Machine Recognition of Sounds in Mixtures

Outline

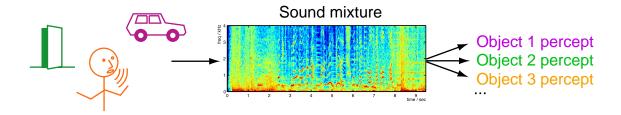
- 1 Computational Auditory Scene Analysis
- 2 Speech Recognition as Source Formation
- Sound Fragment Decoding
- 4 Results & Conclusions

Dan Ellis <dpwe@ee.columbia.edu> LabROSA, Columbia University, New York

Jon Barker <j.barker@dcs.shef.ac.uk> SPandH, Sheffield University, UK

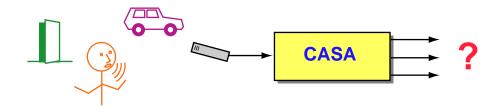
1 Computational Auditory Scene Analysis (CASA)

 Human sound organization: Auditory Scene Analysis



- composite sound signal → separate percepts
- based on ecological constraints
- acoustic cues → perceptual grouping
- Computational ASA:
 Doing the same thing by computer

What is the goal of CASA?



Separate signals?

- output is unmixed waveforms
- underconstrained, very hard ...
- too hard? not required?

Source classification?

- output is set of event-names
- listeners do more than this...

• Something in-between? Identify independent sources + characteristics

- standard task, results?

Segregation vs. Inference

Source separation requires attribute separation

- sources are characterized by attributes (pitch, loudness, timbre + finer details)
- need to identify & gather different attributes for different sources ...

Need representation that segregates attributes

- spectral decomposition
- periodicity decomposition

Sometimes values can't be separated

- e.g. unvoiced speech
- maybe infer factors from probabilistic model?

$$p(O, x, y) \rightarrow p(x, y|O)$$

or: just skip those values,
 infer from higher-level context

Outline

- 1 Computational Auditory Scene Analysis
- 2 Speech Recognition as Source Formation
 - Standard speech recognition
 - Handling mixtures
- **3** Sound Fragment Decoding
- 4 Results & Conclusions

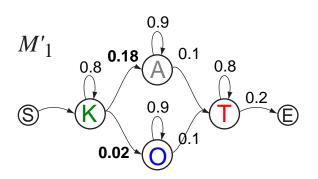
2

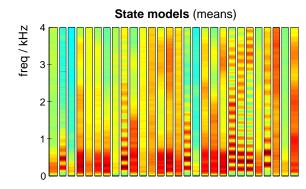
Speech Recognition as **Source Formation**

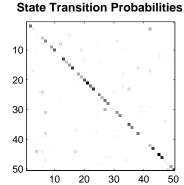
- Automatic Speech Recognition (ASR): the most advanced sound analysis
- ASR extracts abstract information from sound
 - (i.e. words)
 - even in mixtures (noisy backgrounds) .. a bit
- ASR is not signal extraction: only certain signal information is recovered
 - .. just the bits we care about
- Not CASA preprocessing for ASR:
 Instead, approach ASR as an example of CASA
 - words = description of source properties
 - uses strong prior constraints: signal models
 - but: must handle mixtures!

How ASR Represents Speech

Markov model structure: states + transitions

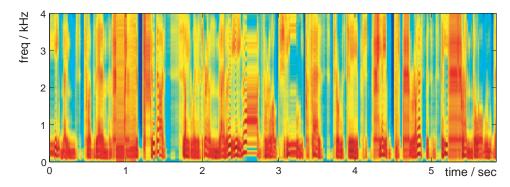






Generative model

but not a good speech generator!



only meant for inference of p(X|M)

Sequence Recognition

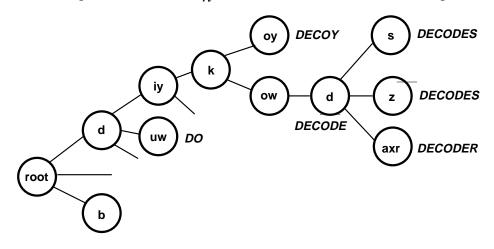
Statistical Pattern Recognition:

$$M^* = \underset{M}{\operatorname{argmax}} P(M|X) = \underset{M}{\operatorname{argmax}} \frac{P(X|M) \cdot P(M)}{P(X)}$$
models observations

Markov assumption decomposes into frames:

$$P(X|M) = \prod_{n} p(x_n|m_n) p(m_n|m_{n-1})$$

Solve by searching over all possible state sequences $\{m_n\}$.. but with efficient pruning:



Ellis & Barker

Approaches to sound mixture recognition

- Separate signals, then recognize
 - e.g. (traditional) CASA, ICA
 - nice, if you can do it
- Recognize combined signal
 - 'multicondition training'
 - combinatorics...
- Recognize with parallel models
 - full joint-state space?
 - divide signal into fragments, then use missing-data recognition

