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Pattern Recognition for Sounds

 

• Pattern recognition is abstraction

 

- continuous signal 

 

→

 

 discrete labels
- an essential part of understanding?

“information extraction”

 

• Sound is a challenging domain

 

- sounds can be highly variable
- human listeners are extremely adept

1
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Pattern classification

 

• Classes are defined as distinct region 
in some feature space

 

- e.g. formant frequencies to define vowels

 

• Issues

 

- finding segments 
to classify

- transforming to 
an appropriate 
feature space

- defining the 
class boundaries
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Classification system parts

signal

segment

feature vector

class

Pre-processing/
segmentation

Feature extraction

Classification

Post-processing

Sensor

•  STFT
•  Locate vowels

•  Formant extraction

•  Context constraints
•  Costs/risk
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Feature extraction

 

• Feature choice is critical to performance

 

- make important aspects explicit, 
remove irrelevant details

- ‘equivalent’ representations 
can perform very differently in practice

- major opening for domain knowledge 
(“cleverness”)

 

• Mel-Frequency Cepstral Coefficients (MFCCs):
Ubiquitous speech features

 

- DCT of log spectrum on ‘auditory’ scale
- approximately decorrelated ...
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Statistical Interpretation

 

• Observations are random variables
whose distribution depends on the class:

• Source distributions 

 

p

 

(

 

x

 

|

 

ω

 

i

 

)

 

- reflect variability in feature
- reflect noise in observation
- generally have to be estimated from data

(rather than known in advance)

Class
ωi

(hidden)
discrete continuous

Observation
x
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Priors and posteriors

 

• Bayesian inference can be interpreted as 
updating prior beliefs with new information, 

 

x

 

:

• Posterior is prior scaled by likelihood 
& normalized by evidence (so 

 

Σ

 

(

 

posteriors

 

)

 

 = 1)

• Minimize the probability of error by 
choosing 

 

maximum

 

 

 

a posteriori

 

 (MAP) class:

               

Pr ωi( )
p x ωi( )

p x ω j( ) Pr ω j( )⋅
j∑

---------------------------------------------------⋅ Pr ωi x( )=

Posterior
probability

‘Evidence’ = p(x)

Likelihood

Prior 
probability

ω̂ Pr ωi x( )
ωi

argmax =
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Practical implementation

 

• Optimal classifier is 

but we don’t know 

• So, model conditional distributions
 then use Bayes’ rule to find MAP class

ω̂ Pr ωi x( )
ωi

argmax =

Pr ωi x( )

p x ωi( )

Labeled
training

examples
{xn,ωxn}

Sort
according
to class

Estimate
conditional pdf

for class ω1

p(x|ω1)
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Gaussian models

 

• Model data distributions via parametric model

 

- assume known form, estimate a few parameters

 

• E.g. Gaussian in 1 dimension:  

• For higher dimensions, need mean vector 

 

µ

 

i

 

and 

 

d 

 

x

 

 

 

d

 

 covariance matrix 

 

Σ

 

i

 

• Fit more complex distributions with mixtures...
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Gaussian models for formant data

• Single Gaussians a reasonable fit for this data

• Extrapolation of decision boundaries can be 
surprising
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Outline

Pattern Recognition for Sounds 

Speech Recognition
- How it’s done
- What works, and what doesn’t

Other Audio Applications

Observations and Conclusions
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How to recognize speech?

• Cross correlate templates?
- waveform?
- spectrogram?
- time-warp problems

• Classify short segments as phones (or ...), 
handle time-warp later
- model with slices of ~ 10 ms
- pseudo-piecewise-stationary model of words:
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Speech Recognizer Architecture

• Almost all current systems are the same:

• Biggest source of improvement is increase in 
training data
- .. along with algorithms to take advantage

Feature
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Speech: Progress

• Annual NIST evaluations

- steady progress (?), but still order(s) of 
magnitude worse than human listeners

1990 1995 2000 2005

30%

3%
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Speech: Problems

• Natural, spontaneous speech is weird!

- coarticulation
- deletions
- disfluencies
→ is word transcription even a sensible approach?

