the marginal distributions of the signals using locally linear
transformations of the state output densities of the individual sig-
nals.

In [5] we report signal separation results when the HMMs
for the signals are composed with full knowledge of the word se-
quences uttered by the various speakers. The delay-and-sum filters
estimated using these HMMs are shown to be highly effective at
separating the signals for which they were trained. In this paper
we extend the results reported in [5], and evaluate the general-
izability of the filters estimated for a given utterance. We estab-
lish experimentally that the estimated filters actually capture the
spatio-frequency characteristics of the individual speakers, and do
not merely over fit to the specific utterances for which they were
trained. Thus, filters estimated for a given utterance from a speaker
at any location are also effective at separating other utterances
by the same speaker from that location. The filters can hence be
trained using an utterance for which the transcriptions are known,
and then used for subsequent utterances by the same speaker. On
the other hand, they are ineffective for other speakers at the same
location.

The rest of this paper is arranged as follows: In Section 2 we
outline the filter-and-sum array processing methodology. In Sec-



tions 3 and 4 the EM algorithm for estimating the filters in the
filter-and-sum array is briefly outlined. In Section 5 we describe
our experiments and present our experimental results. Finally in
Section 5 we present our conclusions.

2. FILTER-AND-SUM MICROPHONE PROCESSING

In this section we will describe the filter-and-sum array processing
to be used for developing the current algorithm for speaker sepa-
ration. The only assumption we make in this context is that the
number of speakers is known. For each of the speakers, a separate
filter-and-sum array is designed. The signal from each microphone
is filtered by a microphone-specific filter. The various filtered sig-
nals are summed to obtain the final processed signal. Thus, the
output signal for speaker i, ����� ��� , is obtained as:
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where � is the number of microphones in the array, � � � ��� is the
signal at the ����� microphone and � ����� ��� is the filter applied to the� � � filter for speaker ! . The filter impulse responses � � � � ��� must
be optimized such that the resultant output � � � ��� is the separated
signal from the ! � � speaker.

3. TRAINING THE FILTERS FOR A SPEAKER

In the training phase, the filters for any speaker are optimized us-
ing the available information about their speech. The information
used is based on the assumption that the correct transcription of the
speech from the speaker whose signal is to be extracted is known
for a short training signal. It is assumed that this training signal
has the same characteristics in terms of speakers and their relative
positions with respect to the microphones as the combined signals
that the filters are intended to separate. We further assume that
we have access to a speaker-independent hidden Markov model
(HMM) based speech recognition system that has been trained on
a 40-dimensional Mel-spectral representation of the speech sig-
nal. The recognition system includes HMMs for the various sound
units that the language comprises. From these and the known tran-
scription for the speaker’s training utterance, we first construct an
HMM for the utterance. Following this, the filters for the speaker
are estimated to maximize the likelihood of the sequence of 40-
dimensional Mel-spectral vectors computed from the output of the
filter-and-sum processed signal, on the utterance HMM.

For the purpose of optimization, we must express the Mel-
spectral vectors as a function of the filter parameters as follows:
We concatenate the filter parameters for the ! � � speaker, for all
channels, into a single vector h � . Let " � represent the sequence of
Mel-spectral vectors computed from the output of the array for the!#� � speaker. Let $ � � be the %�� � spectral vector in " � . $ � � is related
to h � by the following equation:
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where y � � is a vector representing the sequence of samples from� � � ��� that are used to compute $ � % , M is the matrix of the weighting
coefficients for the Mel filters, F is the Fourier transform matrix
and X � is a supermatrix formed by the channel inputs and their
shifted versions.