Outline

- 1 Computational Auditory Scene Analysis
- 2 Speech Recognition as Source Formation
- **3** Sound Fragment Decoding
 - Missing Data Recognition
 - Considering alternate segmentations
- 4 Results & Conclusions

3

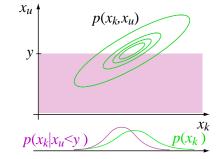
Sound Fragment Decoding

- Signal separation is too hard! Instead:
 - segregate features into partially-observed sources
 - then classify
- Made possible by missing data recognition
 - integrate over uncertainty in observations for true posterior distribution
- Goal: Relate clean speech models P(X|M)to speech-plus-noise mixture observations
 - .. and make it tractable

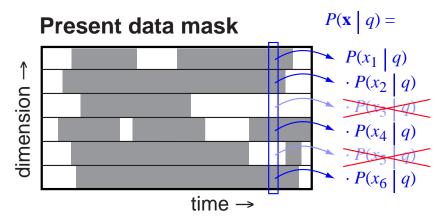
Missing Data Recognition

- Speech models $p(\mathbf{x}|m)$ are multidimensional...
 - i.e. means, variances for every freq. channel
 - need values for all dimensions to get $p(\bullet)$
- But: can evaluate over a subset of dimensions x_k

$$p(\mathbf{x}_k|m) = \int p(\mathbf{x}_k, \mathbf{x}_u|m) d\mathbf{x}_u$$



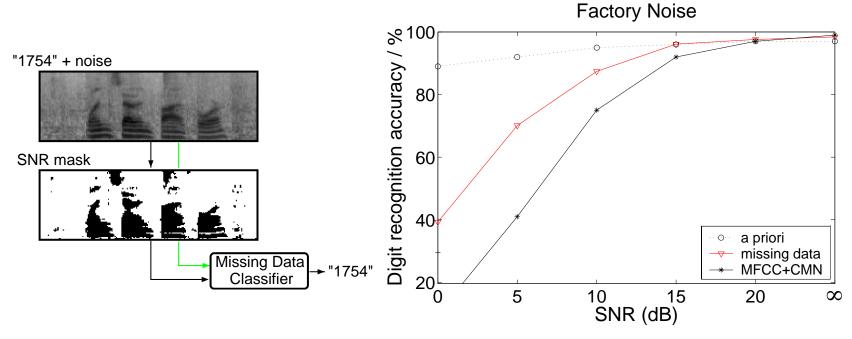
Hence, missing data recognition:



hard part is finding the mask (segregation)

Missing Data Results

- Estimate static background noise level *N*(*f*)
- Cells with energy close to background are considered "missing"



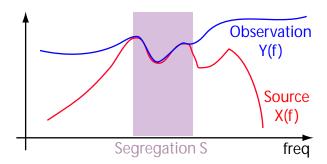
- must use spectral features!
- But: nonstationary noise → spurious mask bits
 - can we try removing parts of mask?

Comparing different segregations

• Standard classification chooses between models *M* to match source features *X*

$$M^* = \underset{M}{\operatorname{argmax}} P(M|X) = \underset{M}{\operatorname{argmax}} P(X|M) \cdot \frac{P(M)}{P(X)}$$

• Mixtures: observed features Y, segregation S, all related by P(X|Y,S)



Joint classification of model and segregation:

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

- P(X) no longer constant

Calculating fragment matches

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

- P(X|M) the clean-signal feature model
- P(X|Y,S)/P(X) is X 'visible' given segregation?
- Integration collapses some bands...
- P(S|Y) segregation inferred from observation
 - just assume uniform, find S for most likely M
 - or: use extra information in Y to distinguish S's...

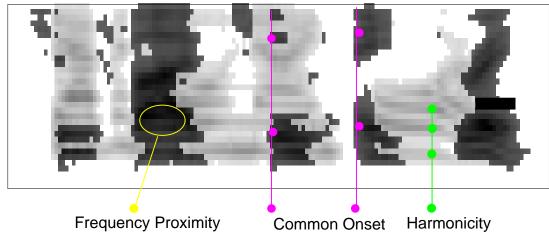
Result:

Ellis & Barker

 probabilistically-correct relation between clean-source models P(X|M)and inferred, recognized source + segregation P(M,S|Y)

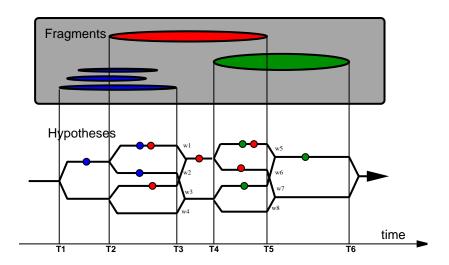
Using CASA features

- P(S|Y) links acoustic information to segregation
 - is this segregation worth considering?
 - how likely is it?
- Opportunity for CASA-style information to contribute
 - periodicity/harmonicity:
 these different frequency bands belong together
 - onset/continuity:
 this time-frequency region must be whole