• Other major problems
- speaking style, rate, accent
- environment / background...
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Speech: What works, what doesn’t

• What works:  Techniques:
- MFCC features + GMM/HMM systems

trained with Baum-Welch (EM)
- Using lots of training data
Domains:
- Controlled, low noise environments
- Constrained, predictable contexts
- Motivated, co-operative users

• What doesn’t work:  Techniques:
- rules based on ‘insight’
- perceptual representations 

(except when they do...)
Domains:
- spontaneous, informal speech
- unusual accents, voice quality, speaking style
- variable, high-noise background / environment
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Outline

Pattern Recognition for Sounds

Speech Recognition

Other Audio Applications
- Meeting recordings
- Alarm sounds
- Music signal processing

Observations and Conclusions
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Other Audio Applications:
ICSI Meeting Recordings corpus

• Real meetings, 16 channel recordings, 80 hrs 

- released through NIST/LDC

• Classification e.g.: Detecting emphasized utterances 
based on f0 contour (Kennedy & Ellis ’03)

- per-speaker normalized 
f0 as unidimensional 
feature → simple 
threshold classification

3

Speaker 1 Speaker 2
440 f0/Hz f0/Hz440110 176022011055
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Personal Audio

• LifeLog / MyLifeBits / 
Remembrance Agent:
- easy to record everything you 

hear

• Then what?
- prohibitive to review
- applications if access easier?

• Automatic content analysis / indexing...

- find features to classify into e.g. locations
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Alarm sound detection

• Alarm sounds have particular structure
- clear even at low SNRs
- potential applications...

• Contrast two systems: (Ellis ’01)

- standard, global features, P(X|M)
- sinusoidal model, fragments, P(M,S|Y)

- error rates high, but interesting comparisons...
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Music signal modeling

• Use “machine listener” to navigate large music 
collections
- e.g. unsigned bands on MP3.com

• Classification to label:
- notes, chords, singing, instruments
- .. information to help cluster music

• “Artist models” based on feature distributions

- measure similarity between users’ collections  
and new music? (Berenzweig & Ellis ’03)
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Outline

Pattern Recognition for Sounds

Speech Recognition

Other Audio Applications

Observations and Conclusions
- Model complexity
- Sound mixtures
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Observations and Conclusions:
Training and test data

• Balance model/data size to avoid overfitting:

• Diminishing returns from more data:
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Beyond classification

• “No free lunch”: 
Classifier can only do so much
- always need to consider other parts of system

• Features
- impose ceiling on system performance
- improved features allow simpler classifiers

• Segmentation / mixtures
- e.g. speech-in-noise:

only subset of feature dimensions available
→missing-data approaches...

Y(t)

S1(t)

S2(t)
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Summary

• Statistical Pattern Recognition
- exploit training data for probabilistically-correct 

classifications

• Speech recognition
- successful application of statistical PR
- .. but many remaining frontiers

• Other audio applications
- meetings, alarms, music
- classification is information extraction

• Current challenges
- variability in speech
- acoustic mixtures
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Extra slides
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Neural network classifiers

• Instead of estimating  and using Bayes,

can also try to estimate posteriors  

directly (the decision boundaries)

• Sums over nonlinear functions of sums 
give a large range of decision surfaces...

• e.g. Multi-layer perceptron (MLP):

• Problem is finding the weights wij ... (training)
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Neural net classifier

• Models boundaries, not density 

• Discriminant training
- concentrate on boundary regions
- needs to see all classes at once

p x ωi( )
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Why is Speech Recognition hard?

• Why not match against a set of waveforms?
- waveforms are never (nearly!) the same twice
- speakers minimize information/effort in speech

• Speech variability comes from many sources:
- speaker-dependent (SD) recognizers must 

handle within-speaker variability
- speaker-independent (SI) recognizers must also 

deal with variation between speakers
- all recognizers are afflicted by background noise, 

variable channels 

→ Need recognition models that:
- generalize i.e. accept variations in a range, and
- adapt i.e. ‘tune in’ to a particular variant
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Within-speaker variability

• Timing variation:
- word duration varies enormously

- fast speech ‘reduces’ vowels

• Speaking style variation:
- careful/casual articulation
- soft/loud speech

• Contextual effects:
- speech sounds vary with context, role:

“How do you do?”
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Between-speaker variability

• Accent variation
- regional / mother tongue

• Voice quality variation
- gender, age, huskiness, nasality

• Individual characteristics
- mannerisms, speed, prosody
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Environment variability

• Background noise
- fans, cars, doors, papers

• Reverberation
- ‘boxiness’ in recordings

• Microphone channel
- huge effect on relative spectral gain
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