Let < � represent the set of parameters for the HMM for the
utterance from the ! � � speaker. In order to optimize the filters for
the ! � � speaker, we maximize � �=, " � 3 	>&)(+*�,9?@, " � - < � 3�3 , the log-
likelihood of " � on the HMM for that speaker. � � , " � 3 must be
computed over all possible state sequences through the utterance
HMM. However, in order to simplify the optimization, we assume
that the overall likelihood of " � is largely represented by the like-
lihood of the most likely state sequence through the HMM, i.e.,?@, " � - < � 3BA ?@, " �DC S � - < � 3 , where S � represents the most likely
state sequence through the HMM. Under this assumption, we get

� � , " � 3 	 :�
� �� &)(+*�,9?@, $ � � - s � � 3�3FE &�(G*�,9?@, s � � C s � 5 CIHJHJC s � : 3�3 (3)

where 1 represents the total number of vectors in " � , and s � � rep-
resents the state at time % in the most likely state sequence for the! � � speaker. � (G*�,9?@, s � � C s � 5 CIHJHJC s � : 3�3 does not depend on $ � � or
the filter parameters, and therefore does not affect the optimiza-
tion, hence maximizing equation 3 is the same as maximizingK &)(+*�,9?@, $ � � - s � � 3�3 . We make the simplifying assumption that
this is equivalent to minimizing the distance between " � and the
most likely sequence of vectors for the state sequence S � . When
state output distributions in the HMM are modeled by a single
Gaussian, the most likely sequence of vectors is simply the se-
quence of means for the states in the most likely state sequence. In
the rest of this paper we will refer to this sequence of means as the
target sequence for the speaker. We can now define the objective
function to be optimized for the filter parameters as:
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where the % ��� vector in the target sequence, P
�
s RTS is the mean of

s � � , the % � � state, in the most likely state sequence S � .
It is clear from equations 2 and 4 that

L � is a function of h � .
Direct optimization of

L � with respect to h � is, however, not pos-
sible due to the highly non-linear relationship between the two.
We therefore optimize

L
using the method of conjugate gradient

descent.
The filter optimization algorithm proceeds iteratively by alter-
nately estimating the best target, and optimizing the filters. Further
details of the filter optimization algorithm can be found in [5].
Since the algorithm aims to minimize the distance between the
output of the array and the target, the choice of a good target be-
comes critical to its performance. The next section deals with the
determination of the target sequences for the various speakers.

4. TARGET ESTIMATION

The ideal target would be a sequence of Mel-spectral vectors ob-
tained from clean uncorrupted recordings of the speaker. All
other targets must be considered approximations to the ideal tar-
get. In this work we attempt to derive the target from the HMM
for that speaker’s utterance. This is done by determining the best
state sequence through the HMM from the current estimate of that
speaker’s signal. A direct approach to obtaining the state sequence
would be to directly find the most likely state sequence for the
sequence of Mel-spectral vectors for the signal. Unfortunately,
in the early iterations of the algorithm, when the filters have not
yet been fully optimized, the output of the filter-and-sum array for
any speaker contains a significant fraction of the signal from other



speakers as well. As a result, naive alignment of the output to the
HMM results in poor estimates of the target.

Instead, we also take into consideration the fact that, at any it-
eration, the array output is a mixture of signals from all the speak-
ers. The HMM that represents this signal is a factorial HMM
(FHMM) that is the cross-product of the individual HMMs for the
various speakers. In an FHMM each state is a composition of one
state from the HMMs for each of the speakers, reflecting the fact
that the individual speakers may have been in any of their respec-
tive states, and the final output is a combination of the output from
these states. Figure 1 illustrates the dynamics of an FHMM for
two speakers.

from
composed signal

Feature
Vectors

HMM for speaker 1

HMM for speaker 2

Fig. 1. Factorial HMM for two speakers (two chains).

For simplicity, we focus on the two-speaker case. Extension
to more speakers is straightforward. Let ���� represent the !#� � state
of the HMM for the � � � speaker (where �����	� C�
� ). Let � ���� �
represent the factorial state obtained when the HMM for the � � �
speaker is in state i and that for the & � � speaker is in state j. The
output density of � ���� � is a function of the output densities of its
component states:

?@,�� - � ���� � 3 	��O,9?@,�� - � �� 3 C=?@,�� - � �� 3�3 (5)

The precise nature of the function �O, 3 depends on the proportions
to which the signals from the speakers are mixed in the current
estimate of the desired speaker’s signal. This in turn depends on
several factors including the original signal levels of the various
speakers, and the degree of separation of the desired speaker ef-
fected by the current set of filters. Since these are difficult to de-
termine in an unsupervised manner, �O, 3 cannot be precisely deter-
mined.