Fragment decoding

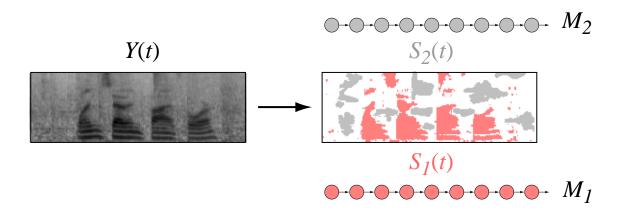
 Limiting S to whole fragments makes hypothesis search tractable:



- choice of fragments reflects $P(S|Y) \cdot P(X|M)$ i.e. best combination of segregation and match to speech models
- Merging hypotheses limits space demands
 - .. but erases specific history

Multi-Source Decoding

Match multiple models at once?



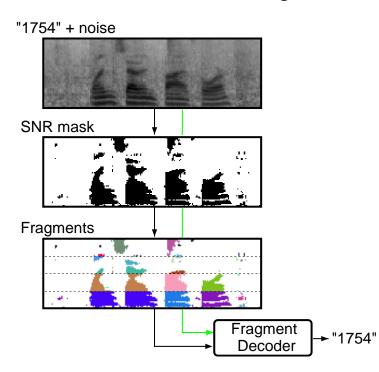
- disjoint subsets of cells for each source
- each model match $P(M_x|S_x,Y)$ is independent
- masks are mutually dependent: $P(S_1, S_2|Y)$

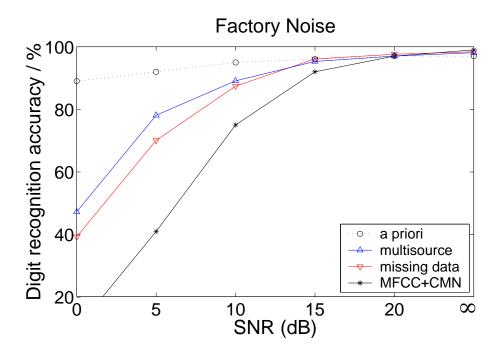
Outline

- 1 Computational Auditory Scene Analysis
- 2 Speech Recognition as Source Formation
- **3** Sound Fragment Decoding
- 4 Results & Conclusions
 - Speech recognition
 - Alarm detection

Speech fragment decoder results

- Simple P(S|Y) model forces contiguous regions to stay together
 - big efficiency gain when searching S space



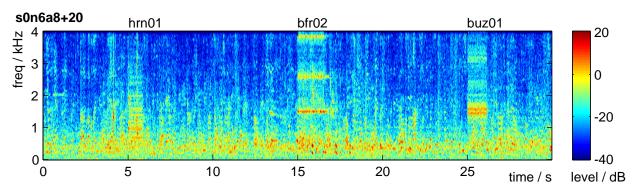


 Clean-models-based recognition rivals trained-in-noise recognition

Alarm sound detection

Alarm sounds have particular structure

- people 'know them when they hear them'
- clear even at low SNRs



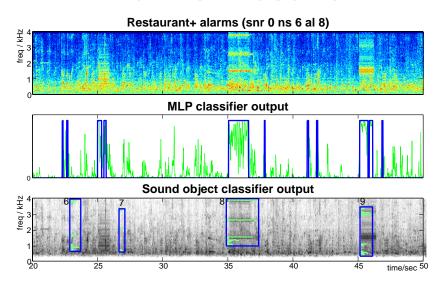
Why investigate alarm sounds?

- they're supposed to be easy
- potential applications...

• Contrast two systems:

- standard, global features, P(X|M)
- sinusoidal model, fragments, P(M,S|Y)

Alarms: Results



 Both systems commit many insertions at 0dB SNR, but in different circumstances:

Noise	Neural net system			Sinusoid model system		
	Del	Ins	Tot	Del	Ins	Tot
1 (amb)	7 / 25	2	36%	14 / 25	1	60%
2 (bab)	5 / 25	63	272%	15 / 25	2	68%
3 (spe)	2 / 25	68	280%	12 / 25	9	84%
4 (mus)	8 / 25	37	180%	9 / 25	135	576%
Overall	22 / 100	170	192%	50 / 100	147	197%

Summary & Conclusions

- Scene Analysis
 - necessary for useful hearing
- Recognition
 - a model domain for scene analysis
- Fragment decoding
 - recognition with partial observations
 - combines segmentation & model fitting
- Future work
 - models of sources other than speech
 - simultaneous 'perception' of multiple sources

