Audio Signal Recognition for Speech, Music, and Environmental Sounds

- 2 Speech Recognition
- **3** Other Audio Applications
 - **Observations and Conclusions**

Dan Ellis <dpwe@ee.columbia.edu>

Laboratory for Recognition and Organization of Speech and Audio (Lab**ROSA**)

Columbia University, New York

http://labrosa.ee.columbia.edu/

Dan Ellis

4

Audio Signal Reecognition

Pattern recognition is abstraction

- continuous signal → discrete labels
- an essential part of understanding?
 "information extraction"
- Sound is a challenging domain
 - sounds can be highly variable
 - human listeners are extremely adept

Pattern classification

- **Classes are defined as distinct region** in some feature space
 - e.g. formant frequencies to define vowels

Issues

Dan Ellis

- finding segments to classify
- transforming to an appropriate feature space
- defining the class boundaries

Pols vowel formants: "u" (x), "o" (o), "a" (+) 1800 1600 1400 1200 1000 HZ / HZ 800 new observation x 600 1600 200 400 600 800 1000 1200 1400 0 F1/Hz 2003-11-13 - 3 / 25

Audio Signal Reecognition

Classification system parts

Feature extraction

- Feature choice is critical to performance
 - make important aspects explicit, remove irrelevant details
 - 'equivalent' representations can perform very differently in practice
 - major opening for domain knowledge ("cleverness")
- Mel-Frequency Cepstral Coefficients (MFCCs): Ubiquitous speech features
 - DCT of log spectrum on 'auditory' scale
 - approximately decorrelated ...

Statistical Interpretation

• Observations are random variables whose distribution depends on the class:

- Source distributions *p*(*x*|ω_{*i*})
 - reflect variability in feature
 - reflect noise in observation
 - generally have to be estimated from data (rather than known in advance) $p(x|\omega_i)$

Priors and posteriors

• Bayesian inference can be interpreted as updating prior beliefs with new information, *x*:

Likelihood

$$Pr(\omega_{i}) \cdot \frac{p(x|\omega_{i})}{\sum_{j} p(x|\omega_{j}) \cdot Pr(\omega_{j})} = Pr(\omega_{i}|x)$$
Prior
probability
'Evidence' = p(x)

- Posterior is prior scaled by likelihood
 & normalized by evidence (so Σ(posteriors) = 1)
- Minimize the probability of error by choosing maximum a posteriori (MAP) class:

$$\hat{\omega} = \underset{\omega_i}{\operatorname{argmax}} \Pr(\omega_i | x)$$

Practical implementation

- Optimal classifier is $\hat{\omega} = \underset{\omega_i}{\operatorname{argmax}} Pr(\omega_i | x)$ but we don't know $Pr(\omega_i | x)$
- So, model conditional distributions $p(x|\omega_i)$ then use Bayes' rule to find MAP class

Gaussian models

- Model data distributions via parametric model
 - assume known form, estimate a few parameters
- E.g. Gaussian in 1 dimension:

$$p(x|\omega_i) = \frac{1}{\sqrt{2\pi\sigma_i}} \cdot \exp\left[-\frac{1}{2}\left(\frac{x-\mu_i}{\sigma_i}\right)^2\right]$$

normalization

• For higher dimensions, need mean vector μ_i and $d \times d$ covariance matrix Σ_i

Fit more complex distributions with mixtures...

Dan Ellis

Audio Signal Reecognition

2003-11-13 - 9 / 25

Gaussian models for formant data

- Single Gaussians a reasonable fit for this data
- Extrapolation of decision boundaries can be surprising

Outline

1 Pattern Recognition for Sounds

2 Speech Recognition

- How it's done
- What works, and what doesn't

3 Other Audio Applications

4 Observations and Conclusions

How to recognize speech?

- Cross correlate templates?
 - waveform?
 - spectrogram?
 - time-warp problems
- Classify short segments as phones (or ...), handle time-warp later
 - model with slices of ~ 10 ms

- pseudo-piecewise-stationary model of words:

Speech Recognizer Architecture

• Almost all current systems are the same:

- Biggest source of improvement is increase in training data
 - .. along with algorithms to take advantage

Speech: Progress

• Annual NIST evaluations

Speech: Problems

Natural, spontaneous speech is weird!

- coarticulation
- deletions
- disfluencies
- \rightarrow is word transcription even a sensible approach?
- Other major problems
 - speaking style, rate, accent
 - environment / background...