We do not attempt to estimate �O, 3 . Instead, the HMMs for
the individual speakers are constructed to have simple Gaussian
state output densities. We assume that the state output density for
any state of the FHMM is also a Gaussian whose mean is a lin-
ear combination of the means of the state output densities of the
component states. We define P ���� � , the mean of the Gaussian state
output density of � ���� � as:

P ���� � 	 A � P �� E A � P �� (6)

where P �� represents the . dimensional mean vector for � �� and
A � is a .�� . weighting matrix. The covariance of the factorial
state � ���� � is also similarly modelled.

The state output density of the factorial state ������ � is given by:
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(7)
The various A � values and the covariance’s parameters are

unknown and must be estimated from the current estimate of the
speaker’s signal. The estimation is performed using the expecta-
tion maximization (EM) algorithm. In the expectation (E) step of

the algorithm, the a posteriori probabilities of the various facto-
rial states, and thereby the a posteriori probabilities of the states
of the HMMs for the speakers, are found. The factorial HMM has
as many states as the product of the number of states in its com-
ponent HMMs and direct computation of the E step is prohibitive.
We therefore take the variational approach proposed in et. al. [7]
for the computation. Update formulae for all the parameters are
obtained in the maximization (M) step. Here we only present the
update formula for variable A. For the others, please refer to [5].
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Once the EM algorithm converges and the covariance terms
are computed, the best state sequence for the desired speaker can
also be obtained from the FHMM, also using the variational ap-
proximation.

The overall system to determine the target for a speaker now
works as follows: Using the feature vectors from the unprocessed
signal and the HMMs found using the transcriptions, the differ-
ent parameters are iteratively updated until the total log-likelihood
converges.

Thereafter, the most likely state sequence through the desired
speaker’s HMM is found. Once the target is obtained, the filters
are optimized, and the output of the filter-and-sum array is used to
reestimate the target. The system is said to have converged when
the target does not change on successive iterations.

A schematic of the overall system is shown in figure 2.

5. EXPERIMENTAL EVALUATION

In [5] we report experiments where we show that the proposed al-
gorithm is highly effective at separating speech signals with known
transcript. It was shown that the procedure was able to extract the
signals from a background speaker that were 20dB below those
from a foreground speaker.

The goal of the experiments reported in this section is to eval-
uate the generalization of the estimated filters to other signals. For
these experiments, simulated mixed-speaker recordings were gen-
erated using utterances from the test set of the Wall Street Jour-
nal(WSJ0) corpus. Room simulation impulse response filters were
designed for a room 4m � 5m � 3m with a reverberation time of
200msec. The microphone array configuration consisted of 8 mi-
crophones placed around an imaginary 0.5m � 0.3m flat panel dis-
play on one of the walls. To obtain mixed recordings, two speech
sources were placed in different locations in the room. A room im-
pulse response filter was created for each source/microphone pair.
The clean speech signals for both sources were passed through
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Fig. 2. Complete signal separation system for speaker 1.



each of the 8 speech source room impulse response filters and then
added together.

Mixed training recordings were generated using two utter-
ances, each from a different speaker. A different position in the
room was assigned to each speaker. Filters were estimated for
each of the speakers in the training mixture using the algorithm de-
scribed in this paper. For the test data, mixed recordings were gen-
erated using other utterances, both with utterances from the same
speakers as in the training recording, and with recordings from
new speakers. The locations of the speakers in the test recordings
were also varied, with recordings being generated both from the
same locations as the training speakers, and from other locations.

Table 1 shows the separation results for four typical mixed
recordings, obtained with filters estimated from a single training
recording. The separation results for the training utterances are
also shown. The table gives the ratio of the energy of the sig-
nal from the desired speaker to that from the competing speaker,
measured in decibels, in the separated signals. We refer to this
measurement as the “speaker-to-speaker ratio”, or the SSR. The
higher this value, the higher the degree of separation obtained for
the desired speaker.

The first row in 1 (labeled Delay & Sum) shows separation re-
sults obtained with a default comparator. Since the basic approach
is that of beamforming, we designated simple delay-and-sum pro-
cessing [6] as the comparator. Here the signals are simply aligned
to cancel out the delays from the desired speaker to the micro-
phone (computed here with full prior knowledge of speaker and
microphone positions) and added. The second row in 1 shows the
results for the filter-and-sum processing using the filter for the de-
sired speaker. The columns in the table are arranged pair-wise.
Each column reports the separation performance obtained for one
of the two speakers. In all cases, the SSR for the desired speaker
is reported.

In the experiment, we measure the similarity between training
and test signals by two factors: relative distance to the speakers
positions on the training signal and whether the test and training
utterances are generated by the same speakers or not. These values
are given in the table just above the “sp*/sp*” labels. The first set
of test signals has 0.0 relative distance from the locations of the
speakers in the training utterances, and is generated by the same
speakers as in the training utterances. The separation results are as
good as with the training signal. This shows that the filters are well
able to generalize to other utterances by the same speakers in the
same location. Test signal set 2 is also composed from utterances
by the same speakers. However their relative position with respect
to the speaker positions in the training signals has a difference of
1.48m. The separation results are still good, showing that the fil-
ters are relatively robust to minor fluctuations in speaker position.
Test signal set 3 is also composed from utterances by the same
speakers as in the training signal but the speaker positions were
swapped. This had drastic influence on separation performance:
here the filter sets for both speakers retrieved the signal from the
foreground speaker. The last set of test signals corresponds to two
different speakers placed in the same positions as in the training
sequences. In this test both filter sets retrieved the signal from the
background speaker.

The results suggest that the filters learn both speaker specific
frequency characteristics, as well as the spatial characteristics of
the speakers. Also, for a given set of speakers, the estimated filters
are relatively robust to small variations in speaker location.

Training Test1
Relative Same 0.00m, yes 0.00m, yes
Distance Speakers Sp1/Sp2 Sp2/Sp1 Sp1/Sp2 Sp2/Sp1

Delay&Sum -11dB +12dB -11dB +12dB
Filter&Sum +36dB +24dB +35dB +23dB

Test2 Test3 Test4
1.48m, yes 2.54m, yes 0.00m, no

Sp1/Sp2 Sp2/Sp1 Sp1/Sp2 Sp2/Sp1 Sp1/Sp2 Sp2/Sp1
-12dB +13dB -12dB +14dB +2dB +1dB
+34dB +18dB -40dB +29dB +46dB -8dB

Table 1. SSRs obtained for different signals. For the training sig-
nal, sp1 represents for the background speaker, and sp2 for the
foreground speaker.

6. CONCLUSIONS AND FUTURE WORK

The proposed algorithm is observed to result in filter-and-sum ar-
ray processors that are specific to the speaker and the speaker lo-
cations represented by the training utterances, but not to the actual
contents of the utterance themselves. Further they are observed to
be robust to small variations in speaker location. While this imme-
diately presents the possibility of using such a technique in situa-
tions such as meeting transcription, where speakers are relatively
stationary and can be expected to be willing to record a calibra-
tion utterance, the greater implication is the feasibility of online
algorithms that are based on the same principle. We note that the
specific implementation described in this paper and [5] does not
lend itself simply to online implementations. However, online im-
plementations become feasible with relatively minor modification
of the statistical models and the objective functions used in filter
estimation, provided a good initial value is available for the fil-
ters. Hence, the observed speaker specificity and the robustness to
minor variations in position, suggest that the algorithm can be ex-
tended to continually track a specific speaker provided the speaker
location changes relatively slowly. Future work will explore this
possibility.
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