Speech: What works, what doesn't

- What works: Techniques:
 - MFCC features + GMM/HMM systems trained with Baum-Welch (EM)
 - Using lots of training data

Domains:

- Controlled, low noise environments
- Constrained, predictable contexts
- Motivated, co-operative users
- What doesn't work: Techniques:
 - rules based on 'insight'
 - perceptual representations (except when they do...)

Domains:

- spontaneous, informal speech
- unusual accents, voice quality, speaking style
- variable, high-noise background / environment

Outline

1 Pattern Recognition for Sounds

3 Other Audio Applications

- Meeting recordings
- Alarm sounds
- Music signal processing

4 Observations and Conclusions

• Real meetings, 16 channel recordings, 80 hrs

- released through NIST/LDC
- Classification e.g.: Detecting emphasized utterances based on f₀ contour (Kennedy & Ellis '03)
 - per-speaker normalized
 f0 as unidimensional
 feature → simple
 threshold classification

3

Personal Audio

- LifeLog / MyLifeBits / Remembrance Agent:
 - easy to record everything you hear
- Then what?
 - prohibitive to review
 - applications if access easier?

• Automatic content analysis / indexing...

Alarm sound detection

- Alarm sounds have particular structure
 - clear even at low SNRs
 - potential applications...

- Contrast two systems: (Ellis '01)
 - standard, global features, P(X|M)
 - sinusoidal model, fragments, P(M,S|Y)

- error rates high, but interesting comparisons...

Music signal modeling

- Use "machine listener" to navigate large music collections
 - e.g. unsigned bands on MP3.com
- Classification to label:
 - notes, chords, singing, instruments
 - .. information to help cluster music

"Artist models" based on feature distributions

- measure similarity between users' collections and new music? (Berenzweig & Ellis '03)

Dan Ellis

Audio Signal Reecognition

Outline

1 Pattern Recognition for Sounds

2 Speech Recognition

3 Other Audio Applications

4 Observations and Conclusions

- Model complexity
- Sound mixtures

Observations and Conclusions: Training and test data

• Balance model/data size to avoid overfitting:

• Diminishing returns from more data:

Beyond classification

- "No free lunch": Classifier can only do so much
 - always need to consider other parts of system
- Features
 - impose ceiling on system performance
 - improved features allow simpler classifiers
- Segmentation / mixtures
 - e.g. speech-in-noise: only subset of feature dimensions available

→missing-data approaches...

Dan Ellis

 $S_{I}(t)$

2003-11-13 - 24 / 25

Summary

- Statistical Pattern Recognition
 - exploit training data for probabilistically-correct classifications
- Speech recognition
 - successful application of statistical PR
 - .. but many remaining frontiers
- Other audio applications
 - meetings, alarms, music
 - classification is information extraction
- Current challenges
 - variability in speech
 - acoustic mixtures

Extra slides

Neural network classifiers

- Instead of estimating $p(x|\omega_i)$ and using Bayes, can also try to estimate posteriors $Pr(\omega_i|x)$ directly (the decision boundaries)
- Sums over nonlinear functions of sums give a large range of decision surfaces...

ah

Laboratory for the Recognition and Organization of Speech and Audio

Neural net classifier

- Models boundaries, not density $p(x|\omega_i)$
- Discriminant training
 - concentrate on boundary regions
 - needs to see all classes at once

Why is Speech Recognition hard?

- Why not match against a set of waveforms?
 - waveforms are never (nearly!) the same twice
 - speakers minimize information/effort in speech
- Speech variability comes from many sources:
 - speaker-dependent (SD) recognizers must handle within-speaker variability
 - speaker-independent (SI) recognizers must also deal with variation between speakers
 - all recognizers are afflicted by background noise, variable channels

→ Need recognition models that:

- generalize i.e. accept variations in a range, and
- adapt i.e. 'tune in' to a particular variant

Within-speaker variability

• Timing variation:

- word duration varies enormously

- fast speech 'reduces' vowels
- Speaking style variation:
 - careful/casual articulation
 - soft/loud speech
- Contextual effects:
 - speech sounds vary with context, role:
 "How **do** you **do**?"

Between-speaker variability

- Accent variation
 - regional / mother tongue
- Voice quality variation
 - gender, age, huskiness, nasality

• Individual characteristics

- mannerisms, speed, prosody

Environment variability

Background noise

- fans, cars, doors, papers

Reverberation

Laboratory for the Recognition and Organization of Speech and Audio - 'boxiness' in recordings

• Microphone channel

- huge effect on relative spectral gain

